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Abstract

Impressive improvements in docking performance can be achieved by applying energy bonuses to 

poses in which glycan hydroxyl groups occupy positions otherwise preferred by bound waters. In 

addition, inclusion of glycosidic conformational energies allows unlikely glycan conformations to 

be appropriately penalized. A method for predicting the binding specificity of glycan-binding 

proteins has been developed, which is based on grafting glycan branches onto a minimal binding 

determinant in the binding site. Grafting can be used either to screen virtual libraries of glycans, 

such as the known glycome, or to identify docked poses of minimal binding determinants that are 

consistent with specificity data. The reviewed advances allow accurate modelling of carbohydrate-

protein 3D co-complexes, but challenges remain in ranking the affinity of congeners.

Introduction

The structural similarity between monosaccharides, combined with their ability to form 

branched oligomers, makes distinguishing between variations in linkage site or glycan 

composition challenging for experimental methods. These challenges are amplified by the 

size and diversity of the cellular glycome. And yet, it is the ability to discriminate between 

these subtle structural variations that defines the specificity of a given glycan-binding 

protein (GBP) [1].

Identifying the glycan receptors preferred by a given GBP is an area of intense study [2–6], 

with applications ranging from biomass polysaccharide recognition [7–9], through 

fundamental biology [4,5,10,11] and medicine [3,5,12–15]. The introduction of glycan 
array screening has caused a paradigm shift in GBP specificity determination. Although 

subject to limitations [2,6,11,16–19], such screening produces a rich data set that allows 

researchers to determine the minimal binding determinant (MBD) for a given GBP, and the 

various glycans in which the MBD is recognized [17]. Complexities arise in identifying 
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MBDs in glycan array data because of the potential for structural mimicry among 

monosaccharides. A classic example of this is the subset of structural features shared by 

GlcNAc and Neu5Ac which can result in cross-reactivity (Figure 1), as in the case of 

binding to wheat germ agglutinin isolectin II [20].

Overall, the data from glycan array screening shows that binding specificity is determined 

by both the affinity of the MBD, and the context in which the MBD is presented. Context 

encompasses such properties as the overall structure of the glycan, the nature of the 

underlying aglycone (protein, lipid, etc), glycan clustering (avidity), the presentation of the 

glycan relative to its environment [21], the specificity of modules attached to nonspecific 

catalytic domains [22,23] and the composition of the cellular membrane [24].

The three-dimensional (3D) structures of both the GBP and the glycan are required in order 

to generate a structural rationalization of the origin of specificity. The experimental 

generation of these co-complexes is a hard-fought battle for crystallography, which must 

overcome the intrinsic resistance of glycans to crystallization, among other issues. 

Theoretical glycan structure prediction tools have become particularly useful in augmenting 

experimental data, and in surmounting some of the limitations. Online tools such as 

GLYCAM-Web (www.glycam.org) have evolved to provide rapid access to 3D structures of 

glycans and glycoproteins that can be used to assist in interpreting sparse experimental data, 

or to aid in developing structure-based models of binding specificity.

In contrast to the general case of proteins or peptides, the unique structural properties of 

oligosaccharides enable their conformations to be accurately modelled given only the 

primary structure (composition and linkage information) [25,26]. A key advantage for 

glycan structure prediction, relative to the case of proteins, is that glycan 3D structure and 

dynamics are driven by well-defined conformational preferences of the glycosidic angles, 

and by interactions with solvent, rather than by strong inter-residue interactions. These 

features enable approximate low energy conformations of a glycan to be generated solely by 

consideration of the properties of the individual linkages. Exceptions to this include highly 

flexible glycans, such as polysialic acids and glycosaminoglycans (GAGs), which require 

more sophisticated approaches, including molecular dynamics (MD) simulation, to 

determine their conformational preferences.

Until recently, the focus of many computational studies of glycan binding has been on 

predicting the 3D structure and binding free energy of particular GBP-MBD complexes, 

using techniques such as computational docking or analysis of MD simulations [27–36]. 

Such studies have been essential for developing a general understanding of the molecular 

features responsible for the affinity of a given MBD, but have done relatively little to 

address the origin of glycan specificity in a more general context. However, with the 

creation of virtual libraries of 3D glycan structures, and the introduction of automated 

workflows, such as Computational Carbohydrate Grafting (CCG, [37]) it is now possible 

predict whether a given MBD in the context of a larger glycan structure, or ensemble of 

structures, would be recognized by a particular GBP.
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This review is intended to provide a summary of the latest advances in carbohydrate docking 

and in the computational tools used to predict glycan specificity.

Recent Advances in Computational Carbohydrate Docking

Accuracy in computational docking requires a search algorithm capable of finding the 

correct solution and a scoring function that is able to correctly rank this pose above the other 

putative solutions. When docking carbohydrates it is generally found that current algorithms 

are able to produce a pose that is close to known crystal structure coordinates, but that the 

scoring functions are unable to correctly rank this pose [27–31,35,36]. Carbohydrate ligands 

are particularly challenging to rank in this manner because they have low chemical diversity, 

and often display weak affinities. Compounding these difficulties is the fact that certain 

inter-glycosidic linkages are highly flexible, resulting in glycans being far from ideal ligands 

for molecular docking. These challenges have spurred the innovations in carbohydrate 

docking discussed in the following sections.

There have been several studies [27–31,34–36] assessing the performance of software for 

docking carbohydrates, however, quantitative or wide-ranging conclusions remain elusive 

for a number of reasons:

1. The reported performance levels are often favourably biased by docking to 

“positive-controls”, in which both ligand and receptor coordinates are taken from a 

co-crystal structure, with one or both partners retained in the bound conformation.

2. The study may lack “negative-controls”, such as congeners known not to bind, 

without which the discriminatory ability of the method is uncertain.

3. The study may consider too few systems to be generalizable, or is focused on a 

narrow class of glycan.

Successful reproduction of the pose geometry in a positive-control experiment should be 

considered a minimal requirement to demonstrate the capability of docking under optimal 

conditions. However, such an experiment does not indicate that the protocol is able to 

distinguish between binders and non-binders, nor does it mimic the general case of docking 

ligands from virtual libraries, or docking to unliganded crystal structures.

Docking Glycosaminoglycans (GAGs)

Docking GAGs is particularly challenging due to their highly charged structure, polymeric 

nature, heterogeneity in sulfation patterns or monosaccharide composition, varying ring 

conformations (particularly of iduronate residues), as well as the difficulties associated with 

obtaining experimental constraints to guide or validate the results. Nevertheless, the relative 

lack of experimental structural data for these systems, combined with a growing awareness 

of their biological significance, has led to a number of innovative approaches to GAG 

docking. Recent examples include advances in the prediction of GAG binding sites [38,39], 

improvement in pose prediction via inclusion of specific bound waters [40], co-complex 

generation via threading and superimposition [41], mimetic discovery [42], as well as 

combining spectroscopic data with GAG modelling [43,44]. Very recently, an online utility 
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for the automatic generation of 3D structures for GAGs has appeared (www.glycam.org/gag, 

[25]) that should find application in GAG modelling.

Of the examples above, a particularly interesting approach docked sulfated moieties of 

increasing size, starting from methyl sulfates and progressing up to hexasaccharide GAG 

fragments to elucidate the GAG-binding site in αvβ3 integrin [38]. The results from docking 

the smaller fragments were used to focus the search regions used when docking the larger 

structures. Finally, multiple different conformations from a MD simulation of a 

hexasaccharide were docked to the subset of potential sites.

An alternative to docking is illustrated in a study of heparanase specificity, in which a 

homology model of heparanase was generated, and various co-crystallized substrates from 

similar binding sites were threaded into the active site. GAG substrates and inhibitory 

oligosaccharides were superimposed onto these models, and the subsequent structures were 

consistent with data from surface plasmon resonance and NMR spectroscopy [41].

Including Conformational Energies in Carbohydrate Docking

In docking oligosaccharides, if the glycosidic linkages are permitted to be flexible, 

conformations are invariably generated that are inconsistent with known preferences, based 

on solution NMR data or protein crystallography. Conversely, rigid docking does not 
account for the innate flexibility of glycosidic linkages or permit induced fit in the glycan 

upon binding.

Two recent examples demonstrate how this problem can be circumvented by employing a 

set of post-docking filtering functions, either enabling poses to be rescored based on 

inclusion of their conformational energy [30], or to be rejected when their glycosidic torsion 

angles fall outside of expected ranges [45]. Thus in the case of Nivedha et al. [30], poses 

which scored well during flexible docking, but whose glycosidic linkages were distorted, 

received an additional penalty in their scores. An advantage of post-filtering approaches is 

their independence from the docking software used. The agreement between the energy 

profiles for the glycosidic torsions and the observed distributions of these angles in ligands 

in the protein data bank (PDB) (Figure 2), led Nivedha et al. [30] to conclude that the 

majority of proteins that recognize oligosaccharides select low-energy (solution-like) 

conformations. This observation suggests that only a restricted range of torsion angles may 

need to be considered when performing carbohydrate docking, which would significantly 

enhance its efficiency.

It should be noted that this conclusion was based solely on the observed conformational 

preferences of glycosidic linkages, and does not take into account the energy required for 

enzymes, such as hydrolases, to distort monosaccharide rings into enzyme-active 

conformations [46–48]. If we assume that a hydrolase binds the most populated low-energy 

conformation of a glycan, any conformational change required for enzyme activity must be 

induced in the substrate after or during binding. This presents a significant challenge for 

docking since the current computational protocols do not facilitate changes in ring 

conformation. One approach to overcoming this limitation is to perform full-relaxed MD 

simulations starting with the substrate in the docked conformation. During the minimization 
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steps or the MD simulation the substrate may spontaneously distort into a conformation 

similar to that required for enzyme activity [49,50]. Additionally, the ability of quantum 

mechanical (QM) and hybrid QM/MM techniques to study bond breaking/forming reactions 

can be extremely useful for detailed analysis of these systems [51,52].

Docking using MD Generated Water Sites

It has been shown that displaced water plays an important role in ligand binding [53–55] and 

that the positions of crystallographic waters are often replaced by glycan hydroxyl groups 

upon complex formation (Figure 3) [56,57]. These “hydration or water sites” can also be 

readily identified using MD simulations of the unliganded GBP [58–62]. Promising results 

for carbohydrate docking have been reported [63] when the score included a bonus for poses 

that placed ligand hydroxyl groups in water sites. The reported improvement in the accuracy 

of the docking results was impressive for the six reported systems.

Additional Tips for Accurate Computational Carbohydrate Docking

1. Thoroughly vet crystal structures for inconsistencies between the electron density 

and the reported model, using for example the Coot program [64]. Note that even 

with reasonable resolution structures, many structural details may be ambiguous. 

Check for distorted monosaccharide ring conformations, unlikely glycosidic angles 

[30], as well as flipped or distorted amide groups in Neu5Ac, GlcNAc, etc. The 

pdb-care webtool (www.glycosciences.de/tools/pdb-care) can be helpful in this 

regard [65]. Incorrect side chain rotamers in asparagine, glutamine, and histidine 

are also common, and may be inferred from careful analysis of potential hydrogen 

bond networks. The NQ-Flipper webtool (https://flipper.services.came.sbg.ac.at) 

can be useful in such an analysis [66].

2. Reduce the size of the docked ligand so that it contains only the MBD; the 

structures for larger glycans can be obtained via grafting after a successful MBD 

pose has been generated.

3. Enabling glycosidic linkages to be flexible is preferred, but unlikely rotamers 

should be expected and filtered post-docking [30,45] as outlined in the Including 

Conformational Energies in Carbohydrate Docking section.

4. When docking glycans that are normally linked via their reducing terminus, 

disregard poses where the reducing terminal is occluded upon binding to the 

receptor.

Defining the Context for MBD Recognition with Computational 

Carbohydrate Grafting

The presence of an MBD in a glycan is not sufficient for recognition by the cognate GBP; 

the MBD must also be accessible for binding to the GBP. That is, the context in which the 

MBD occurs is critical for recognition.

Context has been examined by explicitly modelling the larger glycan into the binding site 

via filtered docking [45], or by manual superimposition [32,67,68]. The CCG approach 
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builds on these concepts by completely automating the grafting process, allowing 3D 

structural libraries as large as the known glycome to be screened [37]. The predictions from 

this high-throughput virtual screening can be validated by comparison with experimental 

data, particularly from glycan array screening [37]. Predictions from CCG can be used for a 

great many purposes, from identifying putative cross-reactivities for anti-carbohydrate 

antibodies, to rational design of GBPs with tailored specificity, to guiding the design of 

experimental glycan arrays. In a recent extension of the CCG approach, explicit modelling 

of glycans conjugated to hypothetical array surfaces provided a structural rationale for false-

negative binding resulting from surface and linker effects [19].

Assessing Putative Docking Poses with Glycan Array Data

Consistency with data from glycan array screening can also be used, in conjunction with 

CCG, to identify poses of the MBD generated by docking that are unable to explain the 

observed specificity. This approach was demonstrated in the case of the binding of the 

Thomsen Friedenreich (TF) disaccharide (Galβ1-3GalNAcα) to a monoclonal antibody 

(JAA-F11) [37]. Four putative poses were generated by docking the disaccharide, however, 

grafting to each pose revealed that only one was consistent with data from glycan array 

screening (Table 1).

The ability to discriminate between acceptable and unacceptable poses relied equally on 

both the presence of binding and non-binding glycans that contain the MBD. Thus this 

approach could fail to identify a unique pose if there were too few glycans in the 

experimental array. Notably, for use as specificity constraints, the glycans need not be 

naturally occurring, and data from synthetic deoxy-analogs might be particularly informative 

[69]. In this case, comparing the docked poses to data from Saturation Transfer Difference 

NMR (STD-NMR) was used to further confirm the validity of pose 1 [37].

Molecular Dynamics as a Tool to Refine Ligand Placement

The use of MD to probe the specificity of GBPs is well established and widely used, and has 

been recently reviewed [70,71]. Force fields for carbohydrates in many of the popular 

software packages have reached a generally reliable level of predictive accuracy, and 

continue to be refined [72]. Advances in high-performance computing, and particularly in 

the development of algorithms for use on graphics processing units (GPUs), are allowing 

MD simulations to be performed for significantly longer periods, and on larger systems, than 

was previously feasible with CPU-based implementations. Particular strengths of MD 

simulation in regard to carbohydrate specificity assessment are its ability to remove 

inadvertent bias from ligand docking, and to permit induced fit in both binding partners. 

Recent examples of ligand refinement by MD simulation include an analysis of the binding 

specificity of Galectin-8 [32], O-GlcNAc hydrolase [33], and Galectin-3 [73]. A further 

particularly useful feature of post-docking MD simulation is that unlikely ligand poses, or 

unlikely ligands, may be detected based on their instability during the simulation [74–77].
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Future perspectives

Molecular modelling is transitioning from anecdotal studies of MBD – GBP complexes into 

a high-throughput methodology for determining the specificity of GBPs. Virtual screening 

employing methods such as CCG offer an opportunity to advance the understanding of 

glycan context on specificity. Potential applications of virtual screening include defining and 

predicting antibody antigenicity, host or pathogen receptor preferences, and enzyme 

substrate preferences, with therapeutic design implications.

The innovations in docking methodology and CCG have yet to be widely evaluated, but 

initial results in terms of improved structure and large-scale specificity prediction are 

promising. However, improving scoring functions for carbohydrate docking remains an 

underdeveloped area that would benefit from the creation of a reference suite of high 

resolution 3D structures for co-complexes with associated binding energies.

Given the importance of glycobiology to issues of human health, and the difficulties 

associated with experimental structural glycobiology, there is a clear and growing demand 

for effective modelling tools. In the field of computational glycoscience there is a growing 

trend toward web-based implementations, with user-friendly interfaces, such as GlycomeDB 

[78], UniCarbKB [79] or GLYCAM-Web [25]. Online resources offer incomparable user 

access but place a correspondingly high level of responsibility on the software developers to 

ensure that the tools are robust and accurate. Nevertheless, fully leveraging the benefits of 

the emerging computational methods for 3D structure generation will require that they are 

made accessible and understandable to nonspecialists.
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Highlights

Recent innovations in carbohydrate docking enhance 3D structure prediction accuracy

Glycan array screening data can be used to filter and validate docking results

Computational Carbohydrate Grafting can predict specificity within the human glycome
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Figure 1. 
Partial structural mimicry among monosaccharides (Neu5Ac, top; GlcNAc, bottom;) can 

confuse MBD assignments, and is challenging to detect, in part because of nomenclature 

limitations and established structure representation preferences.
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Figure 2. 
Calculated glycosidic torsion rotational energies (solid lines) versus distributions of related 

torsion angles from glycans in the PDB [30].
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Figure 3. 
Left: solvent accessible surface of the lentil lectin Concanavalin A (light blue) in complex 

with the natural trisaccharide ligand (PDB: 1CVN). Waters of crystallization are shown as 

red spheres. Superimposed are the waters of crystallization (dark blue) from the ligand-free 

structure (PDB: 1GKB). Key waters, which appear to be displaced by the ligand, as well as a 

conserved water molecule (Wat40), are shown as larger spheres [57]. Right: results from 

docking a hyaluronan tetrasaccharide to CD44 (orange, ribbon model) using the water-site 

biased docking method. The top ranked pose (ball and stick model) has an RMSD of 0.7 Å 

from the reference ligand position (stick model) [63].
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Table 1

Using CCG to identify poses consistent with observed binding specificity for the TF-disaccharide in complex 

with the mAb JAA-F11

Predicted Overlaps Consistent
with Experimenta

Experimental Bindersb Pose 1 Pose 2 Pose 3 Pose 4

Galβ1-3GalNAcα Y Y Y Y

Neu5Acβ2-6(Galβ1-3)GalNAcα Y Y -c Y

Neu5Acα2-6(Galβ1-3)GalNAcα Y - - Y

Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα Y Y - Y

GlcNAcβ1-6(Galβ1-3)GalNAcα Y Y - Y

Experimental Non-Bindersb

Fucα1-2Galβ1-3GalNAcα Y Y - Y

GlcNAcβ1-3Galβ1-3GalNAcα Y Y - Y

GlcNAcβ1-2Galβ1-3GalNAcα Y Y - Y

(3S)Galβ1-3GalNAcα Y - - Y

Neu5Acα2-6(Neu5Acα2-3Galβ1-3)GalNAcα Y Y Y Y

6S(Neu5Acα2-3Galβ1-3)GalNAcα Y Y - Y

Neu5Acα2-3Galβ1-3GalNAcα Y Y - Y

GalNAcβ1-3GalNAcα Y - - Y

Galβ1-3GalNAcβ Y Y Y -

Galβ1-3GalNAcβ1-4Galβ1-4Glcβ Y Y Y -

a
A relative buried surface area of greater than 1 (relative to the surface are of a carbon atom (~36 Å2)) was used to categorise a predicted glycan as 

being a non-binder.

b
Experimental binding was based on a mean relative fluorescence signal greater than 10% of the maximum signal at each protein concentration.

c
A dash denotes that the predicted overlaps were inconsistent with the experimental array data.
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