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Abstract

There is broad interest in predicting the clinical course of mental disorders from early, multimodal 

clinical and biological information. Current computational models, however, constitute a 

significant barrier to realizing this goal. The early identification of trauma survivors at risk of 

post-traumatic stress disorder (PTSD) is plausible given the disorder’s salient onset and the 

abundance of putative biological and clinical risk indicators. This work evaluates the ability of 

Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique 

predictive characteristics and determine their accuracy in forecasting non-remitting PTSD from 

information collected within 10 days of a traumatic event. Data on event characteristics, 

emergency department observations, and early symptoms were collected in 957 trauma survivors, 

followed for fifteen months. An ML feature selection algorithm identified a set of predictors that 

rendered all others redundant. Support Vector Machines (SVMs) as well as other ML 

classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, 
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ii) all available features without selection, and iii) Acute Stress Disorder (ASD) symptoms alone. 

SVM also compared the prediction of a) PTSD diagnostic status at 15 months to b) posterior 

probability of membership in an empirically derived non-remitting PTSD symptom trajectory. 

Results are expressed as mean Area Under Receiver Operating Characteristics Curve (AUC). The 

feature selection algorithm identified 16 predictors, present in ≥95% cross-validation trials. The 

accuracy of predicting non-remitting PTSD from that set (AUC=.77) did not differ from predicting 

from all available information (AUC=.78). Predicting from ASD symptoms was not better then 

chance (AUC =.60). The prediction of PTSD status was less accurate than that of membership in a 

non-remitting trajectory (AUC=.71). ML methods may fill a critical gap in forecasting PTSD. The 

ability to identify and integrate unique risk indicators makes this a promising approach for 

developing algorithms that infer probabilistic risk of chronic posttraumatic stress psychopathology 

based on complex sources of biological, psychological, and social information.
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1. Introduction

Chronic PTSD is prevalent, distressful, and debilitating (Kessler, 2000) and often follows an 

unremitting course (Galatzer-Levy et al., 2013; Peleg & Shalev, 2006). The early 

manifestations may provide sufficient information to identify individuals at risk for chronic 

PTSD. Studies to date have identified numerous risk indicators of chronic PTSD, many of 

which are accessible shortly after trauma exposure. These include, but are not limited to 

early symptoms of PTSD, depression or dissociation, physiological arousal (e.g., heart rate), 

early neuroendocrine responses, gender, lower socio-economic status, the early use of opiate 

analgesics, the occurrence of traumatic brain injury, and a progressively growing number of 

genetic and transcriptional factors (Boscarino, Erlich, Hoffman, & Zhang, 2012; Brewin, 

Andrews, & Valentine, 2000; Etkin & Wager, 2007; Karl et al., 2006; Ozer, Best, Lipsey, & 

Weiss, 2003). Despite these discoveries, the individual identification of risk for PTSD 

remains elusive, thereby leaving a major gap between scientific discovery and practical 

application.

One reason for such a gap is the current use of computational models that do not match the 

disorder’s inherent complexity in etiology. As attested by its numerous risk factors, the 

etiology of PTSD is multi-causal, multi-modal, and complex. As such, the longitudinal 

course of PTSD reflects a converging interaction of numerous, multimodal risk factors. 

Moreover, specific risk markers and their relative weight can vary between individuals and 

traumatic circumstances. For example, head injury increases the likelihood of developing 

PTSD (Bryan & Clemans, 2013) but has a low occurrence overall among survivors. 

Similarly, the contribution of female gender to the risk of developing PTSD varies between 

traumatic events (Kessler, Sonnega, Bromet, Hughes, & Nelson, 1995) and with specific 

genetic risk alleles (Ressler et al., 2011). Thus, to accurately predict PTSD in individuals, 

one must account for complex and variable interactions between putative markers.
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The commonly utilized General Linear Modeling (GLM) was designed to test focused 

hypotheses without generalization beyond the data under study (Hald, 2007). This modeling 

approach identifies the probability of rejecting a null hypothesis of no effect along with an 

estimate of shared variance between the dependent and independent variable(s) (Cohen, 

1994). Such models are important for rigorously testing novel hypotheses because they 

assume no relationship between variables. In this context, a significant p-value indicates 

disconfirmation of the assumption of no relationship between variables. Further, estimates of 

unique and shared variance provide information about how much of the variability in the 

dependent variable (DV) is accounted for by the independent variable(s) (IVs). This 

approach has intrinsic limitations. First, it is built on the assumption that variables would 

follow a normal distribution given an infinite sample size (Stigler, 1986). Second, 

information provided is limited to null hypothesis testing along with effect size estimates of 

shared variance. Third, relatively large sample-to-variable ratios are needed for such 

analyses because relationships between variance components are being analyzed. What is 

needed to forecast later outcomes is the probability of the DV given the IV(s) along with an 

estimate of accuracy. Further, as many identified predictors may be redundant, methods to 

identify variables that provide unique information are also important. Finally, as many 

different variables may provide predictive information, analysis and integration of many 

variables simultaneously is required.

Machine learning (ML) can handle large complex data with heterogeneous distributions 

(Hastie, Tibshirani, & Friedman, 2003), determine probabilistic relationships from complex 

conditional dependencies between variables, and test the reliability of the results through 

repeated cross validation. The use of ML to determine a later outcome is known as 

forecasting. Forecasting is increasingly used in developing personalized medicine (e.g., 

using tissue biomarkers to predict the course of malignancies (Cruz & Wishart, 2006). 

Recent ML neuroimaging studies have shown promising results in predicting the course of 

neuropsychiatric disorders (Orrù, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012).

Psychiatry currently relies on descriptive information. Establishing the usefulness and limits 

of non-invasive, low cost information such as this is an important baseline to build upon 

with new, potentially more invasive and more expensive methods for identifying risk. 

However, the implementation of ML methods to clinical observations is limited. 

Investigators have used clinical information to forecast violent behavior among outpatients 

with schizophrenia (Tzeng, Lin, & Hsieh, 2004) achieving moderate success of 76.2% 

positive prediction of later violent behavior. In contrast, ML has failed in forecasting the 

course of bipolar disorder from clinical data (Moore, Little, McSharry, Geddes, & Goodwin, 

2012). A review of studies forecasting the risk for psychotic disorders (Strobl, Eack, 

Swaminathan, & Visweswaran, 2012) showed an advantage for ML-based Support Vector 

Machines (SVMs) classification. In this example, predictive accuracy ranged from 100%–

78% relative to GLM-based variance accounted for ranging from 81%–67%. This study 

further demonstrated that forecasting from multimodal information (e.g., quality of life and 

neuroimaging data) increases the accuracy of prediction. This conclusion was also reached 

by Marinić et al. (2007) who used ML random forests to compare the classification of PTSD 

based on the clinical assessment of PTSD alone versus the clinical assessment of PTSD 

along with other clinical assessment tools. This study demonstrated large improvements 
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(from predictive accuracy of 70.59% based only on PTSD symptom assessment to 78.43% 

integrating other symptoms).

The current work work evaluates the use of ML to forecast chronic PTSD from data 

available shortly after a traumatic event. This study utilizes data from a previously 

published, fifteen months long, longitudinal study of 975 trauma-exposed individuals 

admitted to a general hospital emergency department within hours of their traumatic events 

(Shalev et al., 2012). In the current work, we compare a) forecasting accuracy based on all 

available information utilized indiscriminately, b) forecasting accuracy based on a subset of 

variables that are selected using a feature selection algorithm, and c) forecasting accuracy 

from ASD symptoms alone. The current study also compares the prediction of PTSD 

diagnosis at fifteen months with that of an empirically derived non-remitting PTSD 

symptoms trajectory (Galatzer-Levy et al., 2013). To meet the specific challenge of early 

prediction, this work uses data obtained within ten days of a traumatic event.

2. Materials and Methods

2.1.Participants and Procedures

Data for the current study come for the Jerusalem Trauma Outreach and Prevention Study 

(J-TOPS; (Shalev et al., 2012), ClinicalTrial.Gov identifier: NCT00146900). The J-TOPS 

combined a systematic outreach and comprehensive follow-up design with an embedded, 

randomized, controlled trial of early interventions. Sampling procedures and population 

parameters of study subjects are fully described in (Shalev et al., 2012).

Subjects in the current study were adults who were admitted to Hadassah University 

Hospital emergency department (ED) immediately following potentially traumatic events 

(age 18–70). Following identification in the ED, potential subjects were screened using a 

short telephone interview 9.21±3.20 days following ED admission. Those with acute PTSD 

symptoms were invited for clinical interviews, which took place 29.51±4.93 days after ED 

admission. Participants were re-evaluated five, nine, and fifteen months after ED admission 

regardless and blind of their participation in the nested clinical trial. Participants provided 

informed consent for all aspects of the study with procedures approved and monitored by the 

Hadassah University Hospital’s institutional review board (IRB).

2.1.1. Current Study Sample—Included in this study are participants with valid data at 

10 days post-trauma and at least two additional time points. The resulting sample consisted 

of 957 participants. The initial traumatic event exposure included motor vehicle accidents 

(84.1%), terrorist attacks (9.4%), work accidents (4.4%), and other incidents (2.0%). 

Participants in this study did not differ from the J-TOPS larger sample in gender 

distribution, age, ten days symptom severity, and the number of new traumatic events 

occurring during the study (for full description, see (Galatzer-Levy et al., 2013); Table 1).

2.2.Instruments

To forecast PTSD, we used all information items collected during participants’ ED 

admissions and phone interviews during the first ten days following trauma. The resulting 

68 items (alias, “features”) include demographic data, ED observations, and instruments 
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administered at ten days. We considered both individual items and total psychometrics 

scores (see data preparation below) as valid initial features.

Event and ED features include type of traumatic event (motor vehicle accident/work 

accident/ terrorist attack/other incident), age, gender, ED blood pressure, ED pulse, self-

reported ED pain level, prescribed opiates, non-opiate analgesics and anti-inflammatory 

agents, and documented head injury, loss of consciousness or whiplash injury, and time 

spent in the ED (Table 1).

Telephone interviews features include DSM IV PTSD symptoms as per the PTSD Symptom 

Scale (PSS) interviewer version (PSS-I; (Foa & Tolin, 2000) and additional Acute Stress 

Disorder symptoms per the Acute Stress Disorder Scale (ASDS) (Bryant, Moulds, & 

Guthrie, 2000). Other clinical information collected at this time point included were The 

Kessler-6 (K6), a 6-item self-report of depression and general distress (Kessler et al., 2002); 

interviewers’ and participants’ Clinical Global Impression (GSI) of severity (Guy, 1976), a 

four item post-traumatic cognition instrument summarizing the Posttraumatic Cognitions 

Inventory (PTCI (Foa, 1999)) four dimensions (counting on others, counting on oneself, 

dangerousness of the world, and self-blame). Survivors were additionally asked if they felt 

that they needed help (yes/no), how they perceived their current social support, and how 

well they perceived their behavior during the traumatic event. They also completed a four 

item coping efficacy screening instrument that evaluated their current capacity for (a) 

sustained task performance [“work functioning”], (b) interpersonal relations [“relationship 

functioning”], emotional regulation, and negative self-perception [“worthlessness”].

Missing data was minimal (0–7%) for the majority of items. Items with higher proportion of 

missing variables included work functioning (48.5% missing), head injury (40.0% missing), 

loss of consciousness (26.1%), ED pain level (51.0%), and duration of ED admission 

(13.3%).

3. Modeling Approach

3.1.Outcome Measures

Following a previous Latent Growth Mixture Modeling (LGMM) analysis of these data 

(Galatzer-Levy et al., 2013), the study’s primary outcome measure was membership of a 

nonremitting PTSD symptom trajectory throughout the study’s fifteen months determined 

by the posterior probability of class membership derived using LGMM (see figure 1). The 

nonremitting symptom trajectory included 17% of the study sample, accounted for the 

majority (71%) of PTSD cases at fifteen months, included cases with higher symptom 

severity, and was unaffected by cognitive behavioral therapy (CBT) received during the 

study by n=125 participants. Membership in the non-remitting trajectory is compared with 

membership in progressively remitting trajectories.

As an alternative outcome measure, and to meet the literature’s frequent reference to PTSD 

as an outcome, we separately tested the prediction of DSM-IV PTSD diagnostic status at 

fifteen months.
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3.2. Data Preparation

Prior to analysis, categorical variables were dummy coded and all continuous variables were 

normalized to have a range from 0–1 to reduce noise due to differences in scaling. Missing 

data was handled using the knnimpute command in MATLAB. To perform imputation in 

data sets with missing values, we applied a non-parametric nearest neighbor method (Batista 

& Monard, 2003). Specifically, this method imputes each missing value of a variable with 

the present value of the same variable in the most similar instance according to Euclidian 

distance metric.

3.3 Machine Learning

Machine Learning in this work involved multiple recursive steps that together informed the 

identification of potentially predictive features and the evaluation of the predictive accuracy 

of selected features using classification algorithms.

To examine different ways of optimizing an ML-based approach to the particular case of 

forecasting PTSD we repeated these steps using different predictive features and outcome 

definitions. The reliability of each choice was tested using cross-validation.

For clarity, we describe the study ML procedures in a stepwise manner, while in reality its 

procedures were iterative and somewhat parallel. Result section follows a similar ‘didactic’ 

order.

3.3.1. Feature selection—We applied a Markov Boundary Induction algorithm for 

Generalized Local Learning (GLL) (Aliferis, Statnikov, Tsamardinos, Mani, & Koutsoukos, 

2010) to identify sets of features that provided the most direct predictive power of our target 

variables. This approach initially identifies variables that demonstrate a univariate 

association to the target variable and removes all others. It then tests each retained variable’s 

association with the target variable while controlling for other retained variables and 

excludes those that become non-significant when controlling for other variables. The 

resulting list consists of predictors that are independently associated with the target. We 

used an algorithm from the Causal Explorer library (Statnikov, Tsamardinos, Brown, & 

Aliferis, 2010) with Fisher’s Z test, p≤.05, and parameter max-k set to 1.

3.3.2. Classification algorithms—In the current analysis we utilize Linear Support 

Vector Machines (SVMs) with the C parameter =1. SVMs identify a linear hyperplane in 

high dimensional space (each predictor variable is a dimension) that accurately separates the 

sample in two known classes (Statnikov, Aliferis, Hardin, & Guyon, 2011) [in the current 

study ‘classes’ are a) membership in remitting vs. non-remitting trajectories or b) PTSD 

diagnostic status].

We compare the performance of Linear SVMs to 6 other ‘best in class’ classification 

algorithms (Statnikov, Aliferis, Hardin, et al., 2011) because we do not have an a priori 

reason to believe that SVMs are optimal in this context. Specifically, we compared a) Linear 

SVMs with the C parameter = 1 to: b) Linear SVMs with the C parameter optimized based 

on the current data, (c) Polynomial SVMs with C parameter optimized (Statnikov, Aliferis, 

Hardin, et al., 2011), (d) Random Forests which construct a multitude of decisions trees and 
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select the class based on the mode of the classes outputted by the individual trees (Breiman, 

2001), (e) AdaBoost which is a meta-algorithm which is utilized in conjunction with other 

machine learning algorithms to improve classification performance (Freund & Schapire, 

1995), (f) Kernel Ridge Regression with Radial basis function kernel (KRR-RBF Kernel) 

(Hastie et al., 2003), and (g) Bayesian Binary Regression (BBR) where coefficients are 

estimated based on three choices of probability distribution including Gaussian, exponential, 

or Laplace distributions (Genkin, Lewis, & Madigan, 2007). These algorithms were chosen 

for comparison because they represent current best in class machine learning classification 

methods (Statnikov, Aliferis, & Hardin, 2011).

3.3.3. Evaluating different configuration of predictive features—To evaluate 

whether the above feature selection maintains the predictive accuracy despite removing 

redundant items we compared case classifications made using selected features with those 

obtained using all available information items. We also compared the use of selected 

features with that of retaining only highly selected features (those that appear in 75% and 

95% of cross-validation runs), and the use of feature selection with that of restricting the 

predictors to PTSD and ASD symptoms.

3.3.4. Comparison of outcome definitions—To compare different outcome 

definitions, we compared accuracy of predicting the non-remitting symptom trajectory, as 

defined above, and predicting PTSD status at 15 months.

3.3.5. Directionality of effects—To document the direction of the relationships between 

features selected and target outcome we conducted a series of t-tests and chi-square analyses 

of features that appear in over 75% of cross-validation runs.

3.3.6. Cross-validation—To avoid overfitting solutions and ensure the generalizability of 

our findings, all feature selection and classification experiments were conducted in a ten 

times repeated 10-folds cross-validation. In the 10-folds cross-validation, participants are 

randomly assigned into ten non-overlapping subsets containing approximately the same 

number of cases and non-cases. The classification algorithm is trained in nine of these ten 

data subsets, and subsequently (and independently) tested in the remaining tenth subset. This 

procedure is repeated iteratively, resulting in all tenths of the data being used for both 

training and testing of the algorithm. The entire procedure is repeated 10 times, resulting in a 

total of 100 runs (ten repetitions of ten trainings and testing). In the current study, a cross-

validation algorithm was written in MATLAB version 8.3 (The Mathworks, 2012) to 

randomize cases into 90%/10% splits. The first 90% of the data was utilized in the feature 

selection algorithm and the best solution in that 90% was tested in the hold out 10%. This 

procedure was repeated 10 times. Features that were selected and confirmed across random 

splits of the sample were then introduced into the ML classification algorithms. Once again, 

data was randomly split using the same cross-validation procedure. For each classification 

algorithm, the solution was identified in a random 90% of the data and validated in the hold 

out 10%. This procedure was also repeated 10 times. Appendix One provides a full 

MATLAB script to conduct feature selection, cross-validation of feature selection, SVMs, 

cross-validation of SVMs, along with syntax to call the mean AUC across cross-validations 
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of the SVMs. The cross-validation procedure is on top of, rather than embedded in, the 

feature selection and classification algorithms.

3.3.7 Accuracy metrics—Estimates of predictive accuracy are expressed as Area Under 

the Receiver Operating Characteristics curve (AUC). The ROC curve is a plot of the 

sensitivity versus 1-specificity of a classification system, and infers the accuracy of that 

system, thereby creating a comparable metric across experiments. (Bradley, 1997). 

Following literature standards (Fawcett, 2003; Harrell, Lee, & Mark, 1996), we consider 

ROC curve AUC of .50–.60 as indicating prediction at chance; .60–.70 as indicating poor 

prediction; .70–.80 fair prediction; .80–.90 good prediction; .90–1.0 excellent prediction.

3.3.8. Total Machine Learning Feature Selection and Forecasting Algorithm—
In total (following Figure 2), normalized data is utilized to identify the minimal set of 

features that provides the maximum unique information about the target variable (in this 

case trajectory membership) using a Markov Boundary feature selection algorithm (Step 1 in 

Figure 2). The results are established and confirmed using 10x10 fold cross-validation (Step 

2). The selected (and validated) features are then utilized in the classification algorithms 

(Step 3). The results of the classification algorithms are also tested and confirmed using the 

same cross-validation method as the feature selection algorithm with an additional step used 

when utilizing algorithms that include additional optimized parameters (Step 4). The result 

is a mean AUC across 100 cross-validations of the classification algorithms based on feature 

selected variables (Step 5).

4. Results

4.1. Feature selection

The feature selection algorithm identified a parsimonious set of predictive features for the 

non-remitting PTSD symptom trajectory. Twenty-one features appeared in ≥75% of cross-

validation runs, and sixteen in ≥95% of cross validation runs (Figure 2).

4.2. Comparing classification algorithms

There were no significant differences between classification algorithms when applied to 

selected features as indicated by completely overlapping C.I.s across AUCs for the different 

classification algorithms. The respective mean AUCs across 100 cross-validation runs were: 

Linear SVMs (C = 1) = .77 [95% CI=0.74–0.82]; Linear SVM (Optimized C) = .76 [95% 

CI=0.73–0.82]; Polynomial SVM (Optimized C) = .77 [95% CI=0.73–0.81]; Random 

Forests = 0.80 [95% CI=0.76–0.84]; AdaBoost = .77 [95% CI=0.75–0.83]; KRR with RBF 

Kernel = .79 [95% CI=0.75–0.83]; BBR = .77 [95% CI=0.74–0.82]. Because SVMs are well 

suited for data with heterogeneous non-normal distributions consistent with the kinds of data 

(i.e. self-report, biological) (Statnikov, Aliferis, Hardin, et al., 2011) that PTSD researchers 

are interested in integrating for prediction, for instructive purposes, we proceeded only with 

linear SVMs (C=1) for all subsequent evaluation of classification accuracy.
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4.3. Comparing predictive features configurations

Linear SVMs (C=1) used to compare different feature configuration yielded the following: 

(a) for all variables: AUC = .78 [95% CI=0.74–0.82]; (b) for variables defined by feature 

selection AUC = .77 [95% CI=0.73–0.81]; (c) for features appearing in ≥75% of cross-

validation runs, AUC =.81 [95% CI=0.77–0.85] and (d) for features appearing in ≥95% of 

cross-validation runs, AUC =. 82 [95% CI=0.78–0.86]. Results were statistically equivalent 

as indicated by completely overlapping C.I.s across AUCs for the different classification 

algorithms.

4.4. Predicting from ASD symptoms

SVM-based prediction of symptom trajectories from ten days’ ASD symptoms resulted in 

mean AUC=.60[95% CI=0.56–0.64]; an AUC that falls into the range of ‘prediction by 

chance’.

4.5. Predicting PTSD status

The prediction of PTSD diagnostic status yielded an AUC = .71[95% CI=0.67–0.75], which 

is significantly weaker than the previously described AUC=0.78 [95% CI=0.74–0.82] 

obtained for PTSD symptom trajectories.

4.6. Directionality of relationship between predictors and outcome (Table 2)

For information obtained in the ED, higher age, being in a terrorist attack, having spent 

more time in the ED, experiencing more pain, having received tranquilizers, and reporting 

head injury or loss of consciousness were positively associated with the non-remitting 

trajectory, while being in a motor vehicle accident was positively associated with the 

remitting trajectory.

For information obtained at the 10-days interview, higher levels of ASD and PTSD and 

individual symptoms (nightmares, concentration difficulties, increased startle, flashbacks, 

irritability, derealization), as well as worthlessness, higher overall PTSD symptom severity, 

PTSD diagnosis, requesting help, higher patient and clinician CGIs, and lower levels of 

social support were all positively associated with the non-remitting PTSD trajectory (see 

Table 2).

5. Discussion

The current study evaluated the implementation of ML methods to forecast PTSD from 

information obtained within ten days of a traumatic event. The ML feature selection 

identified features that exhausted the predictive potential in the dataset. Of the latter, 16 

were present in over 95% of repeated cross validations, yielding an AUC of 0.82. These 

features included, side-by-side, event and injury characteristics, ED parameters, 

psychometric measures and subjective self-appraisal. Selected features forecasting accuracy 

was equivalent to that obtained by using all features. Membership in a non-remitting PTSD 

symptom trajectory was more accurately predicted than PTSD status at 15 months. 

Predicting from ASD symptoms was worse than predicting from ML-selected features. The 

seven different classification algorithms yielded equal classification accuracies.

Galatzer-Levy et al. Page 9

J Psychiatr Res. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The finding that readily collected initial information, including ED data and commonly 

used, short assessment tools, provided consistent and efficient forecasting is very promising 

in that (a) such measures can be readily translated to clinically relevant prediction tools and 

(b) the cost of procuring them is minimal. The forecasting accuracy in this study is 

consistent with AUCs obtained in other psychiatric forecasting and classification studies (.

81 and .76); (Marinić et al., 2007; Strobl et al., 2012).

PTSD studies that examined theoretically derived predictors have identified promising 

candidates. However, replications of these finding were inconsistent [for a review see 

(Bryant, 2003)]. While many of the retrieved predictors have significant theoretical and 

heuristic value, their limited consistency may be due to inherent limitations of their 

modeling approaches. First, studies have focused on predicting PTSD diagnostic status. 

However, the PTSD outcome encompasses a wide range of symptom configurations and 

severities and may be too broad of a definition for focused modeling approaches (Galatzer-

Levy & Bryant, 2013). Next, studies to date have utilized a GLM framework that, while 

useful for testing focused hypotheses, provide an average solution rather than seeking a 

consistent signal across subjects. Further, collinearity between closely related variables that 

share a common cause may obfuscate the identification of potentially predictive variables 

(Spirtes, Glymour, & Scheines, 2000).The GLM framework, therefore, may be limited in its 

ability to match the disorder’s multicausal etiology and the heterogeneous outcome. The ML 

approach presented here may be better equipped, since both the feature selection and the 

SVM classification do not rely on analysis of variance to identify relationships, and as such 

can determine probabilistic relationships across large sets of variables without errors due to 

collinearities or limited variable-to-sample ratios. Further, this approach has a built-in 

validation method to determine if models are accurate across subjects rather than on the 

aggregate (Aliferis et al., 2010; Statnikov, Aliferis, & Hardin, 2011).

ML’s identification of features that may be highly collinear allows for the disaggregation of 

measures to identify specific components that signal risk. In the current study, we find that 

specific PTSD, ASD, and depression symptoms, despite being closely related, provided 

additional information. Beyond symptom levels, type of trauma, pain level, length of ED 

treatment, head injury, or loss of consciousness are independent and consistent risk 

indicators. This is consistent with other studies that have used ML classification and feature 

selection methods to identify clinical self-report characteristics that most accurately 

differentiate PTSD cases from non-cases. For example, (Marinić et al., 2007) utilized 

Random Forests to demonstrate that clinical self-report measures not directly associated 

with PTSD, such as positive and negative self-reported symptom measures of other 

disorders, provide significant additive classification accuracy over PTSD symptom 

assessments on their own. ML methods, in this case SVMs, have also been used to build 

classifiers differentiating trauma survivors with PTSD from controls based on grey matter 

density measured using MRI (Gong et al., 2014). Neither of these studies attempted to 

forecast the course of PTSD based on acute features, however, making the current work 

novel in this way. However, the findings in the current study should be tested for their 

accuracy to forecast as well as classify posttraumatic stress outcomes. ML classification 

algorithms have also been used to forecast the need for life-saving interventions among 

trauma patients based on vital signs and heart-rate while in transport to the hospital with 

Galatzer-Levy et al. Page 10

J Psychiatr Res. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



very high accuracy (Liu, Holcomb, Wade, Darrah, & Salinas, 2014). This provides a useful 

example of how such methods can be used for efficient and accurate clinical decision-

making.

The marginal prediction from ASD symptoms (which consist of all PTSD symptoms plus 

specific ASD-related symptoms) is consistent with previous findings showing that ASD, 

whilst identifying a high risk group, does not provide a robust predictive signal because 

most subjects who develop PTSD do not meet early ASD diagnostic criteria (Bryant, 2003). 

In this study, the failure to predict from ASD symptoms may additionally reflect the 

previously reported high frequency of these symptoms shortly after trauma exposure 

(Rothbaum, Foa, Riggs, Murdock, & Walsh, 1992). Predicting from frequently endorsed 

features yields highly sensitive but non-specific prediction (Shalev, Freedman, Peri, 

Brandes, & Sahar, 1997).

Additionally, initial PTSD symptoms are only one of several expressions of distress 

following traumatic events, and thus, including other responses in a predictive model (e.g., 

ED pain, expressing a needing for help, sense of worthlessness; Figure 3) captures a wider 

array of initial responses. The inclusion of event- and injury characteristics (e.g., type of 

accident, head injury, length of stay in ED) may similarly add to the model’s predictive 

power.

The relative advantage of predicting the non-remitting PTSD symptom trajectory may 

reflect the fact that this trajectory provides a more accurate description of the data, whereas 

survivors defined by PTSD status have a range of PTSD symptom severity. As shown in a 

recent longitudinal study (Bryant, O’Donnell, Creamer, McFarlane, & Silove, 2013), 

survivors fluctuate between formal PTSD diagnostic status, while showing limited change in 

symptom severity scores. Thus, the dichotomous PTSD yes/no outcome, despite providing a 

formally desirable frame of reference, results in loss of information and, as this work shows, 

lesser predictability. Additionally, the non-remitting trajectory in this sample was also 

treatment refractory, and thus insensitive to the potential confounding effect of receiving 

treatment. Our results tentatively suggest that outcome variables that capture inherent group 

heterogeneities may be a better target for prediction.

We used SVMs as the primary approach because this algorithm works well with relatively 

small sample sizes and a high number of features. SVM can also accommodate both simple 

and complicated models, and has strong built-in mechanisms to avoid over-fitting 

(Statnikov, Aliferis, Hardin, et al., 2011). The consistency of AUCs levels across ML 

classification algorithms suggests that this work has exhausted the predictive information in 

the data attainable through existing ML methods.

Limitations to this work include the lack of information about other known predictors [e.g., 

prior psychiatric history, peri-traumatic responses, negative cognitions (Ozer, Best, Lipsey, 

& Weiss, 2000)]. Additionally, this work does not include biological or neurocognitive 

measures (Bryant, 2003). Including such variables in future studies may improve the 

prediction of PTSD.
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This work is also limited by addressing PTSD and PTSD symptoms as sole outcome 

dimension, whereas traumatic stress can lead to other mental disorders and conditions (e.g., 

depression, substance abuse). Studies predicting cognitive, vocational, and biological 

outcomes may address other dimensions of the response to traumatic events. Finally, by only 

including an ED-based sample (as opposed to protracted traumatization, e.g., during wars) 

this work is also limited to exploring one of several pathways to chronic PTSD. Specifically, 

it does not explore delayed-onset PTSD (deRoon-Cassini, Mancini, Rusch, & Bonanno, 

2010).

The current study is far from offering an optimal or comprehensive solution to predicting 

PTSD. Nonetheless it demonstrates the feasibility and the yield of ML-based prediction 

from early responses to traumatic events. It thereby provides a necessary foundation for 

extending the use of an ML approach to forecasting PTSD in other studies and to including 

biomarkers in the model. While the current study attempted to validate its findings using 

cross-validation methods, truly usable methods for identifying individuals at risk require 

replication and improvement in independent samples. An advantage of using a learning 

framework is that additional sources of information can be integrated and the accuracy and 

generalizability of forecasting can be improved upon. As such, the current work provides a 

baseline indicating the conjoined predictive accuracy of well-known or commonly occurring 

assessments conducted in ED setting and among individuals thought to be at risk for 

developing posttraumatic stress pathology. These results should be validated in independent 

datasets and improved upon with additional sources of information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

1. Machine Learning (ML) forecasting improves prediction of PTSD course.

2. Empirical trajectories are more predictable then PTSD diagnosis.

3. ML feature selection improves identification of unique predictors of PTSD 

course.
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Figure 1. Three Trajectory Model of PTSD Symptom Severity Recovery Trajectories (n=957)
Note: x-axis indicates number of PTSD symptoms reported on the PSS-I. Y-axis represents 

time from ~10 days to ~15 months Trajectories represent estimated marginal means. ‘d’ 

indicates days from emergency room admission. Individuals are identified as members of 

modeled trajectories based on their posterior probability of class membership derived using 

Latent Growth Mixture Modeling.
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Figure 2. Machine Learning Approach for feature selection and classification
Note: 1. Unselected data are organized such that all potential predictors are normalized to 

ranges of 0–1 and a ‘target’ variable is specified; 2+3. The Markov Boundary Feature 

Selection algorithm removes redundant or uninformative variables to identify an irreducible 

set of predictors in a random 90% of cases. This set of predictors is then confirmed in a 

random 10% of cases, and the procedure is repeated 10 times; 4+5. Selected features are fed 

into seven different classification algorithms to determine the accuracy of selected features 

to classify the ‘target’ variable and to provide an accuracy estimate using area under the 

receive operator characteristic curve (AUC). The classification algorithms are tested using 

the same cross-validation procedure as for feature selection. Additionally, when optimizing 

parameters of the model (for example for the polynomial SVMs) an additional step of 

splitting each training set into a training & validation set is added; f. A mean AUC across 

100 cross-validation runs is provided to determine the overall accuracy of the selected and 

validated features for classifying the target variable (in this analysis remission vs. non-

remission trajectory membership or PTSD diagnostic status). SVM = Support Vector 

Machine; ROC = Receiver Operator Characteristic.
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Figure 3. Features Selected Using Generalized Local Learning (GLL-MB) Algorithm across 100 
cross validation runs
The figure is a graphical representation of the percentage of cross-validation runs for which 

each feature was selected. Features that were selected at a high frequency indicate that they 

consistently provide unique predictive information. CGI refers to the Clinical Global 

Impression metric.
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Table 1

Predictive Features

Feature Category Features Mean (SD)/%

Emergency
Room

Demographics Age 36.29(12.04)

Time in ED (hours) 5.71 (6.52)

Gender (% Male) 51.10%

Physiological responses Max Blood Pressure 129.99(17.25)

Min Blood Pressure 78.53(11.42)

Pulse 84.88(14.54)

Pain Level (1-10 scale) 6.64 (2.58)

Pain Medications Opiates 8.80%

non-opiate analgesics 36.20%

Anti-inflammatory's 8.20%

Head Injury Head Injury 25.00%

Whiplash 17.60%

Loss of Consciousness 4.90%

Event Type Motor Vehicle Accident 85.10%

Work Accident 4.20%

Terrorist Attack 9.00%

10-Days
Post Event

Event Characteristics Witness others injured 29.80%

Had relatives in the event 47.40%

Coping efficacy Overall Functioning 82.10%

Work Functioning Disturbed 73.80%

Relationship Functioning 40.70%

Other Functioning Disturbed 63.30%

Social Support 72.30%

Post-traumatic Count on Others (1-100 scale) 42.5 (29.4)

Count on Yourself (1-100 69.1 (29.6)

Dangerous World (1-100 71.2(27.4)

Blame Yourself (1-100 scale) 22.4(32.1)

Want Help 45.80%

Can't Work 26.00%

Perceived initial Behaved Ok During the Event 79.50%

Reacting Well Now 77.10%

Clinical Assessments Patient Reported CGI (1-7 4.29(1.57)

Clinician Reported CGI (1-7 4.11 (1.22)

PTSD Symptom (1-17 scale) 10.27(3.24)

K6 Severity Score (3-30) 17.8(5.18)
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Table 2

Means (SD) and frequencies for selected features appearing in ≥75 cross validation runs

Feature Non-Remitting Class Remitting Classes

Emergency Room Age 39.37(12.27) 35.58(11.74)***

Exposure to a Terrorist Attack 16.0% 7.6%***

Motor Vehicle Accident 79.8% 86.1%*

Time in the Emergency Room 8.40(9.67) 5.20(5.60)***

Pain Level 7.12(2.33) 6.56(2.60)+

Tranquilizers 5.8% 1.6%**

Head Injury 53.3% 39.0%**

Loss of Consciousness 12.7% 5.3%**

10 days post- Patient Reported CGI 5.12(1.43) 4.12(1.54)***

Clinician Reported CGI 4.83(1.27) 3.96(1.16)***

PTSD Symptom Severity 12.07(3.11) 9.94 (3.22)***

PTSD Diagnostic Status 86.5% 69.9%***

Nightmares 59.9% 33.5%***

Difficulty Concentrating 88.7% 64.6%***

Increased Startle 75.2% 56.0%***

Flashbacks 71.6% 54.6%***

Irritability 72.3% 55.4%***

Derealization 50.0% 33.35%***

Worthlessness 2.98(1.49) 2.05 (1.26)**

Social Support 55.7% 75.6%***

Wanting Help 68.5% 41.1%***

Note: All continuous variables were compared using independent samples T-Tests; all categorical variables were compared using Pearson's χ2 

statistic;

+
p <=.07,

*
p <=.05,

**
p <=.01,

***
p <.001.
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