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Abstract

We develop a mathematical model of tumor growth in complex, dynamic microenvironments with 

active, deformable membranes. Using a diffuse domain approach, the complex domain is captured 

implicitly using an auxiliary function and the governing equations are appropriately modified, 

extended and solved in a larger, regular domain. The diffuse domain method enables us to develop 

an efficient numerical implementation that does not depend on the space dimension or the 

microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-

basement membrane (BM) adhesion with the latter being implemented via a membrane energy 

that models cell-BM interactions. We incorporate simple models of elastic forces and the 

degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate 

tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the 

BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing 

cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the 

stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring 

forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it 

necessary to downregulate cell-BM adhesiveness, which is consistent with experimental 

observations. A stiff BM promotes invasiveness because at early stages the opening in the BM 

created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This 

requires invading cells to squeeze through the narrow opening and thus promotes fragmentation 

that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was 

found to increase in size even when the BM is stiff because of pressure induced by growing tumor 

clusters. A larger opening in the BM can increase the potential for further invasiveness by 

increasing the possibility that additional tumor cells could invade the stroma.
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1. Introduction

The tumor microenvironment (TME) is a dynamic structure with varying composition and 

distribution. The TME is composed of extracellular matrix and stromal cells and plays a 

crucial role on tumor progression and suppression (e.g., Tlsty et al., 2006; Albini et al., 

2007; Place et al., 2011; Pickup et al., 2013). Changing the tissue geometry alters tension 

gradients, sites of mechanotransduction and the location of the proliferating, migrating and 

differentiating cells within a tissue. Even small local changes in cell-cell or cell-ECM 

interaction can have dramatic consequences for global tissue structure and function (DuFort 

et al., 2011). The mechanisms of communication between tumor cells and the TME are 

complex but fall into two main categories: contact-dependent mechanisms that involve cell-

cell and cell-ECM adhesion and contact-independent mechanisms in which soluble 

molecules such as growth factors, chemokines and cytokines, and soluble subcellular 

organelles including microvesicles and exosomes play an essential role (Fang and DeClerck, 

2013). The interaction between cancer cells and their microenvironment can largely 

determine the phenotype of the tumor (Mueller and Fusenig, 2004). Recently it has been 

shown that not only can the microenvironment enhance growth of the primary cancer but 

also facilitate its metastatic dissemination to distant organs (Joyce and Pollard, 2009; Li et 

al.,2007).

Because tumor progression is difficult to approach by experimental methods alone, 

mathematical models and sophisticated computer simulations can help explain experimental 

and clinical observations and aid in assessing effective cancer treatment strategies. As a 

consequence, a keen interest in the mathematical modeling of cancer and numerical 

simulation of the tumor growth has persisted amongst mathematicians in recent years. A 

variety of modeling strategies are now available for investigating one or more aspects of 

cancer. For instance, in discrete cell-based approaches such as cellular automata and agent-

based models the behavior of individual cells is simulated according to biological rules. 

Continuum models such as single-phase and multiphase mixture models treat tumors as a 

collection of cells at larger scales and principles from continuum mechanics such as mass 

and momentum conservation are used to construct partial differential equations and integro-

differential equations governing the motion of cell densities, or volume fractions, stresses 

and cell velocities. See, for example, the recent reviews (Ribba et al., 2004; Quaranta et al., 

2005; Hatzikirou et al., 2005; Nagy, 2005; Wodarz et al., 2005; Byrne et al., 2006; Fasano et 

al., 2006; van Leeuwen et al., 2007; Roose et al., 2007; Graziano et al., 2007; Harpold et al., 

2007; Drasdo and Höhme, 2007; Friedman et al., 2007; Sanga et al., 2007; Anderson and 

Quaranta, 2008; Bellomo et al., 2008; Cristini et al., 2008; Deisboeck et al., 2009; Byrne, 

2010; Rejniak and McCawley, 2010; Lowengrub et al., 2010; Deisboeck et al., 2011; 

Frieboes et al., 2011; Kim et al., 2011; Kam et al., 2012; Hatzikirou et al., 2012; Szabó et 

al., 2013; Baldock et al., 2013; Katira et al., 2013) for a collection of recent results.
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There are a number of models that focus on different aspects of cell-cell and cell-ECM 

mechanical interactions on solid tumor progression. For example, the interaction of multiple 

tumor cell species has been modeled by multiphase mixture models (Ward and King, 1997; 

Please et al., 1998; Ward and King, 1999; Please et al., 1999; Ambrosi and Preziosi, 2002; 

Breward et al., 2002, 2003; Byrne et al., 2003; Byrne and Preziosi, 2003; Franks et al., 

2003a, b; Roose et al., 2003; Cristini et al., 2003; Araujo and McElwain, 2005a,b; Zheng et 

al., 2005; Chaplain et al., 2006a; Li et al., 2007; Macklin and Lowengrub, 2007; Tosin, 

2008; Wise et al., 2008; Ambrosi and Preziosi, 2009; Ambrosi et al., 2009; Preziosi and 

Tosin, 2009a,b; Armstrong et al., 2009; Cristini et al., 2009; Tracqui, 2009; Macklin et al., 

2009; Frieboes et al., 2010; Preziosi and Vitale, 2011; Hawkins-Daarud et al., 2012). In 

these models, the mechanical effects of the stroma, the extracellular matrix, basement 

membrane and connective tissue were either neglected or highly idealized. Recently, Bresch 

et al. (2010) used the immersed interface boundary method to study the interactions of a 

growing tumor and a basement membrane, accounting for both proliferating and quiescent 

tumor cells, where the membrane is represented by a level set function. This work extended 

an approach developed by Cottet and Maitre (2004) for fluid-structure interactions, and 

modeled the membrane elasticity by penalizing local stretching. Two and three dimensional 

simulations were performed to show the effects of the membrane and nutrient heterogeneity 

on tumor growth. Very recently, using multiphase porous media mechanics and 

thermodynamically constrained averaging theory, Sciumé et al. (2013) modeled growing 

tumors as a multiphase medium containing extracellular matrix, tumor and host cells, and 

interstitial liquid. Numerical simulations were performed that characterized tumor growth as 

a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, 

mechanical strain, cell adhesion and geometry. Following the approach used in Bresch et al. 

(2010), a multiphase mixture model was developed by Chen et al. (2013) incorporating a 

simple membrane elasticity where global stretching is penalized. An efficient numerical 

method was designed to solve the governing equations. Two and three dimensional 

simulations were performed and nonlinear effects of membrane elastic forces were found to 

either resist or enhance growth of the tumor, depending on the membrane geometry.

In this paper, we extend the model developed by Chen et al. (2013) to simulate solid tumor 

growth in active, complex and dynamic TMEs. The complex domain is captured implicitly 

using an auxiliary function, which is a smoothed characteristic function of the complex 

domain, and the governing equations are appropriately modified, extended and solved in a 

larger, regular domain. The boundary conditions appear as singular source terms in the 

reformulated equations. This approach, known as the diffuse domain method (e.g., Li et al., 

2009; Teigen et al., 2009; Teigen et al., 2011; Aland et al., 2010), enables us to develop an 

efficient numerical implementation that does not depend on the space dimension or on the 

geometry of the microenvironment. We apply this framework to a mixture model of tumor 

growth in duct-like geometries, such as ductal carcinoma in situ (DCIS) of the breast (e.g., 

Sakorafas and Tsiotou 2000; Sanders et al. 2005). We model homotypic cell-cell adhesion 

and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented 

via a membrane energy that models cell-membrane interaction (Jacqmin, 1999) in two and 

three dimensions. We incorporate simple models of elastic forces and the degradation of the 

BM and ECM by tumor-secreted matrix degrading enzymes, which allows us to model 
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tumor invasion of the stroma. We investigate in-situ and invasive progression of tumors, and 

the corresponding BM dynamics, as a function of cell-BM adhesion and the stiffness of the 

BM. Note that Chen et al. (2013) did not consider cell-BM adhesion, the degradation of the 

BM and ECM, or tumor invasion of the stroma.

The paper is organized as follows. In Section 2, we develop a mathematical model of tumor 

growth and tumor invasion in complex, evolving geometries using the diffuse domain 

method. In Section 3, numerical simulations are performed to illustrate the nontrivial 

dependence of tumor growth and local invasiveness on the adhesive characteristics of the 

tumor cells and the properties of the basement membrane in two and three dimensions. 

Finally, in Section 4, we give some concluding remarks and future work. The details of the 

numerical method are presented in the Supplementary Material.

2. Mathematical model

We build upon the tumor growth models from Wise et al. (2008) and Chen et al. (2013). For 

completeness, these are summarized below. We consider a bounded, open tissue domain Ω 

⊂ R d , d = 2 or 3 in which the tumor and membrane are evolving. The dimensionless 

variables defined in Ω are:

• ϕV, the volume fraction of the viable tumor cells,

• ϕD, the volume fraction of the dead cells,

• uS , the mass-averaged cell velocity,

• p, the pressure,

• n, the nutrient concentration.

Following Wise et al. (2008), we assume that the volume fractions satisfy the mass 

conservation equations

(1)

where i = {V, D} are the cell types, Ji are fluxes that account for the mechanical interactions 

among the cell species, and the source terms Si account for the intercomponent mass 

exchange as well as gains due to cell proliferation and loss due to cell death. The fluxes and 

velocities are determined using a energetic variational argument. In Chen et al. (2013), we 

incorporated a simple model to simulate the effect of an embedded deformable membrane 

described implicitly using an auxiliary function ψ(x, t). We assume the energy of the system 

is a sum of the cell-cell adhesion energy Eadhesion and a simplified form of the elastic energy 

Eel:

(2)

(3)

Chen and Lowengrub Page 4

J Theor Biol. Author manuscript; available in PMC 2015 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(4)

where

(5)

is the total volume fraction of tumor cells and  is a double-well bulk 

energy, which implies a well-delineated separation of the tumor ϕT ≈ 1 and the host ϕT ≈ 0. 

The parameters γ and ∈ measure the cell-cell adhesion strength and the thickness of the 

diffuse interface that separates the tumor and host domains, respectively. In Eq. (4), Ψ is a 

template function (e.g., Ψ(x, t) = ψ(x, 0)), and A represents the stiffness of the membrane 

(e.g., a simplified version of Hooke’s law).

The fluxes and velocities can be modeled as (Wise et al., 2008; Chen et al., 2013)

(6)

and

(7)

where

(8)

Eq. (7) is a generalized Darcy’s law that relates the velocity of the tumor cells with the 

pressure, cell-cell adhesive and the elastic forces. In Chen et al. (2013), an advective Cahn-

Hilliard type equation is used to approximate the transport of ψ

(9)

(10)

under the assumption that the membrane moves with the velocity uS.

The sources terms are taken to be (Wise et al., 2008)

(11)

(12)

(13)
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where the parameters λM, λA, λN and λdc are the rates of cellular mitosis, apoptosis, necrosis 

and dead cell clearance, respectively. is a Heaviside step function. It is assumed that viable 

tumor cells necrose based on the level of the local nutrient concentration n, i.e., when the 

nutrient level is below the cell viability limit nN , cells die at the rate λN.

Assuming no proliferation or death of the host tissue, the velocity is constrained to satisfy 

(Wise et al., 2008)

(14)

where ST is the sum of SV and SD

(15)

Combining Eqs. (7) and (14) yields an equation for the pressure

(16)

The nutrient is assumed to evolve quasi-statically and satisfies

(17)

where the nutrient uptake by host tissue is negligible compared with the uptake by tumor 

cells and nutrient diffusion occurs on a much shorter time scale (e.g. minute) than the cell-

proliferation time scale (e.g. day or more), see Wise et al. (2008). The term D(ϕT) is the 

nutrient diffusion coefficient, which may be different in the tumor and host domains. The 

term TC (ϕT , n) represents a nutrient source (e.g., from capillaries).

2.1. Diffuse domain formulation

We next extend the model by assuming that a basement membrane (BM) bounds the domain 

where the tumor is growing (Fig. 1). Further, we explicitly account for cell-BM adhesion. 

We model the cell-BM adhesive energy as (Jacqmin, 1999),

(18)

where g(ϕT) is an energy density and ΓBM denotes the BM. A variational argument shows 

that this introduces the boundary condition (Granasy et al., 2007):

(19)

where n is the unit normal to the BM. Taking , where θ 

models the static contact angle (e.g., Jacqmin, 1999; Granasy et al., 2007; Li et al., 2009; 

Do-Quang and Amberg, 2009; Teigen et al., 2009; Teigen et al., 2011; Aland et al., 2010), 

this term reflects the difference in cell-cell, cell-ECM, and ECM-ECM adhesion energies in 

analogy with Young’s relation for multicomponent fluids. A small value of θ (e.g., θ < 90 °) 
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implies that tumor cells prefer to adhere to each other rather than to the BM whereas a large 

value of θ (e.g., θ > 90 °) implies that tumor cells prefer to adhere to the BM.

We consider a large, regular domain Ωs containing the complex, dynamic domain Ω (Fig. 1). 

We represent the complex domain using a phase field function ψ, which approximates the 

characteristic function of the domain Ω such that ψ ≈ 1 in Ω and ψ ≈ 0 in Ωs/Ω. The 

boundary ∂Ω, which may be time-dependent, is described implicitly using the set ∂Ω(t) = {x|

ψ(x, t) = 1/2}.

We next reformulate Eq. (1) and the boundary conditions on ∂Ω using the diffuse domain 

formulation (Li et al., 2009; Teigen et al., 2009; Teigen et al., 2011; Aland et al., 2010) 

where the equations are extended into Ω S and the boundary conditions are incorporated as 

singular source terms. Accordingly, we obtain

(20)

where we have assumed no-flux boundary conditions Ji · n = 0 on ∂Ω. To determine the 

fluxes Ji and the velocities ui in Eq. (20), we use an energy variation argument to derive the 

constitutive laws, which is consistent with a dissipative biophysical energy.

In the following we reformulate the tumor cell-cell adhesion energy Eq. (2) in the larger 

domain Ω s as

(21)

and use a surface delta function δΓ to rewrite the cell-membrane interaction forces in the 

domain Ωs

(22)

where Γ = ∂Ω and we take  as a diffuse interface approximation of the surface 

delta function, with ∈ characterizing the width of the diffuse boundary of the domain Ω. All 

together, the total free energy of the system becomes

(23)

A variational argument gives that

(24)

where the term ∈g′(ϕT)|▽ψ| comes from the diffuse domain approximation of the tumor-

membrane boundary condition (19).

Correspondingly, a generalized Darcy’s law gives
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(25)

with

(26)

The term δΓ▽g(ϕT ) comes from the active tumor-membrane boundary, and other terms on 

the right hand side of v equation arise from the cell-cell adhesion.

Substituting the fluxes Ji and the velocity uS into Eq. (20), the tumor volume fraction ϕT 

follows the Cahn-Hilliard-type advection-reaction-diffusion equation

(27)

where the mass exchange term ST will be specified later in this section.

Rather than solving for the volume fraction of viable tumor cells ϕV, a dynamic equation for 

the volume fraction of dead cells ϕD is used instead

(28)

where the mass exchange term SD will be given later in this section. Knowing ϕT and ϕD, 

the volume fraction of viable tumor cells is calculated as ϕV = ϕT − ϕD.

Assuming, no proliferation and death of the host tissue, the velocity is constrained to satisfy

(29)

where τ is a small positive number.

Together, Eqs. (25) and (29) constitute a Poisson equation for the solid pressure p

(30)

The nondimensional quasi-steady nutrient equation is given by

(31)

The diffusion coefficient D(ψϕT) and nutrient capillary source term TC(ψϕT, n) are

(32)
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(33)

where DH is the nutrient diffusion coefficient in the host domain,  denote the 

nutrient-to-tissue transfer rates for the pre-existing vasculature in the tumor and host 

domains, and nC is the nutrient level in the capillaries. We do not model angiogenesis here, 

although models of angiogenesis could be incorporated. This will be investigated in future 

work. The interpolation function Q(ϕ) is

For simplicity, we take DH = DT here.

Eqs. (27)-(31) and (9)-(10) are valid on the extended domain Ω s and not just on the tumor 

volume ΩT. We choose the following boundary conditions

As long as the tumor does not intersect the boundary of the extended domain Ω s, the results 

are insensitive to the choice of boundary conditions on ∂Ω s.

2.2. Tumor invasion into stroma

Cancer cells have ability to invade the local tissue and spread to other tissues and organs. 

During this stage of growth, tumor cells secrete matrix degrading enzymes (MDEs), mainly 

matrix metallo-proteases (MMPs) and urokinase plasminogen activators (uPAs) that degrade 

the extracellular matrix (ECM) and the basement membrane (Friedl and Wolf, 2003; Friedl 

and Alexander, 2011; Hood and Chersh, 2002; Ilina et al., 2011). At the same time, viable 

tumor cells may rebuild the ECM by secreting insoluble matrix macromolecules (Carter, 

1965; Quigley et al., 1983; Lacovara et al., 1984; McCarthy & Furcht, 1984; Liotta et al., 

1986; Klominek et al., 1993) due to their interactions with the BM and ECM. Following 

recent work (Chaplain et al., 2006a; Graziano et al, 2007; Macklin et al., 2009; Giverso et 

al., 2010), we introduce the ECM density E, the concentration of matrix degrading enzymes 

m, and assume that E evolves via

(34)

where λmE is the matrix degradation rate by the MDEs and λvE is the production rate of 

ECM by the viable tumor cells. The MDE concentration m satisfies
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where Dm is the diffusion coefficient, the parameter λprod is the production rate of MDEs by 

the viable tumor cells, mmot is a desired level of MDE, λdecay is the natural decay rate of 

MDEs, and the parameters λdmψ and λdmE are loss rates of MDEs due to interactions with 

the basement membrane and the ECM, respectively. The boundary condition for m is

We extend the cell velocity to account for active cell movement via haptotaxis by 

introducing a haptotaxis velocity, which is proportional to the gradient of ECM (e.g., 

Chaplain et al, 2006b, Macklin et al., 2009). In particular, we add the term χE ▽E to the 

velocity v in Eq. (26), where χE is the haptotaxis coefficient.

Finally, the model for the basement membrane is extended to include degradation by MDEs 

(Bresch et al., 2010)

(36)

where the parameter λdeg is the membrane degradation rate by the MDEs.

3. Numerical results

In order to numerically solve the governing system of equations derived in the previous 

section, a stable numerical scheme developed in Chen et al. (2013) is used to solve the 

equations. Two and three dimensional simulations are performed. Adaptive, block-

structured Cartesian mesh refinement is used to increase accuracy locally (Wise et al., 

2011). The details of the algorithm are given in the Supplementary Material. The parameters 

are given in Tables 1 and 2 and are consistent with nondimensionalizing time by the cell 

mitosis rate (e.g., 1 day) and space by the diffusion penetration length (e.g., approx 200μm). 

In two dimensions the computational domain is Ω = (0, 20) × (0, 20). The root-level grid 

size is 322 and we perform three levels of refinement, giving an effective spatial grid size h 

= 0.078. The time step size is s = 0.001. In three dimensions the computational domain is Ω 

= (0, 20) × (0, 20) × (0, 20). The root-level grid is 323 and there are two levels of 

refinement, giving an effective spatial grid size h = 0.16. In three dimensions, the time step 

size is s = 0.01. The time and space step sizes are sufficient to resolve the nonlinear 

dynamics.

3.1. Two dimensional results

We first present simulations of tumor growth in simplified 2D Cartesian domains with duct-

like geometries with elastic, dynamic boundaries. We assume that the tumors (red; ϕT = 0.5 

contours) start as small clusters of tumor cells, a subset of which are attached to the BM 

(green; ψ = 0.5 contours) since in many carcinomas, some tumor cells are able to survive 

without being attached to the BM (anoikis-resistance; e.g., Derksen et al. 2006; Howe et al. 

2011; Taddei et al. 2012). We do not explicitly model the layer of normal epithelial cells 

(ECs) that are also attached to the BM (away from the tumor), but the model could be 

straightforwardly extended to this case. We instead assume that the normal ECs are 
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displaced by the growing tumor. In the simple duct shown in Fig. 1 (left), we model the BM 

as having a finite thickness and we track the inner and outer boundaries. The tumors are 

initially present on the inner boundary. Although the thickness of the BM is exaggerated 

here, the results shown below do not depend qualitatively on the thickness of the BM. 

Simulating thinner BMs just requires more numerical resolution. Because tumors such as 

DCIS grow in breast ducts, which are examples of branched epithelial tissues, we also 

consider the evolution of a tumor in a simplified model of a branched duct. For the branched 

duct in Fig. 1 (right), we do not model the thickness of the BM and we assume that the 

tumor has grown across the lumen. In this case, the lumens of the secondary branches are 

smaller than that of the primary branch and the ratio between the lumen radii is 1.6, which is 

consistent with experimental observations of breast duct morphologies (Ramsay et al., 

2005). In both the simple and branched ducts, we assume that nutrient is delivered uniformly 

to the stroma by the vasculature, which is modeled by taking the nutrient capillary source 

term in Eq. (33) to be .

Simple duct—We begin by investigating the dependence of tumor growth on cell-

membrane adhesion using the simple duct geometry. We do not consider the production of 

MDEs or haptotaxis (these are considered later below). We vary the cell-membrane contact 

angle θ and investigate the evolution of the small tumor clusters. Recall that for θ < 90 °, the 

tumor cells prefer to adhere to each other rather than to the BM while for θ > 90 °, the tumor 

cells prefer to adhere to the BM. In Fig. 2, characteristic evolutions of the tumor and BM are 

shown at different times (columns) for different contact angles (rows; [a]: 30°, [b]: 90°, [c]: 

120°) for the simple duct geometry. The locations of the tumor boundaries (red), necrotic 

cores (magenta) and BM (green) are shown together with the contours of the pressure with 

levels indicated by the color bar. In Fig. 3, the corresponding contours of the nutrient 

distribution are shown. As the tumors grow along the BM, the BM deforms due to the 

pressure exerted by the tumor cells, and nutrient is depleted in the tumor centers and 

necrotic cores form. At early times duct deforms outward into the stroma while tumor grows 

along the duct and into the lumen. At later times, dimples form at tumor surface in contact 

with the membrane. This is due to the necrosis of cells in interior of the tumor clusters due 

to lack of nutrients, which diffuse in from the stroma. Necrosis generates negative pressures 

(dark regions in Fig. 2) due to cell death and clearance, and inward cell velocities. As the 

cell-BM adhesion is increased (e.g., θ increases), the tumors become more elongated and 

thinner. This in turn increases the availability of nutrients to the tumor cells and decreases 

the amount of necrosis, which results in smaller dimples. Correspondingly, as quantified in 

Fig. 4, the size of the tumor clusters is an increasing function of θ. Note that the growth 

curves of the clusters have inflection points, which are more pronounced when the cell-BM 

adhesion is high. This occurs when there is a transition from volumetric growth at early 

times to planar growth along the duct at later times. This is also observed in Fig. 6, which 

shows the size of the tumor clusters when the membrane stiffness is varied.

Next, we examine the dependence of tumor growth on the membrane stiffness A. We fix the 

cell-BM adhesion and take θ = 90°. Characteristic evolutions are shown in Fig. 5 at different 

times (columns) and for different stiffnesses (rows; [a]: A = 0.01, [b]: A = 2.0, [c]: A = 5.0). 

In Fig. 5 [d], the BM is not allowed to deform and ψ = ψ is imposed. No BM-generated 
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elastic forces are imparted to the tumor since the membrane energy Eel = 0. The figure 

shows that as A is increased, the BM deforms less. While the sizes of the tumor clusters are 

decreasing functions of A (see Fig. 6), the tumor morphologies and areas of necrosis depend 

non-monotonically on A. In particular, the tumor cluster with A = 2.0 in [b] extends farther 

along the BM than the cluster with A = 0.01 in [a], even though its overall size is slightly 

smaller than that in [a]. Further, in [b] and [c] small bands of negative pressure induced by 

elastic restoring forces from the BM are observed along the outer boundary of the BM, 

which are more prominent at early times and tend to disappear at later times as the BM 

flattens. Interestingly, the pressure inside the tumor cluster in [b] is much larger than that 

those in [a], [c] and [d], which reflects a difference in the overall balance of forces. When 

the stiffness is increased to A = 5.0, the membrane is nearly flat and the tumor is smaller and 

more deformed than that with A = 2.0. Compared to the tumor with A = 0.01, the dimple 

forms on the lumen side of the tumor in [c] rather than the BM side as observed in [a] where 

the BM is less stiff. Interestingly, in [d] where the membrane is fixed and there are no BM-

generated elastic forces, the tumor cluster grows substantially larger than that with A = 5.0 in 

[c] and is nearly as large as the clusters in [a] and [b]. This is because when the membrane is 

fixed, there are no resistive forces imparted back to the tumor, and so the clusters grow more 

freely than those with large A. Further, the 90 ° contact angle between the tumor cluster and 

BM can be more clearly seen in [d] than the other cases since the BM does not deform.

Branched duct—We next consider the evolution of a tumor in a branched duct. As in the 

single duct case, we do not consider haptotaxis and tumor invasion. In Fig. 7, characteristic 

tumor cluster and BM morphologies are shown together with the pressure at different times 

(columns) and different cell-BM adhesivities (rows; [a]: θ = 30 °, [b]: θ = 90°, [c]: θ = 120°). 

Interestingly, when the cell-BM is small (e.g., θ = 30 °), the tumor grows only at early times 

and the BM correspondingly deforms outward. At later times, however, the growth of the 

tumor slows as the forces of growth and necrosis balance those of cell-cell and cell-BM 

adhesion. The tumor spreads laterally along the BM but only to a limited extent. Eventually, 

the tumor reaches a steady configuration with the BM only being slightly deformed. When 

cell-BM adhesiveness is increased, the clusters eventually begin to grow continuously. An 

analysis of the volumes of the tumor clusters (see Fig. 8) indicates that the transition to 

growth occurs for θ between 60 ° and 90° and that tumor size positively correlates with cell-

BM adhesiveness. As the clusters start to grow, necks form in the center of the clusters due 

to negative pressures that arise from cell death and clearance. Eventually, the necks pinch 

off and the clusters grow along the BM in both the primary and secondary branches. The 

pinch off events are controlled by the relative strengths of cell-cell and cell-membrane 

adhesion, the membrane stiffness, and the rates of cell proliferation, necrosis and clearance. 

Generally, increasing the cell-membrane adhesiveness increases the tendency of the clusters 

to pinchoff. As observed earlier, there is an inflection point in the growth curves at 

sufficiently large cell-BM adhesiveness because of the change from volumetric to planar 

growth of the tumor clusters. Negative pressures are also observed along the BM near the 

tumor cluster, and at the BM branch points, induced by the BM elastic restoring forces. The 

effect of BM stiffness on tumor and BM evolution is similar to that presented in Fig. 5 for 

the simple duct and thus is not shown here for the branched duct.
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Tumor invasion—We next investigate tumor invasion into the stroma. We use the simple 

duct geometry and the initial condition for the tumor clusters, the BM and the ECM are 

shown in Fig. 9. Although we have taken a symmetric initial condition for simplicity, our 

model approach allows for asymmetric initial data and asymmetric evolution. Interestingly, 

we find that in order to be able to simulate tumor invasion numerically the cell-BM adhesion 

needs to be downregulated, which is consistent with experimental observations (e.g., Liotta 

et al., 1991; Perl et al., 1998; Wolf et al., 2007; Ilina et al, 2011). Here, we took θ = 0°, 

which seems to be required to simulate invasion of the stroma. In Fig. 10, the evolution of 

the tumor clusters and BMs are shown. In [a], the BM stiffness is A = 10 while in [b] the 

stiffness is A = 20. At early times, the MDEs secreted by tumor cells degrade the BM and 

the tumor cells detach from the BM. Eventually, the BMs are degraded and small holes form 

connecting the lumen with the stroma. Note that the interior part of the BM reconnects with 

the exterior part. Once the BM is breached, the tumor clusters squeeze through the opening, 

grow and migrate haptotactically into the stroma. As this process occurs, strong negative 

pressures develop in the BM interior due to elastic restoring forces and as a result, the hole 

width decreases at later times. This is particularly noticeable in [b] where the BM stiffness is 

larger. In [a], where A = 10, the hole in the basement membrane is larger than that in [b] 

where A = 20. Further, in [a] the tumor clusters connect across the lumen which limits the 

rate of local invasion. In [b], where A = 20, the tumor develops a narrow neck that pinches 

off as it squeezes through the opening in the BM. The resulting fragments grow, migrate and 

invade farther into the stroma than when A is small.

3.2. Three dimensional results

We now investigate tumor growth and invasion in three dimensions by exploiting the fact 

that our methodology is independent of the number of space dimensions and of the 

geometries of the tumor and microenvironment. We first simulate tumor progression in a 

branched duct and then we close by modeling tumor invasion of the stroma from a simple 

duct.

Branched duct—Extending the two dimensional configuration to three dimensions, we 

consider an initial condition consisting of a tumor cluster that has grown across the primary 

lumen. The lumens of the secondary branches are smaller than that of the primary branch 

with the ratio between their radii being 2.4. The configuration is shown in Fig. 11 where on 

the left, the tumor (red) is shown via the isosurface ϕT = 0.5 and the BM (green) corresponds 

to the isosurface ψ = 0.5. In Fig. 11 (right), a two-dimensional cross-section along the center 

plane (z = 10) of the three dimensional geometry is shown. In Figs. 12 and 13, which show 

three-dimensional results and the corresponding two-dimensional cross-sections 

respectively, we present characteristic tumor and BM evolutions using different cell-BM 

adhesiveness (rows: [a]: θ = 30°, [b]: θ = 90°, [c]: θ = 120°). As in two-dimensions, when 

the cell-BM adhesiveness is small (θ = 30° in [a]), the tumor grows initially before reaching 

a dynamic equilibrium that reflects the balance of forces. The two-dimensional slices in Fig. 

13, which also show the pressure distributions, reveal that the tumor clusters develop necks 

due to cell necrosis and clearance that lead to negative pressures (dark regions) and to 

inward cell velocities. When the cell-BM adhesion is increased the tumor clusters eventually 

start to grow continuously. As can be seen in Fig. 14, which shows the tumor volumes, the 

Chen and Lowengrub Page 13

J Theor Biol. Author manuscript; available in PMC 2015 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



transition to growth occurs between θ = 30 ° and θ = 60°, which suggests that continuous 

growth in three dimensions may occur at smaller cell-BM adhesiveness than that needed in 

two dimensions. As in two dimensions, tumor size is positively correlated with cell-BM 

adhesion. Our results also show that in three dimensions the necks pinchoff more readily 

than in two dimensions, which is to be expected from the additional radius of curvature, and 

that the tumor clusters grow continuously along the BM through both the primary and 

secondary ducts, and dimples form at the tumor-BM interface. In [c], where θ = 120 °, the 

tumor cluster grows across the lumen in the secondary duct and attaches to the inner BM.

Tumor invasion—We conclude our investigation of three dimensional tumor growth by 

modeling tumor invasion into the stroma using a simple duct geometry. Analogous to the 

two-dimensional study we presented in Sec. 3.1, we consider the evolution of a thin torus of 

tumor cells that is attached to a cylindrical BM, see Fig. 15 (left). As in 2D, we have taken a 

symmetric initial condition although our model allows general configurations. Fig. 15 (right) 

shows a two-dimensional cross-section of the tumor cells, ECM distribution and BM along 

the center plane (z = 10). As in two dimensions, cell-BM adhesion is down regulated (θ = 0 

°) and the evolution of the tumor clusters is investigated as a function of BM stiffness. The 

results are presented in Figs. 16 and 17, which show the evolution in three dimensions and 

in two-dimension cross-sections together with the contours of the pressure, respectively. In 

[a], the BM stiffness A = 10 while in [b] A = 20. Overall, the results are similar to that 

observed in two dimensions, although the details of the evolution are a little different. As in 

two dimensions the tumors squeeze through the openings that form in the BM under the 

action of tumor-secreted MDEs. When A = 10, the reconnection of the tumors across the 

lumen reduces the rate of local invasion compared to that observed when the BM is stiffer 

(A = 20). Interestingly, when A = 20, the tumor fragment that remains in the lumen does not 

undergo a secondary break-up as in two dimensions but instead grows substantially and 

forces the opening in the BM to become even wider than that when A = 10. This increases 

the probability that another tumor fragment may invade the stroma at a later time.

4. Conclusion

We have developed a mathematical model of tumor growth in complex, dynamic geometries 

with elastic, deformable membranes using a diffuse domain approach (e.g., Li et al., 2009; 

Teigen et al., 2009; Teigen et al., 2011; Aland et al., 2010). In this methodology, the 

complex domain was captured implicitly using an auxiliary function and the governing 

equations were appropriately modified, extended and solved in a larger, regular domain. The 

boundary conditions appeared as singular source terms in the reformulated equations. The 

diffuse domain method facilitated an efficient numerical implementation that did not depend 

on the space dimension or on the geometry of the microenvironment. Although we 

considered simple and symmetric geometries in this paper, the model is in no way limited in 

this respect and can handle any microenvironmental or tumor geometry that can be 

represented implicitly as a level surface of a function.

We applied this framework to a mixture model of tumor growth in duct-like geometries in 

two and three dimensions. Such geometries arise in ductal carcinoma. We modeled 

homotypic cell-cell adhesion and heterotypic cell-BM adhesion with the latter being 
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implemented via an effective contact angle between the tumor cluster and BM that arises 

from differences in adhesion energies. We incorporated simple models of elastic forces and 

the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We 

investigated tumor progression and BM response as a function of cell-BM adhesion and the 

stiffness of the BM. We found that tumor sizes tend to be positively correlated with cell-BM 

adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors that 

are easier for nutrients to penetrate. Prior to invasion of the tumor into the stroma, we found 

a negative correlation between tumor size and BM stiffness as the elastic restoring forces 

tend to inhibit tumor growth. The details of the deformation and pressure fields were found 

to be non-monotone, however.

In order to model tumor invasion of the stroma, we found it necessary to downregulate cell-

BM adhesiveness, which is consistent with experimental observations (e.g., Liotta et al., 

1991; Perl et al., 1998; Wolf et al., 2007; Ilina et al, 2011). We found a positive correlation 

between tumor invasiveness and BM stiffness. A stiff BM was found to promote 

invasiveness because at early stages the opening in the BM tends to be narrower when the 

BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus 

promotes fragmentation that then leads to enhanced growth and invasion. In three 

dimensions, the opening in the BM was found to increase in size even when the BM is stiff 

because of pressure induced by growing tumor clusters. This could allow a second wave of 

invasive tumor cells to penetrate the stroma.

There are several ways in which the methodology described in this paper can be extended. 

First, the model of BM-induced forces can be made more realistic. For example, bending 

forces induced by the BM could be incorporated using a Helfrich-like model (Helfrich, 

1973; Du et al., 2004; Torabi et al., 2009). Such a model, however, introduces higher-order 

derivatives and requires the development of new, stable numerical methods to simulate the 

dynamics of the nonlinear system efficiently. Second, local elastic stresses can be included 

following the approach described in Bresch et al. (2010) and Cottet et al. (2004). Third, 

additional cellular biophysical processes can be incorporated and specific tumor types can 

be modeled. For example, the framework developed here can be extended to model ductal 

carcinoma in situ (DCIS), which is the most common type of non-invasive breast cancer in 

women. In DCIS, the surface receptors e.g., E-cadherins and integrins, and subcellular 

structures degrade, the cell loses its liquid volume, and calcium is deposited in its solid 

fraction. Following the spirit of Macklin et al. (2012), who developed a mechanistic agent-

based model, one can develop a continuum model for microcalcification and couple this 

model to the diffuse-domain framework developed herein to investigate the effect of a 

dynamic BM on DCIS. The model can then be used to estimate how far the tumor extends 

beyond the microcalcification, which is a critical variable for treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The initial shape of tumor clusters (red; ϕT = 0.5 contours) and basement membranes (green; 

ψ = 0.5 contours) in the 2D simulations. Left: simple duct; Right: branched duct. Note that 

in the simple duct, the membrane thickness is explicitly modeled by introducing the inner 

and outer membrane boundaries.
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Figure 2. 
Tumor cluster growth in a 2D simple duct showing the pressure field (background), tumor 

(red; ϕT = 0.5 contours) and BM (green; ψ = 0.5 contours) and necrotic core (magenta; ϕD = 

0.5 contours) for different relative strengths of cell-BM adhesions as labeled via the contact 

angle θ. Increasing the cell-membrane adhesion by increasing θ leads to thinner, larger, 

more elongated tumors. [a]: θ = 30°; [b]: θ = 90°; [c]: θ = 120° . The membrane stiffness is 

A = 0.01, , and other parameters are shown in Table 1. Note that in all simulations, 

time is measured relative to the mitosis time (e.g., approximately 1 day) and space is 

measured relative to the diffusion penetration length (e.g., approximately 200μm).

Chen and Lowengrub Page 22

J Theor Biol. Author manuscript; available in PMC 2015 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
The nutrient distributions of the tumor cluster growth shown in Fig. 2. Nutrient diffuses 

from the stroma and is uptaken by tumor cells, leading to lowered nutrient concentrations in 

the tumor interior and the development of necrotic cores (regions inside the magenta 

curves).
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Figure 4. 
The time evolution of the volumes of the tumor clusters shown in Fig. 2 up to T = 10 (days). 

Increasing cell-BM adhesion by increasing θ leads to larger tumors and faster growth.
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Figure 5. 
The effect of membrane stiffness on growing tumor clusters in 2D simple ducts. The cell-

BM adhesiveness is fixed (θ = 90°). The pressure field (background), tumor (red; ϕT = 0.5 

contours) and BM (green; ψ = 0.5 contours) and necrotic core (magenta; ϕD = 0.5 contours) 

are shown for different membrane stiffnesses: [a]: A = 0.01; [b]: A = 2.0; [c]: A = 5.0. In [d], 

the membrane is not allowed to deform and induce stresses. As A increases, the BM 

deformation decreases. When the membrane is fixed, there are no restoring forces and 

tumors grow more freely than those with large A. The contact angle θ = 90°, and other 

parameters are shown in Table 1.
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Figure 6. 
The evolution of the volumes for the tumor clusters shown in Fig. 5 for different membrane 

stiffness A as labeled. Generally, the volume is a decreasing function of BM stiffness, 

although when A = 2.0 the tumor reaches the same size as that with A = 1.0 at time T = 10 

(days).
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Figure 7. 
The evolution of tumor clusters in 2D branched ducts. The pressure (background), tumor 

(red; ϕT = 0.5 contours), membrane (green; ψ = 0.5 contours) and necrotic cores (magenta; 

ϕD = 0.5 contours) are shown for different relative strengths of cell-membrane adhesions as 

labeled via the contact angle θ: [a]: θ = 30° ; [b]: θ = 90° ; [c]: θ = 120°. The membrane 

stiffness is A = 1, see Table 1 for the other parameters. When the cell-BM adhesion is low, 

the tumors grow at early times but growth is not sustained and the tumors progress to a 

steady state. Increasing cell-BM adhesion leads to larger, more elongated tumors and to 

fragmentation.
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Figure 8. 
The evolution of the volumes of the tumor clusters shown in Fig. 7 for different cell-

membrane adhesion strengths, as labeled, up to T = 15 (days). The threshold adhesion 

between the progression to steady-states and sustained growth occurs between θ = 60° and θ 

= 90°.
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Figure 9. 
The initial shape of tumor clusters (red; ϕT = 0.5 contours) and basement membranes (green; 

ψ = 0.5 contours) and ECM distribution in the 2D invasive simulations.
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Figure 10. 
Invasion of the stroma by tumor clusters in 2D simple ducts for different membrane 

stiffnesses: [a] A = 10; [b]: A = 20. In each case, the cell-BM adhesion θ = 0. The pressure 

(background), tumor (red; ϕT = 0.5 contours), membrane (green; ψ = 0.5 contours) and 

necrotic core (magenta; ϕD = 0.5 contours) are shown. A smaller membrane stiffness ([a]) 

leads to limited invasion and a larger membrane stiffness ([b]) leads to more invasive 

tumors.  see Table 1 for other parameters.
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Figure 11. 
The initial tumor cluster (red; ϕT = 0.5 isosurfaces) and BM geometries (green; ψ = 0.5 

isosurfaces) in a branched duct in 3D. Left: 3D geometry, Right: a two-dimensional cross-

section along the center plane z = 10. As in 2D, the membrane thickness is modeled by 

explicit representation of the inner and outer boundaries.
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Figure 12. 
Evolution of tumor clusters in 3D branched ducts showing the tumor (red; ϕT = 0.5 

isosurfaces), membrane (green; ψ = 0.5 isosurfaces) and necrotic core (magenta; ϕD = 0.5 

isosurfaces) for different relative strengths of cell-membrane adhesions: [a]: θ = 30° ; [b]: θ 

= 90°; [c]: θ = 120° . In all cases A = 0.5. As in 2D (Fig. 7) when the cell-BM adhesion is 

low, growth ceases while at large cell-BM adhesions, growth is sustained.
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Figure 13. 
Two-dimensional cross-sections (z = 10) of the tumor clusters shown in Fig. 12.
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Figure 14. 
The evolution of the volumes of the tumor clusters shown in Fig. 12 for different cell-BM 

adhesion strengths, as labeled, up to T = 15 (days). The transition between progression to 

steady-states and sustained growth occurs between θ = 30° and θ = 60°.
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Figure 15. 
The initial tumor cluster (red: ϕT = 0.5 isosurfaces) and BM geometries (green; ψ = 0.5 

isosurfaces) in a simple duct in 3D. Left: 3D geometry, Right: a two-dimensional cross-

section along the center plane z = 10.
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Figure 16. 
Invasion of the stroma by tumor clusters in 3D simple ducts for different membrane 

stiffnesses: [a] A = 10; [b]: A = 20. In each case, the cell-BM adhesion θ = 0. The tumor 

(red; ϕT = 0.5 isosurfaces), membrane (green; ψ = 0.5 isosurfaces) and necrotic core 

(magenta; ϕD = 0.5 isosurfaces) are shown. As in 2D, a smaller membrane stiffness ([a]) 

leads to limited invasion and a larger membrane stiffness ([b]) leads to more invasive tumors 

(see Fig. 17).  see Table 2 for other parameters.
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Figure 17. 
Two-dimensional cross-sections (z = 10) of the simulations shown in Fig. 16, together with 

the corresponding pressure distribution (background).
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Table 1

Nondimensional parameters in the two dimensional numerical simulations.

∈ 0.05

∊
~ 0.05

M 20.0
M
~ 20.0

γ 0.2 ν U 1.0

νp
H 0.2 νp

T 0.0

nc 1.0 λ M 1.0

λ A 0.0 λ N 3.0

λ dc 1.0 λ deg 20.0

λ prod 200.0 λ decay 10.0

λ dmψ 1.0 λ dmE 1.0

λ mE 0.0 λ νE 0.0

Dm 0.1 χ E 0.1

mmot 1.0
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Table 2

Nondimensional parameters in the three dimensional numerical simulations.

∈ 0.1

∊
~ 0.1

M 10.0
M
~ 10.0

γ 0.2 ν U 1.0

νp
H 0.2 νp

T 0.0

nc 1.0 λ M 1.0

λ A 0.0 λ N 3.0

λ dc 1.0 λ deg 1.0

λ prod 100.0 λ decay 20.0

λ dmψ 1.0 λ dmE 1.0

λ mE 0.0 λ νE 0.0

Dm 0.1 χ E 0.1

mmot 1.0
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