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Abstract

Adiponectin exerts both vasodilatory and insulin-sensitizing actions and its levels are decreased in 

the insulin resistant humans and animals. The mechanisms underlying the adiponectin’s insulin-

sensitizing effect have been extensively investigated but remain largely unclear. Muscle 

microvasculature critically regulates muscle insulin action by modulating insulin delivery to the 

microvessels nurturing the muscle cells and the trans-endothelial insulin transport. We have 

recently reported that adiponectin exerts its insulin-sensitizing effect via recruiting muscle 

microvasculature, expanding the endothelial surface area, and increasing insulin delivery to and 

thus action in muscle. The current review focuses on the microvascular connection between the 

adiponectin and insulin crosstalk.

Introduction

Adiponectin is the most abundant adipokine and circulates as both full-length and globular 

forms in the plasma (Hu et al., 1996; Maeda et al., 1996; Nakano et al., 1996; Scherer et al., 

1995). The full-length adiponectin (fAd) accounts for the vast majority of the circulating 

adiponectin while the globular adiponectin (gAd), the C-terminal domain proteolytic product 

of the fAd, exists in a much smaller amount in human plasma (Fruebis et al., 2001). Unlike 

other adipokines, ample evidence from both laboratory animal and human studies has 

confirmed that adiponectin has an insulin-sensitizing action and its levels are decreased in 

animals or humans with obesity and insulin resistance (Arita et al., 1999; Berg et al., 2001; 

Combs et al., 2001; Fruebis et al., 2001; Hotta et al., 2000; Kadowaki et al., 2006; Weyer et 

al., 2001; Yamauchi et al., 2001). Furthermore, adiponectin exerts a beneficial effect on the 

cardiovascular system (Fesus et al., 2007) and hypoadiponectinemia is independently 

associated with endothelial dysfunction in both humans and animals (Cao et al., 2009; 

Iwashima et al., 2004; Kumada et al., 2003; Ouchi et al., 2003; Schmid et al., 2011; Tan et 

al., 2004; Torigoe et al., 2007).
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In rodent models of obesity and insulin resistance, replenishment of adiponectin not only 

improves endothelial function but also significantly ameliorates insulin resistance (Lee et al., 

2012; Ohashi et al., 2006; Xing et al., 2013; Yamauchi et al., 2001). These strongly suggest 

a close coupling and crosstalk between adiponectin and insulin signaling. However, the 

underlying pathophysiology remains unclear despite intensive investigations. In a recent 

study we reported that muscle microvasculature plays a critical role in adiponectin-mediated 

enhancement of insulin action in muscle (Zhao et al., 2013). Here we summarize current 

knowledge on the crosstalk between adiponectin and insulin in the regulation of glucose 

metabolism with a focus on the role of muscle microvasculature.

The interactions between adiponectin and insulin signaling pathways

Adiponectin acts mainly via two receptors (AdipoR1 and AdipoR2) to exert a variety of 

biological effects (Yamauchi et al., 2003). AdipoR1 is most abundant in the skeletal muscle 

with high affinity for gAd, whereas AdipoR2 is predominantly expressed in the liver that has 

higher affinity for fAd (Kadowaki et al., 2006; Yamauchi et al., 2003). Both AdipoR1 and 

AdipoR2 are expressed in endothelial cells (Tan et al., 2004). An additional adiponectin 

receptor T-Catherin has also been identified which only binds the hexameric and high-

molecular-weight adiponectin but not the trimeric or globular adiponectin (Hug et al., 2004). 

While the exact signaling pathways transducing the adiponectin receptor signals to the 

downstream molecules remain largely unknown, adaptor protein containing pleckstrin 

homology, phosphotyrosine binding (PTB) domain and leucine zipper motif 1/2 (APPL1/2), 

endoplasmic reticulum protein 46 (ERp46), activated protein kinase C1 (RACK1) and 

protein kinase CK2β have all been identified to directly interact with the adiponectin 

receptors and mediate adiponectin actions (Buechler et al., 2010), including the activation of 

adenosine monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome 

proliferator-activated receptor (PPAR) α which increase fatty acid oxidation and glucose 

uptake in muscle and the induction of nitric oxide (NO) production via AMPK-stimulated 

phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (human) or 1179 

(bovine) and serine 633 in endothelial cells (Chen et al., 2003; Chen et al., 2009; Yamauchi 

et al., 2002; Yoon et al., 2006). Adiponectin also promotes the formation of heat shock 

protein (HSP) 90 and eNOS complex, which is required for the maximal activation of eNOS 

(Xi et al., 2005).

Insulin binds to its membrane receptors and exerts its biological actions via the 

phosphatidylinositol 3-kinase (PI-3 kinase) and mitogen-activated protein kinase (MAPK) 

signaling pathways. Insulin activates the insulin receptor tyrosine kinase that subsequently 

phosphorylates insulin receptor substrates (IRS) and activates PI-3 kinase and protein kinase 

B (PKB or Akt)(Taniguchi et al., 2006), leading to the membrane translocation of glucose 

transporter 4 (GLUT4) and glucose uptake in myocytes and the phosphorylation of eNOS at 

serine 1177/1179 and NO production in endothelial cells (Montagnani et al., 2001; 

Taniguchi et al., 2006; Zeng and Quon, 1996). On the contrary, MAPK pathway regulates 

gene expression and cell proliferation and growth. In endothelial cells, it mediates 

endothelial-1 (ET-1) production/secretion by the endothelial cells (Ferri et al., 1995; 

Muniyappa et al., 2007). While NO dilates the blood vessels by relaxing the smooth muscle 

layer, ET-1 is a potent endogenous vasoconstrictor.
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It has long been noted that there is a crosstalk between adiponectin and insulin signaling 

pathways that occurs at multiple levels. AdipoR1 and R2 serve as the predominant receptors 

for adiponectin’s metabolic actions as simultaneous disruption of both AdipoR1 and 

AdipoR2 abolishes adiponectin’s insulin sensitizing actions, resulting in increased tissue 

triglyceride content, inflammation and oxidative stress and leading to insulin resistance and 

glucose intolerance (Yamauchi et al., 2007). It appears that APPL1, an AdipoR1/R2 adaptor 

protein, is a critical node linking adiponectin receptor and its downstream signaling. It 

mediates adiponectin-stimulated AMPK activation which reduces mammalian target of 

rapamycin (mTOR)/p70 S6 kinase-mediated serine phosphorylation of insulin receptor 

substrate (IRS) proteins and enhances insulin-stimulated IRS tyrosine phosphorylation and 

Akt phosphorylation in skeletal muscle cells and eNOS activation and NO production in 

endothelial cells (Cheng et al., 2007; Deepa and Dong, 2009; Wang et al., 2007). APPL1 

enhances insulin-stimulated activation of Akt and suppression of gluconeogenesis in 

hepatocytes and eNOS activation and NO production in enthelial cells via by blocking the 

association of Akt, a major signaling intermediate in the insulin signaling pathway, with its 

endogenous inhibitor tribble 3 (TRB3) through a direct competition (Cheng et al., 2009; 

Saito et al., 2007; Wang et al., 2011b). In adipocytes and muscle cells APPL1 forms a 

complex with Akt2 that dissociates upon insulin stimulation to regulate insulin-stimulated 

GLUT4 membrane translocation (Cheng et al., 2009; Saito et al., 2007; Wang et al., 2011b). 

APPL1 also facilitates the binding of IRS1/2 to the insulin receptor (Ryu et al., 2014). In 

addition, adiponectin-mediated up-regulation of hepatic IRS-2 expression via a macrophage-

derived interleukin 6-dependent pathway has also been implicated as an underlying 

mechanism (Awazawa et al., 2011). To date, these crosstalks have largely been used to 

explain the insulin-sensitizing effect of adiponectin. Inasmuch as evidence thus far has 

mostly focused on the effects of adiponectin and insulin crosstalk on the metabolic effects of 

insulin, the effect on insulin’s mitogenic actions are not well studied.

Microvasculature critically regulates insulin action in muscle

Skeletal muscle is a major organ regulating body energy metabolism and accounts for 

approximately 80% of insulin-stimulated whole body glucose disposal during euglycemic 

insulin clamp (DeFronzo and Tripathy, 2009). The muscle microvasculature plays a pivotal 

role in the regulation of insulin action in muscle. For insulin to act on muscle cells, it first 

has to be delivered into the capillaries nurturing the muscle cells after being secreted by the 

pancreatic β-cells and then transported through the capillary endothelium to enter the 

interstitial space before they can bind to the myocyte insulin receptors to exert its metabolic 

actions (Rasio, 1982). Studies employing lymphatic sampling, microdialysis or radio-labeled 

insulin uptake techniques have all confirmed that insulin delivery to the muscle is rate-

limiting for insulin action in muscle and this process is significantly blunted in the insulin 

resistant states (Herkner et al., 2003; Holmang et al., 1997; Yang et al., 1989).

Microcirculation encompasses all vessels <150 μm in diameter, including arterioles, 

capillaries, and venules. It regulates tissue function by delivering adequate amount of 

nutrients, oxygen and hormones and providing sufficient endothelial surface area for their 

exchanges between the plasma and tissue interstitium. In the resting state only ~30% of the 

capillaries in muscle are being perfused but in response to an increased demand such as 
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exercise more capillaries are being perfused via the relaxation of the pre-capillary terminal 

arterioles, a process termed microvascular recruitment (Honig et al., 1982). The resultant 

increase in muscle microvascular blood volume, i.e., the expansion of the endothelial 

exchange surface area, in muscle could markedly increase the extraction of nutrients, 

oxygen, and hormones such as insulin from the plasma to muscle interstitium and facilitates 

the removal of metabolic wastes. Using either 1-methylxanthine extraction or contrast-

enhanced ultrasound method, investigators have repeatedly shown that muscle 

microvascular blood volume is being actively regulated. Thus far, multiple factors have been 

shown to increase muscle microvascular blood volume, including exercise, muscle 

contraction, insulin, angiotensin 1–7, angiotensin II type 1 receptor blockers, resveratrol, 

glucagon-like peptide-1, ranolazine and adiponectin (Chai et al., 2011; Chai et al., 2014; Fu 

et al., 2014; Fu et al., 2013; Inyard et al., 2009; Inyard et al., 2007; Rattigan et al., 1997; 

Subaran et al., 2014; Vincent et al., 2002; Wang et al., 2011a; Zhao et al., 2013). Not 

surprisingly, all these factors have been shown to possess insulin sensitizing property. 

However, it appears that only vasodilatation of the muscle microvasculature is associated 

with improved insulin actions. Indeed, infusion of nitroprusside or bradykinin during a 

euglycemic-hyperinsulinemic clamp did not enhance insulin-mediated limb glucose uptake 

in either normal or obese humans despite a marked increase in limb blood flow (Laine et al., 

1998; Natali et al., 1998; Nuutila et al., 1996). Though treatment of obese hypertensive 

patients with prazosin for 12 weeks is associated with an increase in insulin-mediated 

glucose disposal during insulin clamp (Pollare et al., 1988), clinically either α-adrenergic 

receptor or calcium channel blockers are not associated with significant improvement in 

insulin sensitivity in patients with hypertension. Certainly the blood pressure lowering effect 

of these agents can decrease the capillary perfusion pressure thus mitigate the effect of 

microvascular perfusion on insulin action. This possibility remains to be examined.

We and others have confirmed that muscle microvasculature critically regulates insulin’s 

metabolic action in the muscle and insulin regulates its own delivery to and thus actions in 

muscle by recruiting capillaries in muscle and facilitating its own trans-endothelial transport 

(Barrett et al., 2009; Chai et al., 2011; Chai et al., 2014; Fu et al., 2014; Fu et al., 2013; 

Premilovac et al., 2013; Vincent et al., 2004; Wang et al., 2008; Zhao et al., 2013). Insulin’s 

microvascular and metabolic actions appear to be closely coupled. Insulin-mediated 

microvascular recruitment precedes insulin-stimulated glucose disposal in muscle and 

blockade of insulin’s microvascular action with NOS inhibitor L-NAME decreases insulin-

stimulated steady-state glucose disposal by up to 40% (Vincent et al., 2003; Vincent et al., 

2002). This process is clearly impaired in the presence of insulin resistance. Indeed, 

impaired insulin-mediated microvascular recruitment has been demonstrated in obese and 

diabetic animals (Clerk et al., 2007; Wallis et al., 2002), obese humans (Clerk et al., 2006) 

and humans or animals receiving systemic infusions of tumor necrosis factor α or lipid (Liu 

et al., 2009; Wang et al., 2013; Youd et al., 2000). That insulin-mediated microvascular 

recruitment occurs before its metabolic action in muscle and all factors causing metabolic 

insulin resistance tend to also induce microvascular insulin resistance strongly suggests that 

microvascular insulin resistance may contribute to the pathogenesis of metabolic insulin 

resistance in muscle and therefore muscle microvasculature could be a therapeutic target for 

the prevention and management of insulin resistance and diabetes(Liu, 2013).
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Crosstalk between adiponectin and insulin: The microvascular connection

Adiponectin is a potent vasodilator and, similar to insulin, its vasodilatory effect is mediated 

via a NO-dependent mechanism (Cheng et al., 2007; Schmid et al., 2011; Xi et al., 2005). 

Inasmuch as adiponetin’s vasodilatory actions have been repeatedly demonstrated in conduit 

arteries and resistance arterioles (Cheng et al., 2007; Schmid et al., 2011; Xi et al., 2005), its 

effect on the microvasculature was unknown prior to our recent study published in 

Circulation Research(Zhao et al., 2013). While the conduit arteries regulate arterial plasticity 

and compliance and the resistance arterioles regulates blood pressure and total blood flow to 

tissues, it is the microvasculature that provides the needed exchange surface area for tissue 

to extract nutrients, oxygen and hormones from the plasma. As mounting evidence strongly 

suggests that muscle microvasculature is a critical regulatory site for insulin’s metabolic 

action and adiponectin has both vasodilatory and insulin-sensitizing actions, we sought to 

define whether adiponectin modulates muscle microvascular recruitment thus insulin 

delivery and action in muscle. To this end, we gave overnight fasted, adult male Sprague-

Dawley rats gAd or fAd intraperitoneally and determined the effects of adiponectin on 

muscle microvascular recruitment, insulin-mediated whole body glucose disposal, and 

muscle insulin uptake. We found that both fAd and gAd were able to significantly recruit 

muscle microvasculature but gAd appeared to be more potent. This effect was paralleled by 

a 30–40% increase in muscle insulin uptake and ~30% increase in insulin-stimulated whole 

body glucose disposal. All these effects were completely abolished in the presence of NOS 

inhibition by simultaneous administration of L-NAME suggesting that adiponectin exerts its 

microvascular and insulin-sensitizing actions via a NO-dependent mechanism. Thus our data 

provide first-hand evidence that adiponectin enhances insulin action via recruiting muscle 

microvasculature and increasing muscle insulin uptake and strongly support the view that 

muscle microvasculature is the missing link in the crosstalk between adiponectin and insulin 

(Figure).

Perspective

Patients with type 2 diabetes and obesity have endothelial dysfunction and insulin resistance 

and are prone to developing hypertension and cardiovascular complications, which 

contribute significantly to the morbidity and mortality seen in this patient population. 

Adiponectin has both insulin-sensitizing and salutary vascular actions and its levels are 

decreased in patients with and animal models of diabetes and insulin resistance. Mounting 

evidence thus far has confirmed a critical role of muscle microvasculature in the regulation 

of insulin action and our recent study demonstrates that adiponectin improves muscle insulin 

action by potently recruiting muscle microvasculature and expanding the endothelial 

exchange surface area within muscle via a NO-dependent mechanism, leading to increased 

muscle insulin delivery, uptake and action. Thus, our results provide a new perspective on 

the mechanisms underlying the insulin-sensitizing action of adiponectin and together with 

other evidence suggesting that microvascular insulin resistance may contribute to the 

pathogenesis of metabolic insulin resistance raise the possibility that adiponectin 

replenishment and/or improving microvascular insulin responses could be effective 

therapeutic strategies in the prevention or treatment of insulin resistance, type 2 diabetes, 

and associated cardiovascular complications.
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Figure. 
Schematic diagram of adiponectin’s effects on microvascular recruitment and insulin 

delivery in muscle.
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