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Abstract

The anisotropy of water diffusion in brain tissue is affected by both disease and development. This 

change can be detected using diffusion MRI and is often quantified by the fractional anisotropy 

(FA) derived from diffusion tensor imaging (DTI). Although FA is sensitive to anisotropic cell 

structures, such as axons, it is also sensitive to their orientation dispersion. This is a major 

limitation to the use of FA as a biomarker for “tissue integrity”, especially in regions of complex 

microarchitecture. In this work, we seek to circumvent this limitation by disentangling the effects 

of microscopic diffusion anisotropy from the orientation dispersion.

The microscopic fractional anisotropy (μFA) and the order parameter (OP) were calculated from 

the contrast between signal prepared with directional and isotropic diffusion encoding, where the 

latter was achieved by magic angle spinning of the q-vector (qMAS). These parameters were 

quantified in healthy volunteers and in two patients; one patient with meningioma and one with 

glioblastoma. Finally, we used simulations to elucidate the relation between FA and μFA in 

various micro-architectures.

Generally, μFA was high in the white matter and low in the gray matter. In the white matter, the 

largest differences between μFA and FA were found in crossing white matter and in interfaces 

between large white matter tracts, where μFA was high while FA was low. Both tumor types 

exhibited a low FA, in contrast to the μFA which was high in the meningioma and low in the 

glioblastoma, indicating that the meningioma contained disordered anisotropic structures, while 

the glioblastoma did not. This interpretation was confirmed by histological examination.
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We conclude that FA from DTI reflects both the amount of diffusion anisotropy and orientation 

dispersion. We suggest that the μFA and OP may complement FA by independently quantifying 

the microscopic anisotropy and the level of orientation coherence.
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1. Introduction

The most established technique for non-invasive investigations of the microstructure of the 

central nervous system is diffusion tensor imaging (DTI) (Basser et al., 1994). DTI provides 

a means of estimating the rate of diffusion and the diffusional anisotropy in tissue, 

frequently expressed in terms of the mean diffusivity (MD) and the fractional anisotropy 

(FA), respectively. The diffusion anisotropy has been shown to correlate with the 

progression of a wide variety of conditions (Kubicki et al., 2002). For example, reduced FA 

is observed during ageing (Hsu et al., 2010; Sullivan and Pfefferbaum, 2006), and in 

neurodegenerative diseases such as dementia (Englund et al., 2004; Santillo et al., 2013), 

Parkinson’s disease (Surova et al., 2013), Alzheimer’s disease (Sjobeck et al., 2010), and 

multiple sclerosis (Rovaris et al., 2005). By contrast, the value of FA tends to increase 

during white matter (WM) maturation (Lebel et al., 2008; Löbel et al., 2009) and after 

specific forms of training, such as juggling (Scholz et al., 2009).

While FA is clearly sensitive to microstructural alterations, such as demyelination, it also 

reflects a wide variety of non-specific and possibly confounding effects. One of the most 

prominent confounders of FA is the partial volume effect (PVE). Partial volume effects are 

especially relevant for diffusion-MRI (dMRI) where voxel volumes are typically on the 

scale of ~10 mm3, resulting in a high probability for the MR signal to originate from water 

residing in different types of tissue. This includes voxels that are located at the interface 

between nerve bundles with different orientation, and at the interface between brain tissue 

and cerebrospinal fluid (CSF). Thus, the signal from individual voxels frequently reflects an 

average of different diffusion profiles. This invariably leads to less pronounced diffusion 

directionality, i.e., lower FA (Oouchi et al., 2007; Westin et al., 2002). Consequently, FA 

correlates with structure size since smaller structures include a larger fraction of voxels that 

interface with surrounding tissue than larger structures (Szczepankiewicz et al., 2013; Vos et 

al., 2011). Another aspect of PVE is the presence of crossing, kissing, fanning, and other 

irregular WM geometries within a voxel, which reduce the FA by inducing a higher degree 

of orientation dispersion (Alexander et al., 2001; Nilsson et al., 2012). Thus, the utility of 

FA as a biomarker in regions of complex WM architecture is impeded because it entangles 

multiple effects into a single value. Although frequently overlooked, this is not an idle 

theoretical issue but has practical consequences. For example, elevated values of FA have 

been found in crossing fibers in patients with Alzheimer’s disease (Douaud et al., 2011; 

Teipel et al., 2014). This seemingly counter-intuitive result is explained by the selective 

damage to one of the fiber populations in the region (Douaud et al., 2011), resulting in 

reduced orientation dispersion and thus elevated FA. It is also worth noting that FA is an 
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intrinsically poor biomarker in grey matter (GM) due to the high orientation dispersion of 

neurites in the cortex (Shemesh and Cohen, 2011). Thus, reliable use of FA may be confined 

to regions of highly coherent WM (De Santis et al., 2013), which is estimated to account for 

less than 10% of the total white matter of the human brain (Vos et al., 2012). This has 

prompted the search for methods that accurately model microscopic changes in complex 

neural tissue.

It has been shown that the effects of orientation and restriction can be disentangled by 

extending the conventional single pulsed-field-gradient (sPFG) experiment (Stejskal and 

Tanner, 1965) to include double, or multiple, pulsed-field-gradients (dPFG and mPFG, 

respectively) (Mitra, 1995). In dPFG experiments information can be derived from the 

dependence of the signal amplitude on the angle between two successive encoding blocks. 

Several methods have been proposed for the quantification of microscopic anisotropy from 

such data. To this end, Lawrenz and Finsterbusch (2013) used a fourth-order tensor 

parameterization suggested by Lawrenz et al. (2010) to map the microscopic diffusion 

anisotropy in human white matter in vivo. Jespersen et al. (2013) developed a rotationally 

invariant dPFG encoding scheme and mapped the microscopic anisotropy in an excised 

monkey brain in terms of the fractional eccentricity.

Recently, Lasič et al. (2014) formulated a framework for the quantification of microscopic 

diffusion anisotropy and orientation dispersion in terms of the microscopic fractional 

anisotropy (μFA) and order parameter (OP), respectively. These parameters were derived 

from the contrast between the signal acquired in diffusion weighting (DW) experiments that 

used conventional diffusion encoding as well as isotropic encoding based on magic angle 

spinning of the q-vector (qMAS) (Eriksson et al., 2013). Briefly, magic angle spinning is an 

established NMR spectroscopy method where a sample is rotated around its own axis at a 

specific angle relative to the B0-field to minimize the influence of chemical shift anisotropy 

on the observed NMR spectrum. In qMAS, harmonic gradient modulation is used to create a 

q-vector that performs a precession at the magic angle in order to exert equal diffusion 

encoding in all spatial directions while the sample remains stationary. Although isotropic 

encoding can be achieved by combining multiple trapezoidal encoding blocks (Butts et al., 

1997; Wong et al., 1995), the qMAS technique offers a time efficient gradient modulation 

scheme (Topgaard, 2013). The qMAS-encoded signal attenuation becomes independent of 

contributions from anisotropic diffusion, and is sensitive only to the rate of isotropic 

diffusion (Eriksson et al., 2013). As a proof-of-principle, Lasič et al. (2014) implemented 

the qMAS technique on a NMR spectrometer and a clinical scanner, showing that 

microscopic anisotropy could be detected in phantoms that contained ordered and disordered 

anisotropic micro-domains.

In this work we performed the first in vivo experiments using qMAS diffusion encoding, 

and we parameterize the microscopic anisotropy of the human brain based on the framework 

presented by Lasič et al. (2014). We also demonstrated the feasibility of quantifying 

microscopic anisotropy in a clinical setting by using it to infer information on tissue 

structure in two types of brain tumors. Finally, we compared the results to simulated data to 

elucidate how the measures of anisotropy respond to various changes in micro-architecture, 
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and expanded on the possibilities to use this novel method in clinical research to access 

information that is unavailable when using conventional methods.

2. Theory

In conventional DTI, the diffusion on the voxel scale is assumed to be Gaussian and is 

described by a rank-2 tensor (D) (Basser et al., 1994). The same description can be 

employed at a sub-voxel scale; meaning that each coherent segment of the underlying micro 

geometry can be considered as a domain in which the diffusion is Gaussian and described by 

a domain diffusion tensor (Dk). The voxel scale tensor can be described as the average of all 

domain tensors, according to

Eq. 1

where D = Dk only when the voxel contains identical domains that are perfectly aligned. In 

all other cases D will depend on the distribution of domain tensor eigenvalues, and their 

orientation (Figure 1). Here, we denote objects pertaining to microscopic domains by a 

subscript ‘k’. Consider three common parameterizations of D: the mean diffusivity (MD), 

the variance of the diffusion tensor eigenvalues (Vλ), and the fractional anisotropy (FA), 

defined according to (Basser and Pierpaoli, 1996)

Eq. 2

Eq. 3

Eq. 4

Note that (Dk), (Dk) and (MDk, Vλ,k) yield the corresponding parameters for a single 

domain, denoted MDk, Vλ,k and FAk, respectively. From Eq. 1 to Eq. 4, it is clear that the 

FA represents the amount of microscopic anisotropy that persists to the voxel scale and is 

determined by the coherence of the domain orientations (Westin et al., 2002). To circumvent 

this dependency, Lasič et al. (2014) suggested a method to measure the microscopic 

anisotropy in terms of the microscopic fractional anisotropy (μFA). Conceptually, in a 

system of identical and parallel domains the diffusion anisotropy of each domain will 

persists to the voxel scale, rendering FA = μFA = FAk (Figure 1A). By contrast, randomly 

oriented domains exhibit isotropic voxel scale diffusion, rendering FA = 0, however, the 

microscopic anisotropy is unaffected by the orientation dispersion and thus μFA = FAk 

(Figure 1C).

It should be clear that individual domains cannot be probed directly using conventional DTI. 

Instead, the microscopic anisotropy can be inferred from the amount by which the diffusion 

weighted signal deviates from monoexponential attenuation, commonly referred to as the 
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diffusional kurtosis (Jensen et al., 2005). However, kurtosis is not specific to microscopic 

anisotropy since it is also sensitive to the presence of multiple diffusion coefficients. 

Further, Mitra (1995) showed that these two effects cannot be distinguished in a 

conventional sPFG experiment, but that it could be done using dPFG experiments. Here, we 

separate the two effects by using the contrast between conventional and isotropic diffusion 

encoding (Lasič et al., 2014). The concept is understood by considering the MR signal (S) as 

a function of the magnitude of diffusion encoding (b), and the distribution of diffusion 

coefficients (P), according to

Eq. 5

where P(D|N) reads as the probability distribution of diffusion coefficients when employing 

the encoding tensor N, and D = N: D, where ‘:’ denotes the double inner product. The 

encoding tensor is introduced to facilitate the analysis of both conventional and isotropic 

encoding (Westin et al., 2014). Conventional diffusion encoding is anisotropic, i.e., the 

diffusion sensitizing gradient is employed in one specific direction n, where n = [nx ny nz]T 

and |n| = 1. The corresponding encoding tensor is defined as N = nnT (3×3 matrix with a 

single non-zero eigenvalue), and the b-matrix is given by B = b · N (Basser et al., 1994).

For low to moderately high b-values, the signal described in Eq. 5 mainly depends on the 

expected value and the variance of the distribution of diffusion coefficients. The expected 

value, or first moment, of P is reflected in the initial slope of the signal attenuation, and is 

equal to the apparent diffusion coefficient in the direction defined by N, according to ADC = 

E[P(D|N)]. The variance, or second central moment, of P is reflected in the departure of the 

signal attenuation from monoexponentiality, and is related to the apparent diffusional 

kurtosis (K) mapped in DKI, such that Var(P(D|N)) = K · ADC2/3(Jensen et al., 2005).

The dependence of the distribution of diffusion coefficients on N is essential to 

understanding the calculation of the microscopic anisotropy. We highlight this dependence 

by considering an ideal system that contains an ensemble of anisotropic domains that are 

randomly oriented and axially symmetric, i.e., the system is rotationally invariant and all 

domain tensors are defined by two eigenvalues. This system is anisotropic on the 

microscopic scale, but isotropic on the voxel scale, hence FA = 0. However, the microscopic 

anisotropy can be recovered from the variance of the distribution of diffusion coefficients 

reflected in the departure from monoexponential signal attenuation. In the ideal system, the 

average variance of the domain tensor eigenvalues (〈Vλ,k〉) is related to the variance of the 

distribution of diffusion coefficients (Va) according to (Lasič et al., 2014)

Eq. 6

where Va = Var(P(D|N)). The subscript ‘a’ indicates that the variance is induced only by the 

presence of anisotropy. The microscopic fractional anisotropy is defined by substituting Vλ 

in Eq. 4 with the right hand side of Eq. 6, according to (Lasič et al., 2014; Topgaard and 

Lasič, 2013)
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Eq. 7

The definition in Eq. 7 was originally suggested by Topgaard and Lasič (2013), but an 

analogous parameter, the fractional eccentricity (FE), was independently developed by 

Jespersen et al. (2013). Note that the μFA and FE differ only by a constant factor such that 

 (Jespersen et al., 2014a; Jespersen et al., 2014b; Lasič et al., 2014).

Applying Eq. 7 to an ideal system is able to perfectly describe the μFA as an analogue to FA 

that is not sensitive to the effects of orientation dispersion (Figure 1). However, assumptions 

made in the ideal system may not be valid in biological tissue. In such cases, the μFA can 

still be quantified by relaxing the demands of the ideal system and compensating for the 

introduced error. Here we consider departure from rotation invariance, and the presence of 

multiple sources of variance.

Rotation invariance can be achieved by constructing the powder average of the signal and is 

required in systems that exhibit residual anisotropy (FA > 0). The powder average is the 

arithmetic average of the signal across multiple rotations of the diffusion encoding gradients, 

and will render a signal that is insensitive to rotations of the object. Here we denote the 

powder averaged signal and distribution function as S̄ and P̄, respectively. Note that the 

expected value of the powder averaged distribution yields the mean diffusivity, i.e., 〈P̄(D|

N)〉 = MD.

Variance in the distribution of diffusion coefficients can be a consequence of both 

anisotropy and presence of multiple isotropic components. This is relevant for the evaluation 

of Eq. 7 where only the variance arising due to the presence of microscopic anisotropy is 

considered. Thus, in cases where all domains cannot be assumed to have equal isotropic 

diffusivity, i.e., the domains have different MDk, the contribution to total variance (Vt) from 

isotropic components (Vi) must be quantified and removed, according to

Eq. 8

To calculate Va according to Eq. 8 we must find an independent means of measuring Vt and 

Vi. We know from DKI that Vt can be quantified by performing a conventional diffusion 

experiment, according to Vt = Var(P̄(D|N)). Since P̄ is affected not only by the underlying 

microenvironment, but also by the shape of the encoding tensor, Vi can be quantified by 

employing isotropic diffusion encoding that is designed to exert equal encoding strength in 

all spatial directions in a single preparation of the signal. We define the isotropic encoding 

tensor (I, 3×3 matrix) as one third of the identity matrix so that all its eigenvalues are equal, 

and Tr(I) = 1. This mode of encoding is insensitive to the domain orientations, and if the 

diffusion is approximately Gaussian, it is rotationally invariant and independent of 

microscopic anisotropy. Note that when isotropic encoding is used, P̄ and P are 

interchangeable since I has no defined direction. For isotropic encoding the signal in Eq. 5 is 

a function of P(D|I) which denotes the distribution of domain mean diffusivities since I:Dk 
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= MDk. The remaining variance is due to heterogeneous domain mean diffusivities, and is 

defined as Vi = Var(P(D|I)). In summary, anisotropic and isotropic diffusion encoding at 

sufficiently high b-values can be used to quantify Vt and Vi, respectively. The μFA can then 

be calculated according to Eq. 7 and Eq. 8.

Finally, we note that the interpretation of Va in Eq. 8 is valid if the two probability 

distribution functions are related in terms of a convolution, according to P̄(D|N) = R(D) ⊗ P̄

(D|I) (see Figure 2), where R(D) is the anisotropy response function and Va = Var(R(D)), 

according to probability theory and the arithmetic of random variables. Thus, the analysis 

assumes that the variance of the anisotropy response function is equal for all domains. This 

assumption may be invalid, for example, in mixtures of WM and CSF where the anisotropy 

response functions are expected to be markedly different. The effects of such unfavorable 

conditions on the validity of μFA calculations are investigated in the simulation 

experiments.

3. Methods

3.1. Imaging protocols

Data was acquired using a Philips Achieva 3T system, equipped with 80 mT/m gradients 

with a maximum slew rate of 100 mT/m/ms on axis, and an eight channel head coil.

The in vivo experiment was designed to evaluate the validity of the μFA model and was 

therefore acquired using a high b-value sampling rate, employing ten equidistant b-values 

between 100 and 2800 s/mm2. Thereby, the sequence was limited to five image slices. Each 

set of data (one set per subject) contained images prepared with both the isotropic qMAS 

and harmonically modulated anisotropic encoding (Figure 3). Harmonic modulation is 

preferred to trapezoidal encoding to ensure equal diffusion times for both types of encoding 

(Eriksson et al., 2013). All DW data were acquired using an echo time of 160 ms, repetition 

time of 2000 ms, 96×96 acquisition matrix, spatial resolution of 3×3×3 mm3, partial Fourier 

factor of 0.8, and a SENSE factor of 2. Regardless of encoding technique, each encoding 

block, before and after the 180°-pulse, lasted 62.5 ms. Anisotropic encoding was performed 

in 15 directions for each b-value using harmonically modulated gradients according to Lasič 

et al. (2014). The directions were distributed using an electrostatic repulsion scheme (Jones 

et al., 1999). The isotropic encoding was repeated 15 times per b-value. This resulted in 

equal amounts of images and scan time for both techniques. The combined scan time for the 

isotropic and anisotropic encoding sequences was 10:12 min.

Additionally, two whole-brain morphological sequences were acquired. One T1-weighted 

(T1W) 3D turbo-field-echo, reconstructed at a spatial resolution of 1×1×1 mm3; and one T2-

weighted (T2W) FLAIR, reconstructed at a spatial resolution of 0.5×0.5×6 mm3. The scan 

time for the T1W and T2W images was 6:28 and 4:48 min, respectively.

3.2. Post-processing and parameterization

Motion correction and eddy-current correction was applied to DWI data using ElastiX 

(Klein et al., 2010). The first moment, and the second central moment of the distribution of 

diffusion coefficients was estimated by regressing the inverse Laplace transform of the 
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gamma distribution function onto the acquired signal (Lasič et al., 2014; Roding et al., 

2012). The signal was modeled, according to

Eq. 9

where MD and V were the fitting variables representing the initial slope and curvature of the 

signal attenuation function, respectively. Note that V in Eq. 9 corresponds to Vt and Vi when 

the model is regressed onto data from the powder averaged anisotropic and isotropic 

diffusion encoding experiments, respectively. Three constraints were introduced in the 

fitting procedure to eliminate non-physical results. First, the MD was constrained to be equal 

in the two acquisitions by assuming that 〈P̄(D|N)〉= 〈P̄(D|I)〉 = MD. This assumption is 

reasonable since the choice of encoding technique should not affect the mean diffusivity 

unless the diffusion time and the time required for the diffusing medium to probe the 

relevant restrictions are at the same scale, which is rarely the case for DWI in vivo (Nilsson 

et al., 2009; Nilsson et al., 2013). Second, Vi was constrained to the range between the total 

variance and zero (Vt ≥ Vi ≥ 0). Finally, signal that was attenuated below 5% (S̄(b) < 0.05 · 

S0) was excluded from the fitting procedure. This was done to avoid detection of false 

variance in regions where a strong diffusion weighting rendered a signal that was elevated 

due to the noise floor. This is expected to affect only voxels where MD > 1.1 μm2/ms.

FA was calculated through conventional DTI analysis from the data employing anisotropic 

encoding for encoding strengths b ≤ 1000 s/mm2. The μFA was calculated according to Eq. 

8. Finally, the orientation coherence of the domains was quantified by the order parameter 

which is a well-established parameter for describing the order in liquid crystals. It is defined 

as OP = 〈(3 cos2(θk) − 1)/2〉, where θk is the angle between the domain and voxel scale 

symmetry axes. Thus, the OP provides a measure of orientation dispersion that has a simple 

geometric interpretation where OP = 1 indicates perfectly coherent alignment and OP = 0 

indicates randomly oriented domain orientations. The OP can also be calculated from the 

microscopic and voxel scale variance, according to (Lasič et al., 2014)

Eq. 10

Note that OP is not equivalent to the orientation dispersion index used in NODDI (Zhang et 

al., 2012), and that it can be calculated for any given orientation distribution function.

3.3. In vivo experiments

Imaging was performed on eight healthy volunteers (age 32 ± 4 years, all male) and two 

patients with brain tumors (one female, 62 years, with meningioma, WHO grade I; and one 

male, 46 years, with glioblastoma, WHO grade IV). Written consent was obtained from all 

subjects and the study was approved by the Regional Ethical Review Board at Lund 

University.

Szczepankiewicz et al. Page 8

Neuroimage. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Analysis of diffusion parameters was performed at the group level, as well as in a single 

representative subject. Three regions of interest (ROI) were selected in the WM; the 

splenium of the corpus callosum (CC), the corticospinal tract (CST), and the anterior 

crossing region (CR) where frontal projection fibers from the genu of the corpus callosum 

and thalamic radiation of the internal capsule intersect (see Assaf and Pasternak (2008)). 

One ROI was also placed in the superior part of the thalamus (THA), which contains a 

mixture of WM and GM. The ROIs were delineated manually, using MD, FA and μFA maps 

for guidance; the operator was instructed to avoid voxels that contained GM or CSF.

The healthy individual was investigated with respect to the signal parameterization and 

parameter distribution in all four ROIs. One additional ROI was placed in the lateral 

ventricles to investigate the signal attenuation in the isotropic and rapidly diffusing CSF. 

The analysis of the parameter distribution was based on the ROIs while the signal and model 

fit was inspected in a single voxel in each ROI. Further, the voxel-wise correlation between 

combinations of FA, μFA and OP were evaluated. This analysis was performed in one axial 

slice of the image volume and the parameter maps were masked to remove interference from 

irrelevant regions of the head. The strength of the association was quantified by the 

coefficient of determination (r2, Pearson’s linear correlation coefficient squared).

The healthy volunteer group was investigated with respect to the parameter distribution in 

the CC, CST, CR and THA. In order to elucidate if the three WM regions were different 

with respect to parameter mean values, F-tests (one-way ANOVA, assuming independent 

samples) were performed on the distributions of MD, FA, μFA, OP, Vi and Va in the CC, 

CST and CR. The threshold for significance was set at α = 0.05/6 (Bonferroni correction for 

six tests).

The tumors were compared with respect to their FA and μFA by placing ROIs in one axial 

slice through each tumor. The ROIs were defined manually and the inclusion of WM, GM 

and CSF was avoided. Both tumors were resected one day after the MRI procedure and 

histological evaluation of the tumors was performed, in accordance with local clinical 

routine. Each tumor specimen was fixed in 4% buffered formaldehyde solution, embedded 

in paraffin, and sectioned at 4 μm. The sections were stained with hematoxylin-eosin in 

order to visualize the tissue structure and cell morphology. Microscopy was performed on an 

Olympus BX50. The cell shape and presence of tissue fascicles was investigated 

qualitatively and compared to corresponding diffusion parameters. Finally, structure tensor 

analysis (Peyré, 2011) was performed on the microphotos to enhance the visibility of cell 

structure orientations.

3.4. Simulation experiments

Simulation experiments were performed to investigate the qualitative behavior of FA and 

μFA in scenarios where the underlying system contained complex diffusion profiles. These 

scenarios were designed to mimic a range of effects that may be found in experimental data. 

The results were evaluated in terms of the value, effect size, effect direction, and accuracy of 

the FA and μFA.

Szczepankiewicz et al. Page 9

Neuroimage. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The simulations included three types of model components (C) with varying water fractions 

(f). The first component was designed to represent the anisotropic diffusion in WM (Ca). For 

simplicity, all anisotropic domains were assumed to be axially symmetric and were 

described by their radial (RDk) and axial diffusivity (ADk). These were set to ADk = 1.7 and 

RDk = 0.2 μm2/ms. The orientation dispersion was modeled with the Watson distribution 

(Sra and Karp, 2013; Zhang et al., 2011) where the concentration parameter (κ) is related to 

the order parameter according to

Eq. 11

where  is the confluent hypergeometric function. The order parameter could be varied to 

produce geometries between fully coherent (OP = 1) and fully dispersed (OP = 0) 

orientations. The two remaining environments were designed to represent diffusion in 

damaged neural tissue (Ci) and CSF (CCSF). The diffusion in these environments was 

assumed to be isotropic, with a domain mean diffusivity of MDk = 1.7 and 3.0 μm2/ms in Ci 

and CCSF, respectively.

Damaged WM was simulated by gradually replacing Ca with Ci. This was done in four 

geometries; the first three included one, two and three coherent (OP = 1) and orthogonal Ca 

components, and the last contained one Ca component with randomly oriented domains (OP 

= 0). The isotropic component replaced one anisotropic component while the remaining 

anisotropic components were unaltered. For example, in the case of two crossing fibers (Ca1 

and Ca2), the damaged anisotropic component Ca1, had a volume fraction fa1. Initially, fa1 

made up half the volume, but was gradually reduced to zero, and the fraction lost in Ca1 was 

replaced by Ci, i.e., fa1 = 1/2 → 0, and fi = 1/2 − fa1. During this process the fraction of Ca2 

was constant (fa2 = 1/2).

The response to increasing radial diffusivity, mimicking demyelination, was simulated in a 

coherent Ca component (OP = 1), where the radial diffusivity was increased from its starting 

value until it exhibited no anisotropy (RDk = 0.2 → 1.7 μm2/ms). Effects of orientation 

dispersion were investigated using a single Ca component with variable amount of 

dispersion, from dispersed to coherent (OP = 0 → 1). The effect of the crossing angle 

between two coherent Ca components was simulated by varying the angle from a parallel to 

a perpendicular geometry (φ = 0 → 90°). Finally, the effects of CSF contamination were 

simulated by gradually replacing a coherent Ca component (OP = 1) with CCSF (fa = 1 → 0, 

and fCSF = 1 − fa). In all cases, the effects of noise were simulated for five equidistant points 

along each process by adding Rice-distributed noise to the signal (Sijbers and den Dekker, 

2004). The signal was generated in accordance with the imaging protocol, i.e., using the 

same b-values, number of directions and parameterization, at a S0 signal-to-noise ratio 

(SNR) of 20. The model was regressed onto 1000 realizations of the noisy signal to render a 

reliable median and inter quartile range of the parameters.
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4. Results

4.1. In vivo experiments

Maps of FA, μFA and OP for one healthy volunteer are shown in Figure 4. As expected, the 

μFA is high in regions comprised of WM and lower in GM. Most notably, the FA and μFA 

maps differ in regions where a high orientation dispersion is expected, for example, in 

crossing WM and the interface between WM pathways, in accordance with Lawrenz and 

Finsterbusch (2014). Another prominent difference can be seen in the GM where FA is close 

to zero, whereas μFA indicates that the GM contains detectable microscopic anisotropy. 

Figure 5 shows the parameter distribution in the CC, CST, CR, THA and CSF, and the 

powder averaged signal originating from a single voxel in each region. As expected for WM 

tissue, the departure from monoexponential attenuation was smaller for the isotropic 

encoding than the anisotropic encoding. The THA exhibited a relatively high isotropic 

variance, but the presence of microscopic anisotropy is clearly visible from the separation of 

the two signal curves. In the CSF, the signal was attenuated below 5% of its initial value, 

and it is apparent that the fitting would detect a false variance if high b-value data was not 

excluded. The resulting parameterization of the signal seen in Figure 5 was: μFA = 0.98, 

1.03, 0.96, 0.76, 0.00; MD = 0.91, 0.84, 0.89, 1.60, 2.95 μm2/m; Vi = 0.07, 0.00, 0.01, 1.66, 

0.01 μm4/ms2; and Va = 0.57, 0.66, 0.51, 0.65, 0.00 μm4/ms2 in the CC, CST, CR, THA and 

CSF, respectively.

The voxel-wise correlation between μFA, OP and FA is presented in Figure 6. The relation 

between FA and μFA resembles the relation between the corresponding parameters reported 

by Jespersen et al. (2013) in that high FA entails high μFA, although not vice versa. The 

correlation between μFA and FA was found to exhibit two distinct modes, which were 

separated by introducing an arbitrary threshold at the shoulder of the distribution (μFA = 

0.8). The interval containing high values of μFA was found to correspond well to regions of 

WM (μFA > 0.8, red outline in Figure 6) and the low μFA was found in a mixture of 

peripheral WM, GM and CSF (μFA < 0.8, white outline in Figure 6). In the WM region, a 

strong correlation was found between OP and FA (r2 = 0.9), while only weak correlations 

were found between μFA and OP (r2 = 0.1), and between μFA and FA (r2 = 0.4). No 

relevant correlations were found in the peripheral region (all r2 < 0.3).

The investigation of the parameter distribution in the group of healthy volunteers is 

summarized in Table 1. All parameter mean values, except the MD and Vi, were found to 

have significantly different mean values in the three WM ROIs. This was expected for the 

FA since the ROIs include both coherent and crossing WM tissue. The μFA was also found 

to differ significantly between the three regions, albeit at a much smaller effect size 

compared to the FA. The group level variability detected in MD and Vi indicated that the 

absence of significance is likely due to a small effect size and large variance, respectively.

The anisotropy parameters measured in the two tumor types are presented in Figure 7, and 

corresponding microphotos of the excised tumors are presented in Figure 8. The 

meningioma tissue exhibited a low voxel scale anisotropy (mean ± standard deviation, FA = 

0.19 ± 0.06) and high microscopic anisotropy (μFA = 0.88 ± 0.08). Likewise, the 

glioblastoma tissue exhibited low voxel scale anisotropy (FA = 0.07 ± 0.05). However, it 
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exhibited markedly lower microscopic anisotropy compared to the meningioma (μFA = 0.39 

± 0.22). Although both tumors exhibited low FA values, the FA in the meningioma was 

elevated compared to the glioblastoma, indicating that the tissue is organized enough to 

create a weak but detectable diffusion anisotropy on the voxel scale. The high vs. low 

microscopic anisotropy in the meningioma and glioblastoma was corroborated by the 

histological examination of the two tumors, shown in Figure 8. The histological examination 

of the meningioma demonstrated a dense fascicular pattern of growth with elongated tumor 

cells, consistent with low FA and high μFA; and a more loose assemblage of rounded cells 

of variable size along with patchy areas of necrosis in the glioma, consistent with both low 

FA and low μFA.

4.2. Simulation experiment

Figure 9 and Figure 10 showcase how the FA and μFA are altered when the underlying 

diffusion profiles are manipulated.

When a coherent anisotropic component was replaced by an isotropic component (Figure 

9A), the FA decreased approximately linearly as a function of the isotropic tissue fraction. 

In the same system, the μFA followed a similar pattern, but had a less pronounced initial 

slope indicating that the μFA is overestimated when the distribution of diffusion coefficients 

contains both isotropic and anisotropic components. In the absence of noise, both parameters 

approached zero for purely isotropic systems. In the crossing geometry, where one 

anisotropic component was replaced by an isotropic component (Figure 9B), the FA first 

decreased due to the relatively rapid increase of the isotropic component. However, when a 

majority of the receding component had been removed (fi > 1/2), the FA instead increased 

due to the dominance of the remaining anisotropic component. By contrast, μFA decreased 

strictly. This demonstrates a case where μFA may exhibit superior sensitivity and specificity 

over FA, since the direction of the effect is constant. Further, the effect size is larger for μFA 

since it is not confounded by the same counteracting mechanisms. Similar results are shown 

for a triple crossing geometry (Figure 9C). In this case the FA started at a low value because 

the tissue was macroscopically isotropic with its three orthogonal fiber populations, and 

increased as one of the fiber populations was replaced by isotropic tissue. Again, the 

positive direction of the effect, caused by the reduction in orientation dispersion, may be 

confounding. By contrast, μFA reflected only the presence of microscopic anisotropy and 

responded as expected to the simulated damage. In the case of damage in randomly oriented 

micro domains (Figure 9D), the macroscopic anisotropy is zero, rendering FA insensitive to 

any changes in tissue microstructure while the μFA reflects the amount of microscopic 

anisotropy that is lost.

The effect of gradually increasing domain radial diffusivity, resulted in similar effects for 

FA and μFA (Figure 10A). However, as the system approaches isotropic conditions, the 

uncertainty in the μFA increases considerably. Figure 10B shows how dispersion influences 

the FA, while the μFA is constant. A similar pattern is seen when simulating crossing fibers 

with varying crossing angles (Figure 10C). As expected the FA was highest when the two 

fiber structures were parallel and had its lowest value when they were perpendicular. These 

results show the potential benefits of quantifying a measure for anisotropy that is not 
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sensitive to confounds such as crossing, bending, fanning, and kissing fiber geometries. 

Finally, the effects of CSF contamination exhibit similar effects as the simulated damage in 

a single coherent WM system (compare Figure 9A and Figure 10D). This simulation 

highlights the overestimation of μFA due to multiple isotropic components. Generally, the 

μFA is increasingly susceptible to noise as the simulated systems approach zero microscopic 

anisotropy, resulting in reduced accuracy.

5. Discussion

In this study we present the first implementation of qMAS for the purpose of probing the 

microscopic anisotropy in vivo on a clinical MRI system. The parameters μFA and OP, as 

well as conventional DTI parameters FA and MD, were quantified in healthy subjects and in 

two different types of tumor tissue. Unlike the voxel scale anisotropy, measured in terms of 

the FA, the microscopic anisotropy measured by μFA was relatively homogeneous in large 

portions of the WM. This finding is in agreement with other studies that have aimed to 

remove effects of orientation dispersion from the quantification of local anisotropy (Jensen 

et al., 2014; Jespersen et al., 2013; Lawrenz and Finsterbusch, 2013, 2014). The notion that 

FA is sensitive to local orientation dispersion is supported by the strong correlation found 

between the FA and OP (Figure 6). However, the three WM regions chosen for analysis 

exhibited small but statistically significant differences also in μFA (Table 1), indicating that 

orientation dispersion is not the only difference between these regions. This could possibly 

be explained by varying levels of domain anisotropy, for example, caused by variable axonal 

packing density.

In the tumor tissue, FA was generally low, which indicated that the meningioma and the 

glioblastoma were approximately isotropic on the voxel scale. By contrast, the μFA was able 

to reliably differentiate between the two tumors, and indicated that microscopic diffusion 

anisotropy was more pronounced in the meningioma than the glioblastoma. Thus, the 

information provided by both FA and μFA was instrumental in predicting the tumor cell 

structures which were later confirmed by the histological exam (Figure 8).

To elucidate some of the underlying mechanisms that affect FA and μFA, simulations of 

different micro-environments visualized the parameters as a function of several relevant 

processes. For example, in the case of increased radial diffusivity of parallel fibers, the 

responses in FA and μFA are approximately equal, meaning that the two representations of 

anisotropy share a common interpretation. On the other hand, scenarios that include any 

form of orientation dispersion demonstrate prominent differences between FA and μFA. For 

example, the combination of two and three orthogonal anisotropic components (Figure 9B 

and C) were used to reproduce the effects of selective atrophy in a crossing WM geometry, 

as reported by Douaud et al. (2011), where the effect direction in FA was found to be 

positive in a damaged region of crossing WM. The simulations also illuminated the bias that 

arises when μFA is quantified in systems that violate the assumptions used in the 

parameterization, e.g., in complex mixtures of anisotropic and isotropic tissue. Although 

these scenarios invalidate the μFA as a direct metric of the microscopic anisotropy, it is 

worth noting that it retains sensitivity to the relevant effect and does so in a more consistent 

manner than the FA.
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Although the comparison between FA and μFA showcases the effects of orientation 

dispersion as a confounder for FA, it does not invalidate previous studies that employ FA as 

a biomarker. Instead, the origin of the effect can be better understood, possibly allowing an 

improved interpretation of the FA and its relation to the microstructural integrity. We expect 

that μFA may not only contribute to the investigation of complex WM geometries, but also 

in detecting microscopic anisotropy in tissues that are approximately isotropic on the voxel 

scale, for example, in GM (McNab et al., 2013; Truong et al., 2014). Further, the μFA and 

OP may provide complementing information to the FA and tensor shape analysis previously 

used in the differentiation of classic and atypical meningioma (Toh et al., 2008), detection of 

fibroblastic meningioma (Tropine et al., 2007), and in the preoperative estimation of tumor 

consistency (Kashimura et al., 2007), by removing the confounding effects of orientation 

dispersion which are otherwise ignored.

It is important to stress that the signal acquired with conventional anisotropic encoding used 

in this study is identical to that needed for DKI analysis. However, because DKI makes no 

effort to distinguish between the origins of the diffusional kurtosis (herein referred to as 

variance in diffusion coefficients) it is not directly associated to microscopic anisotropy. The 

framework presented here is also related to the dPFG-methods employed by Jespersen et al. 

(2013) and Lawrenz and Finsterbusch (2014). In terms of the analysis presented here, dPFG 

encoding can be described with an encoding tensor which renders a signal that is sensitive to 

a weighted sum of Vi and Va, where the weighting depends on the direction of the encoding 

blocks (Westin et al., 2014). It appears that the framework based on qMAS combined with 

anisotropic encoding probes the μFA more directly and may therefore provide a faster 

technique for measuring microscopic anisotropy compared to the dPFG methods. Finally, 

we note that the implementation and use of qMAS is no more complicated than a similar 

DKI protocol. Other techniques that take orientation dispersion into account include, for 

example, NODDI which quantifies the magnitude of fiber dispersion and the neurite density 

(Zhang et al., 2012). From this information it is possible to calculate a parameter analogous 

to the μFA. However, like DTI and DKI, the NODDI technique cannot distinguish between 

randomly oriented anisotropic domains and multiple isotropic components. Another 

drawback of model-based approaches, such as NODDI, is the demand for a priori 

assumptions about the tissue that is investigated, which may limit their use in abnormal 

tissues such as tumors.

In the present study, several factors affected the accuracy, i.e., the trueness and precision, of 

the estimated μFA. The imaging protocol features a long echo time which impacted the SNR 

and thus also the precision of μFA. Sufficient SNR for a robust signal parameterization was 

achieved by increasing the voxel size. Consequently, this increased the amount of PVE, 

especially in tissue interfacing with CSF, thereby reducing the trueness in such regions. Note 

that the present protocol was designed to test the validity of the suggested model by 

acquiring a densely sampled signal. However, the experimental design can be adjusted to 

allow whole brain coverage at feasible acquisition times by optimizing the acquisition 

protocol (Alexander, 2008). Further, a relatively low number of encoding directions were 

acquired, which may have reduced the trueness by introducing a weak directional 

dependency in the powder averaged signal, although simulations (data not shown) indicate a 

Szczepankiewicz et al. Page 14

Neuroimage. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



negligible μFA bias even for highly anisotropic tissue. A further limitation of μFA is that it 

may suffer from low accuracy when the model assumptions are violated or when 

investigating tissue with little or no microscopic anisotropy. The effects of such unfavorable 

conditions are demonstrated in the simulations (Figure 9 and Figure 10). The reduced 

accuracy in tissue with low anisotropy (μFA < 0.4) can be understood by considering Eq. 7 

for Va approaching zero; where the restriction on Va to be positive may reduce trueness, and 

low levels of variance in Va will render a poor precision in μFA. Thus, it is likely that the 

μFA calculated in the glioblastoma exhibited a positive bias since the histological exam of 

the glioblastoma found few anisotropic structures (Figure 8). Although the accuracy of the 

estimated μFA in the glioblastoma may be poor, the tumors could be reliably differentiated 

based on the difference in their microscopic anisotropy. Finally, a limitation may be that the 

assumption of Gaussian diffusion is not valid, i.e., that the signal attenuation may be 

dependent on diffusion time. We do not expect this to be the case in white matter for the 

current diffusion time regime (Nilsson et al., 2009; Nilsson et al., 2013). However, tumor 

tissue may contain larger cell structures, which could make μFA dependent on experimental 

parameters. This is a topic that deserves further attention, especially since qMAS exhibits an 

anisotropic time dependency due to the varying speed of the q-vector through q-space 

(Figure 3).

6. Conclusion

This study demonstrates the feasibility of mapping the microscopic anisotropy of the brain 

in vivo in terms of the μFA. The results suggest that the contrast found in conventional FA 

maps is strongly modulated by the orientation dispersion of the anisotropic domains 

contained within each imaging voxel. By contrast, our analysis quantifies the microscopic 

anisotropy and orientation dispersion separately in terms of the μFA and OP. Unlike the 

conventional FA derived from DTI, μFA may therefore provide a robust biomarker that 

probes the relevant diffusion anisotropy even in complex WM configurations. The potential 

benefit of μFA was demonstrated in two brain tumors. Although both tumors appeared 

isotropic on the voxel scale, the μFA could be used to distinguish between them based on 

their microscopic anisotropy. Additionally, simulations of complex tissue microstructures 

suggested that μFA exhibits a more intuitive interpretation than FA.

We predict that the combination of FA, μFA and OP can be useful in clinical and research 

applications, by enabling detection of microstructural degeneration in complex neural tissue, 

detection of fibrous tissue in tumors for pre-surgical classification of consistency, and 

quantification of microscopic anisotropy in macroscopically isotropic tissue.
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Article Highlights

• Microscopic anisotropy and orientation dispersion measured separately as μFA 

and OP

• First in vivo demonstration of μFA and OP imaging in volunteers and patients

• Isotropic diffusion encoding based on magic angle spinning of the q-vector

• In white matter, μFA is more specific to diffusion anisotropy than FA

• μFA correctly predicted cell shapes in meningioma and glioblastoma tumors
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Figure 1. 
Schematic examples showing the effects of tensor averaging. The top row shows individual 

domain tensors (Dk) in the voxel volume, and the bottom row shows the corresponding 

voxel tensors (D) in tissue containing coherent, bending, random and isotropic domains. In 

this example, the domains in panel A, B and C have FAk = 0.8, while FAk = 0.0 in panel D. 

Effects of averaging across multiple orientations are seen in the shape of the voxel scale 

tensors. Note that FA cannot distinguish between randomly oriented anisotropic domains 

(C) and isotropic domains (D) since it is zero in both cases.
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Figure 2. 
Schematic example of the distribution of diffusion coefficients when employing encoding 

that is isotropic (left, P̄(D|I)) and anisotropic (right, P̄(D|N)). The convolution visualizes 

how the variance of P̄(D|I) is added to the variance of the anisotropy response function 

R(D), rendering the total variance in P̄(D|N). This example depicts a system that contains 

axially symmetric and randomly oriented domains where MDk = 0.70 ± 0.05 μm2/ms, and 

the axial and radial domain diffusion is ADk = MDk + 1.0 μm2/ms and RDk = MDk − 0.5 

μm2/ms, respectively (middle panel). Thus, the variance of the anisotropy response function 

is equal for all domains. The fact that the system contains anisotropic domains is reflected in 

the width of R(D), indicating that there is a difference between the eigenvalues of the 

domain tensors. The prolate symmetry of the domain tensors can be discerned from the 

shape of R(D), where the slow diffusion (RDk) is the most probable while the fast diffusion 

(ADk) is the least probable (Eriksson et al., 2013). Note that the area under each distribution 

equals unity, and that the y-axes have been adjusted to improve legibility.
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Figure 3. 
Schematic comparison of sequences (left) and qMAS q-vector trajectory (right). The 

sequences show a spin-echo experiment where different types of diffusion encoding blocks 

(red lines) have been inserted on both sides of the 180°-pulse. The first two rows show 

examples of anisotropic diffusion encoding that use trapezoidal and harmonic gradient 

modulation, respectively. The bottom row shows the harmonic gradient modulation in 

isotropic qMAS. The q-vector trajectory in the qMAS experiment (right) follows the surface 

of a cone with an aperture of twice the magic angle resulting in the same encoding strength 

in all directions for each encoding block. Note that the speed of the qMAS q-vector along 

the trajectory varies as a function of its magnitude (low magnitude entails low speed), and 

that the magnitude of the qMAS encoding is zero during the 180°-pulse.
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Figure 4. 
T1W, μFA, FA and OP maps from one healthy volunteer. The μFA is similar to the FA map 

in that it highlights the WM of the brain, but does so regardless of the local orientation 

dispersion. The μFA exhibits high values in areas where FA values are low due to crossing, 

bending and fanning fibers. Thus, the μFA map exhibits strong resemblance to the WM 

morphology in the T1W image, although the latter is not quantitative. The GM is visible in 

the μFA-map at a slightly lower intensity, indicating that the microscopic anisotropy is 

lower in GM as compared to WM. The OP displays similar contrast to the FA, in regions of 

WM.
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Figure 5. 
Signal vs. b curves and parameter distributions in the corpus callosum (CC), corticospinal 

tract (CST), anterior crossing region (CR), thalamus (THA) and the cerebrospinal fluid in 

the lateral ventricles (CSF) in one healthy volunteer. The ROIs are shown in the FA map 

(right, black-white outline). The signal plots show the powder averaged signal from a single 

voxel in each region as measured with isotropic and anisotropic diffusion encoding (white 

and black circles), as well as the model fit (dashed and solid lines). The red lines are a visual 

reference showing monoexponential attenuation at the estimated mean diffusivity. The 

signal attenuation in all three WM regions is similar, where the isotropic encoding shows 

little deviation from monoexponential attenuation, while the anisotropic encoding exhibits a 

curvature in the signal attenuation, indicating that all regions contain microscopic 

anisotropy. In the THA, both the isotropic and anisotropic encoding shows a strong 

deviation from monoexponential attenuation, although the presence of microscopic 

anisotropy is made clear by the separation of the two curves. Note that the signal from the 

CSF was fitted only for signal values above 5% of the signal at b = 0 s/mm2, and that the y-

axis in the CSF plot has a larger range than the other plots. The inserted histograms show the 

parameter distribution in each ROI where black and white bars represent FA and μFA, 

respectively. The histograms show that the μFA is similar in the three WM ROIs and that the 

largest difference between FA and μFA can be found in the CR and THA.
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Figure 6. 
Voxel-wise parameter dependency between FA, μFA and OP in one healthy volunteer. The 

strongest correlation was found for the OP and FA (top left, see text for details). Separating 

the distribution at a threshold of μFA = 0.8 (red and black dots show μFA above and below 

0.8, respectively) revealed a clear spatial dependency where high values of μFA are 

associated with the WM of the brain (voxels within red outline). The correlation between OP 

and FA in the WM indicates that FA is strongly dependent on the OP, i.e., the FA is strongly 

dependent on the coherence of WM fibers.
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Figure 7. 
Parameter maps from the meningioma (top row) and glioblastoma (bottom row). The ROIs 

used for quantitative evaluation of diffusion parameters are shown in the FA maps (white-

black outline). Both tumors exhibited low FA, while the μFA was high in the meningioma 

and low in the glioblastoma (histogram).
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Figure 8. 
Microphotos of excised meningioma (top row) and glioblastoma (bottom row) tissue. The 

meningioma exhibited a dense fascicular pattern of growth with elongated tumor cells in a 

mostly monomorph structure. As seen in the upper left image, the fascicles in the 

meningioma could stretch for distances comparable to the voxel size (~1 mm). The 

glioblastoma exhibited a loose assemblage of rounded cells of variable size, along with 

patchy areas of necrosis. Blood vessels had thickened walls with endothelial cell 

proliferation and multiple small bleedings were included. The images on the right show 

magnified areas of the tumor tissue as well as structure tensors (black ellipses) that illustrate 

the local orientation of the tissue. The structure tensors in the meningioma showcase the 

presence of locally ordered structures, while few such structures are appear in the 

glioblastoma.
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Figure 9. 
Response in FA and μFA in four geometries where one anisotropic component is replaced 

by an isotropic component to mimic tissue damage. The solid and broken lines show the 

noise free FA and μFA, respectively. The circular markers show the median parameter value 

when the SNR is 20, using the imaging protocol and parameterization detailed in the 

methods section. The error bars show the influence of noise as the inter quartile range. The 

geometries and processes are illustrated with graphics below the plots showing the 

anisotropic (black lines) and isotropic components (circles). Generally, the FA and μFA 

differ in all processes. In the single damaged WM component (A), the FA and μFA should 

be equal, but a positive bias in the μFA is induced due to the increasing presence of the 

isotropic component. In the double crossing (B), the FA can both increase and decrease due 

to the selective removal of anisotropic domains, whereas the μFA is strictly decreasing as a 

function of the reduction of anisotropy. In the triple crossing (C), the FA and μFA exhibit 

opposing effects, where FA increases and μFA decreases. The randomly oriented domains 

(D) illustrate that FA has no sensitivity to any changes in this case, while the μFA still 

reflects the presence of microscopic anisotropy.
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Figure 10. 
Response in FA and μFA due to changes in microstructure geometry. The plot objects are 

described in the caption of Figure 9. The response to increasing radial diffusivity (A) is 

equivalent for FA and μFA, however, the quantification of μFA displays a higher 

uncertainty. Both the effects of dispersion (B) and angle of crossing (C) have no effect on 

the μFA, while the FA is strongly modulated. The effect of CSF contamination (D) shows a 

positive bias in μFA compared to FA, similar to that found in Figure 9A. Note that the 

values of FA and μFA in the simulation of CSF contamination are expected to be lower than 

the corresponding values in Figure 9A. The similarity arises from the model fitting, where 

the bias is positive in both cases, but more so in the case of CSF since the model violation is 

larger. The varying degree of bias works to counteract the underlying difference between the 

two environments. Generally, in environments with low levels of microscopic anisotropy, 

μFA exhibits a higher level of statistical uncertainty as compared to FA. Note that the noise 

prevents both FA and μFA from assuming values close to zero.
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