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Abstract

Decreasing male fertility has been observed for the past fifty years. Examples of affected 

reproductive parameters include decreases in sperm count and sperm quality and increases in 

testicular cancer, cryptorchidism and hypospadias. Exposures to environmental toxicants during 

fetal development and early postnatal life have been shown to promote infertility. Environmental 

exposures inducing epigenetic changes related to male infertility range from life style, 

occupational exposures, environmental toxicants and nutrition. Exposures during fetal gonadal sex 

determination have been shown to alter the epigenetic programming of the germline that then can 

transmit this altered epigenetic information to subsequent generations in the absence of any 

exposures. This environmentally induced epigenetic transgenerational inheritance of disease will 

be a component of the etiology of male infertility.

Introduction

Trends have been observed in human populations showing decreasing male fertility for 

decades [1-4]. Examples of the reproductive parameters effected are decreases in sperm 

count and quality [2], increases in testicular cancer [3] and increases in cryptorchidism or 

hypospadias [1]. Data of particular interest include several meta-analysis suggesting a strong 

decline in sperm quality from the 1940's to present [5-8]. Similar to the phenotypes 

associated with the metabolic disease syndrome [9], it has been postulated that these male 

reproductive disorders have a common developmental origin and are physiologically linked, 

leading to a complex disease trait of ‘Testicular Dysgenesis Syndrome’ (TDS) [10-12]. The 

syndrome describes these male reproductive disorders as sharing the same patho-

physiological etiology and as being caused by disrupted testicular development in the early 

fetus [12, 13]. Interestingly, one of the key studies that documented the recent decrease in 
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sperm quality in men [5] concludes that “Such remarkable changes in semen quality and the 

occurrence of genitourinary abnormalities over a relative short period is more probably due 

to environmental rather than genetic factors”, an opinion that is supported by more recent 

publications [2, 11, 13]. This highlights the importance that environmental exposures have 

on the development of phenotypes associated with fertility in human populations. The vast 

majority of environmental exposures do not have the capacity to alter the DNA sequence 

such that classic genetics has difficulty providing a molecular mechanism for the early life 

exposure effects on later life male fertility [14]. Environmental epigenetics appears to be the 

molecular mechanism involved [14]. The current review will describe epigenetic 

mechanisms for the etiology of male infertility that can be dramatically influenced by the 

environment [15]. The roles of epigenetics versus genetics in environmentally induced male 

infertility will be reviewed, as well as the generational impacts of environmental 

epigenetics. Therefore, one of the primary questions addressed is the potential role of 

epigenetics versus genetics in the etiology of male infertility.

Recent studies demonstrate that exposure to environmental factors such as toxicants, stress 

or dietary compounds early during development have a significant impact on human health 

[16-18]. In particular, the male reproductive system appears to be especially sensitive to 

environmental exposures [13]. It is becoming obvious that phenotypes associated with TDS 

are related to early developmental environmental exposures [2, 11, 13] and particularly to 

exposure to endocrine disrupting chemicals [13, 19]. Early developmental exposures that are 

reported to be associated with impairment in reproductive function in men include pesticides 

[20, 21], phthalates [22, 23], analgesics [24], smoking [25, 26] and alcohol [27]. In addition 

to these common exposures, industrial exposures of men to toxicants have also been 

reported. For example, in Taiwan accidental in utero exposures of men to the synthetic 

organic pollutants polychlorinated biphenyl (PCB) and PCDF was reported to produce a 

marked effect in semen quality and motility later in adulthood [28, 29]. Other examples exist 

in which agro-workers were exposed to high amounts of the nematicide 1,2-Dibromo-3-

chloropropane (DBCP) and produced induced sterilization in California during the 1970's 

[30] and in Costa Rica from early 1960's to 1984 [31].

Fertility rates in both developing and industrialized countries have shown progressive 

reductions in recent years [32]. Although this trend is certainly partially attributed to 

government policies together with social, economic and cultural changes, the impact 

environmental exposures have on impairments in the male reproductive system will be 

significant. The increasing association of environmental exposures with the incidence of 

disease [33] support the assumption that human fertility problems are strongly impacted by 

environmental exposures.

Recently, several studies have described genetic abnormalities associated with decreases in 

male reproductive parameters. A study found specific genetic abnormalities in 24% of men 

with oligozoospermia and azoospermia [34]. Genetic abnormalities related to infertility or 

subfertility include sex chromosomal aneuploidies, mutations in the cystic fibrosis 

transmembrane receptor (Cftr) gene or deletion of the AZFc region of the Y chromosome 

[34, 35]. Several gene polymorphisms have also been described to date that associate with 

reduced male reproductive parameters. A polymorphism in the FSH beta subunit promoter 
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region was shown to be associated with low FSH levels, sperm counts and testis volume 

[36] In both mice and rats the deletion of Fkbp6 (FK506 binding protein 6, 36kDa), which is 

involved in meiotic pairing of homologous chromosomes, is implicated in sterility in male 

animals [37]. Recent conditional knock out experiments in mice have shown that adequate 

levels of PPP1CC2 (protein phosphatase 1, catalytic subunit, gamma isoform 2) are required 

for normal spermatogenesis and male fertility [38]. Mutations in Nr5a1 (nuclear receptor 

subfamily 5, group A, member 1), which are associated with impaired transactivational 

activity of this steroidogenic gene have been observed in 4% of men with severe 

spermatogenic failure [39]. After initial genome-wide expression screening comparing testis 

specimens from azoospermic versus normal men, it was found that small nucleotide 

polymorphisms (SNPs) in the gene Art3 (ADP-ribosyltransferase 3) were associated with 

both gene expression changes and testosterone levels in patients with azoospermia [40]. A 

recent genome-wide association study on humans concluded that SNPs associated with 

candidate genes that correlated with impaired male reproductive parameters [41]. These 

genes include Ddr1 (dopamine receptor D1), Usp8 (ubiquitin specific peptidase 8) and some 

genes associated with immune processes such as Ubd (ubiquitin D), Epsti1 (epithelial 

stromal interaction 1) and Lrrc32 (leucine rich repeat containing 32) [41].

Another recent GWAS study assessing loci correlations to non-obstructive azoospermia also 

found SNPs associated to some genes. These genes correspond to Prmt6 (protein arginine 

methyltransferase 6), Pex10 (peroxisomal biogenesis factor 10), Sox5 (SRY sex determining 

region Y-box 5) and Sirpa-Sirpg (signal-regulatory protein alpha and gamma) [42]. The first 

genome-wide association study for idiopathic male fertility [43] and a follow up study from 

the same group have identified several SNPs with significant associations to azoospermia 

and oligozoospermia in men [44]. The most significant associations identified correspond to 

SNP related to the genes Slc6a14 (solute carrier family 6 (amino acid transporter), member 

14), Insr (insulin receptor), Or3w3 (odorant receptor 3), Tas2r38 (taste receptor, type 2, 

member 38), Tex15 (testis expressed 15), Faslg (Fas ligand), Brdt (bromodomain, testis-

specific) and Jmjd1a (Protein JMJD) [44]. Although these SNPs have been identified, the 

correlation with male fertility in the diseased population of specific SNPs is generally less 

than 1% of the diseased population. Genetic mutations will be important, but observations 

suggest other mechanisms will be involved.

Infertility and Epigenetics

The genetic background is essentially static in populations where increases in male disorders 

are occurring. Therefore, ancestral and/or early life exposures to environmental toxicants 

through environmental epigenetics [14] may be fundamental for the etiology of the disease 

[45]. In contrast to the low DNA sequence variation observed between humans, extensive 

natural sperm epigenome variation exists between healthy men [46]. Therefore, correlation 

of environmental exposures with epigenetic variation in germ cells is critical in order to 

address fertility issues in humans [47]. Several studies have documented epigenetic 

disruption related to the incidence of different types of germ cell tumors [48] or related to 

impaired fertility and spermatogenesis [49]. Indeed, sperm DNA of infertile men display 

abnormal histone marks (e.g. H3K4me and H3K27me) [50, 51] and also abnormal DNA 

methylation at imprinted and developmental loci [50-55]. Genome-wide changes in histone 
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marks during spermiogenesis would alter chromatin packaging of the sperm DNA and 

generate poor reproductive outcomes [50, 56]. For DNA methylation the changes associated 

with infertility also appear to be widespread in the sperm genome, including alterations in 

imprinted and non-imprinted genes [57]. Moreover, it is speculated that altered DNA 

methylation patterns in imprinted genes would generate imprinting abnormalities in the 

offspring when this sperm is used in Assisted Reproductive Technologies (ART) [52, 53].

Epigenetic modifications in the germline of either humans or rodents that are associated with 

infertility include DNA methylation changes in the Mthfr (methylenetetrahydrofolate 

reductase) promoter region [58], hypomethylation in regions of the imprinted IGF2-H19 

locus [53-55, 59], hypermethylation in the imprinted genes Mest [51, 54], Lit1 (Protein 

LIT-1), Snrpn (small nuclear ribonucleoprotein N), Peg3 (paternally expressed 3) and Zac 

(ADP-ribosylation factor GTPase-activating protein AGD12) [51], and altered methylation 

in several other imprinted and non-imprinted genes such as Hras (Harvey rat sarcoma viral 

oncogene homolog), Nt3 (3'-nucleotidase), Mt1a (metallothionein 1A), Pax8 (paired box 8), 

Diras3 (DIRAS family, GTP-binding RAS-like 3), Plagl1(pleiomorphic adenoma gene-like 

1), Sfn (stratifin) and Sat2chrm1 (spermidine/spermine N1-acetyltransferase family member 

2) [57]. Histone modifications in the sperm DNA associated with infertility include 

increased H3K9 acetylation and H3K27 tri-methylation in exons of the Brdt gene 

(bromodomain, testis-specific) leading to reduction in its expression [60], reduced H4 

acetylation in spermatids of infertile man with either qualitatively normal or abnormal 

spermatogenesis [61], loss of de-methylation activity on H3K9 that reduces expression of 

genes required for histone replacement in spermiogenesis TNP1 (transition protein 1) and 

PRM1 (protamine 1) [62], and aberrant acetylation of histones (e.g. H4K12ac) in promoters 

of developmentally important genes that leads to an insufficient sperm chromatin 

compaction that persist in the zygote [56].

In addition to the importance of epigenetic mechanisms in the germline, epigenetic marks in 

somatic cells supporting germ cells are also fundamental for fertility. For example, repeat 

elements such as B1 SINEs (small interspaced repeat element) have been proposed to have a 

role in transcriptional regulation of testis-specific genes [63]. Genes involved in the pathway 

of PIWI associated small RNAs (piRNAs), such as Piwil2 (piwi-like RNA-mediated gene 

silencing 2) and Tdrd1 (tudor domain containing 1), are hypermethylated in the testicular 

tissue of males with different forms of fertility problems [64]. In Sertoli cells Rhox5 

(reproductive homeobox 5) gene deletion associates with repression of DNA methylation in 

two promoters increasing germ-cell apoptosis and decreasing sperm count and motility [65]. 

Sertoli cell microRNAs have been shown to be involved in the spermiation failure induced 

by androgen and FSH (follicle stimulating hormone) suppression [66]. Ablation of Dicer (an 

RNase III endonuclease essential for microRNA processing) in Sertoli cells leads to 

infertility with a complete absence of spermatozoa and testis degeneration [67]. Dicer is also 

essential in the testis for the haploid differentiation of the germ cells [68].

The importance of the role of epigenetic mechanisms for infertility is related to the fact that 

many environmental insults can induce epigenetic alterations. Several examples of 

environmentally induced developmental effects associated with decreased fertility 

parameters exist. For example, in utero exposure to phthalates induces a variety of 
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abnormalities in the reproductive tract of adult males which resemble the pathophysiological 

features of Testis Dysgenesis Syndrome [69]. Similar effects are reported with in utero 

exposures to vinclozolin [18, 70], bisphenol A (BPA) and diethylstilbestrol [71]. Although 

the majority of these examples do not include assessment of modifications in epigenetic 

mechanisms, the persistence throughout life of the effects induced during development 

suggests that epigenetic mechanisms are involved.

In addition to these developmentally induced effects, examples of epigenetic modifications 

that are environmentally induced and associate with male infertility exist. For instance, 

exposure of adult male rats to different doses of butyl-paraben [72] and exposure of adult 

male mice to methoxychlor [73, 74] have been shown to alter DNA methylation in sperm. 

Neonatal exposure to BPA is detrimental to spermatogenesis and has been shown to alter 

DNA methylation of the IGF2-H19 imprinting control region in sperm [75] and of the 

estrogen receptors alpha and beta in testis [76]. Prenatal exposure to ethanol has been shown 

to induce decreased spermatogenesis and sperm DNA methylation changes in imprinted 

genes [77]. Different laboratories have shown that an early developmental exposure to the 

fungicide vinclozolin increases spermatogenic cell apoptosis and alters sperm DNA 

methylation [74, 78-81]. Interestingly, vinclozolin-induced effects are observed to be 

transgenerationally transmitted [74, 78, 79, 81-83] through a process known as epigenetic 

transgenerational inheritance, which will be discussed next in more depth. The germ line 

consequences of environmental exposure might not only stay at the epigenetic level but is 

able to induce genomic rearrangements [84].

In spite of these interesting epigenetic effects observed in the germline, the majority of 

environmentally induced epigenetic changes related to infertility are described in somatic 

cells supporting spermatogenesis, such as Sertoli and Leydig cells (Figure 1). Changes in 

DNA methylation have been observed in mouse Leydig TM3 cell line cultures following 

exposure to either low or high doses of arsenic [3]. Exposure of these cells to cadmium leads 

to reduced expression of DNA methyltransferase 1 [85]. In utero exposure to di-(2-

ethylhexyl)phthalate (DEHP) has been shown to produce postnatal alteration in 

demethylation in several nuclear receptor genes in Leydig cells, among them the estrogen 

receptor beta, thyroid receptor beta, peroxisome proliferator activated receptor alpha (Ppar-

alpha) and the mineralocorticoid receptor [69]. Not only environmental insults but also 

natural hormones have the ability to induce epigenetic changes. For example, epigenetic 

changes are produced in the proximal promoter of the Faah gene (reduced DNA and histone 

H3 methylation) in response to estradiol in mouse Sertoli cell cultures [86] and treatment of 

Leydig cells with luteinizing hormone causes hypomethylation [87]. This hormonal 

regulation of DNA methylation suggests that epigenetic effects in testicular cells derived 

from environmental exposures are mediated by hormone actions [87].

Male Fertility and Epigenetic Transgenerational Inheritance

Environmentally induced epigenetic transgenerational inheritance is defined as early 

developmental exposures that promote altered epigenetic programming in the germline that 

then transmits altered epigenetic marks to subsequent generations in the absence of 

environmental exposures [14, 18]. These epigenetic germline alterations will subsequently 
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affect gene expression and epigenetic programming patterns in somatic tissues [15, 88]. This 

alteration in gene expression contributes to an altered phenotype that is observed generation 

after generation in a lineage [14, 18] (Figure 1). The first example of an environmentally-

induced epigenetic transgenerational inheritance process was described in 2005 using an 

early developmental exposure to the endocrine disruptor vinclozolin [74]. Vinclozolin is an 

agricultural fungicide with anti-androgenic activity widely used in fruit and vegetable crops 

around the world [89]. A developmental exposure to vinclozolin produced increased 

apoptosis in spermatogenic cells in rats, which was observed four generations after this 

initial exposure [74, 82, 83] (Figure 1). The mechanism involved in the transgenerational 

transmission of these altered phenotypes was an induced alteration in the sperm epigenome, 

which was observed three generations after the developmental exposure to vinclozolin [74, 

78, 79]. Transgenerational DNA methylation alterations in imprinted genes in sperm have 

also been reported due to a developmental exposure to vinclozolin [81]. Early 

developmental exposure to di-(2-thylhexyl) phthalate has also been shown to induce 

transgenerational effects related to impairment of male fertility, including disruption of 

testicular germ cell association, reduced sperm count and decreased sperm motility [90]. 

Other studies have focused on exposures after birth. Perinatal exposure to BPA impairs 

fertility and spermatogenesis [91] and induces transgenerational alterations in the expression 

of steroid receptors and their co-regulators in testis [92]. Exposure of 6-week old mice to 

oral administrations of benzo(a)pyrene induced impairment in several parameters associated 

with male fertility up to the F2 generation, including testicular malformations, reduced 

number of seminiferous tubes with elongated spermatids and decreased sperm count [93].

In addition to increased apoptosis in spermatogenic cells, other phenotypes are transmitted 

through the process of epigenetic transgenerational inheritance. These phenotypes include 

obesity [94-98], abnormalities of the female reproductive system [78, 88, 97-103], kidney 

diseases [82, 100, 103], prostate diseases [82], pubertal abnormalities [97, 101-103] and 

increased incidence of tumors [82].

Environmentally induced epigenetic transgenerational inheritance of disease and sperm 

altered DNA methylation (epimutations) have been observed with plastic compounds (BPA 

and phthalates) [97], hydrocarbons (jet fuel JP8) [98], dioxin [99, 103], pesticides 

(permethrin and DEET) [102], DDT [95], tributyltin [104], and nutrition abnormalities [94, 

96]. Epigenetic transgenerational inheritance has also been observed in plants [105], flies 

[106], worms [107], rodents [74] and humans [108]. Therefore, the epigenetic 

transgenerational inheritance of disease and male testis abnormalities has been observed 

with a number of environmental exposures and species [18, 101].

Physiological and Molecular Mechanisms involved in Epigenetic Transgenerational 
Inheritance

In order for a transgenerational effect to be produced it is fundamental that the germline 

epigenome is altered, because it is the germline epigenome that will be transmitted to future 

generations [18]. The most sensitive period when the germline epigenome can be affected is 

a major event of epigenetic reprogramming that occurs during primordial germ cell 

development and initiation of the sex specific germline development. In this period a DNA 
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methylation erasure occurs followed by the initiation of re-establishment of DNA 

methylation patterns [109, 110]. The erasure of DNA methylation occurs when primordial 

germ cells migrate to the genital ridge and gonads. Re-methylation is initiated during the 

first events of sex determination [111, 112]. This period in germ cell development and 

epigenetic programming represents a window of sensitivity to environmental factors [18, 

113]. Exposure to environmental compounds induces an altered epigenetic programming 

during these early developmental stages and the altered epigenome can be perpetuated 

across generations [18, 74, 79]. Experimental evidence of this window of sensitivity 

involving the sex determination period exists for vinclozolin and a number of other 

exposures. For example, the pattern of gene expression is altered in the rat embryonic testis 

after a maternal exposure to vinclozolin while the embryo is undergoing sex determination 

[114, 115]. Interestingly, embryonic testis gene expression is consistently altered in the next 

generations [116]. Further analysis of vinclozolin-induced transgenerational transcriptome 

and epigenomic alterations in primordial germ cells in rats (E13 and E16) have been 

performed [117]. Although the vinclozolin-induced epigenetic and gene expression 

alterations in primordial germ cells are distinct between these two stages, the cellular 

processes affected seem to be the same and the effects are more pronounced in E13 (period 

of maximum erasure of DNA methylation) than in E16 [117].

Environmentally-induced reprogramming of the germline epigenome will induce 

epigenomic changes in somatic cells [18], as seen in granulosa cells [88] and Sertoli cells 

[15] using the transgenerational vinclozolin model. Sertoli cells in F3 generation vinclozolin 

lineage males were found to have a transgenerational epigenome and transcriptome that 

correlated with the spermatogenic cell apoptosis phenotype observed [15]. Analysis of the 

transgenerational transcriptome revealed a large number of differentially regulated and 

reduced gene expression was in the pyruvate synthesis and degradation pathway [15]. Since 

pyruvate is an essential energy metabolite provided by Sertoli cells and required for 

spermatogenic cells, the transgenerational testis phenotype appears to be in part due to 

abnormal Sertoli cell function [15] (Figure 1).

A general misconception exists that the epigenome changes observed in the germline should 

be the same as the ones observed in somatic cells. Although the environmentally induced 

epigenetic changes will influence the developing epigenomes seen in somatic cells, they are 

not necessarily the same due to the dramatic epigenetic programming required for somatic 

cell differentiation [14]. In the same line, the derived epigenomic somatic changes will 

influence gene expression changes in that tissue but not necessarily in the same genes 

(Figure 2). What has been observed using the vinclozolin model is that transgenerational 

environmentally induced epigenome changes in somatic tissues will affect the gene 

expression of many genes in a tissue and cell specific manner [15, 88]. This phenomenon 

can be due to long distance regulation of clusters of gene expression through epigenetic 

control regions [101, 118].

Conclusion

Epigenetic transgenerational Inheritance is a phenomenon to be considered in disease 

etiology, reproduction and human fertility. Clearly, considering only genetic mutations 
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cannot completely explain disease etiology. Environmental exposures and related epigenetic 

changes are equally important for consideration. Interestingly, these environmental 

exposures can influence the future generations’ susceptibility for disease, particularly 

disease related to reproduction. Future studies will need to focus on identifying these 

epigenetic alterations and epigenetic biomarkers to understand the epigenetic mechanisms 

that mediate environmental exposures and impairment of fertility. These investigations will 

provide important information to develop novel diagnostics and therapeutics for the 

treatment of male infertility.

In considering the relative roles of epigenetics and genetics in the etiology of male 

infertility, as well as nearly all disease, environmental epigenetics is a critical factor to 

consider. However, epigenetics does not act in isolation and depends on the genetic 

background. The epigenetics works through altering genome activity. Therefore genetics 

and epigenetics are integrated to a point that few epigenetic only events and genetic only 

events will exist. These two integrated processes directly influence the etiology of disease. 

What epigenetics provides is a conduit for the environment to alter directly genome activity 

and provides a mechanism for early life or ancestral exposures to impact adult onset disease 

such as male infertility.
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Figure 1. 
Epigenetic transgenerational inheritance of male infertility. The environmental actions on an 

F0 generation gestating female reprograms the germline epigenome to promote a 

transgenerational event through the male germline in the absence of exposure for four (F4) 

generations. The testis morphology shown demonstrates the cooperation of somatic cells and 

spermatogenic cells in the process.
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Figure 2. 
Schematic representation of environmentally-induced germline epigenome modifications 

and further epigenomic and transcriptomic effects in somatic cells that are distinct between 

tissues and cell types.
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Table 1

Categorization of the causes of impaired fertility

Causes Description Examples References

Genetic Genetic abnormalities that 
associate with impaired 
fertility parameters

Aneuploidies of the sex 
chromosome; Mutations (e.g. genes 
Cftr, Fsh beta, Nr5a1, Art3, Ddr1, 
Usp8, Prmt6, Pex10, Sox5 Slc6a14, 
Insr, Or3w3); Deletions (e.g. Azfc 
region, genes Fkbp6, Ppp1cc2)

[34, 36-42, 44]

Epigenetic Environmental exposures 
anytime during the life of the 
individual that are associated 
with epigenetic alterations and 
impaired fertility parameters

Adult exposures to butyl-paraben or 
methoxychlor; Neonatal exposure to 
BPA; Prenatal exposure to ethanol

[72, 73, 76, 77]

Epigenetic Transgenerational Inheritance Impaired fertility parameters 
are triggered by germ line 
epimutations produced as 
result of ancestral 
environmental exposures

Early developmental exposure to 
environmental toxicants (e.g. 
vinclozolin, BPA, phthalates, DDT 
or methoxychlor) that produce 
alterations in sperm DNA 
methylation

[73, 74, 78, 79, 
90, 92, 93]

Life style practices/Occupational exposures Chronic adult daily practices 
or exposures that are 
detrimental to reproductive 
parameters but potentially 
reversible

Constant scrotum overheating (e.g. 
hot baths); obesity; smoking; use of 
marihuana or cocaine; exposure to 
insecticides, pesticides or organic 
pollutants

[2, 11]
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