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Abstract

Conditioned changes in the emotional response to threat (e.g. aversive unconditioned stimulus; 

UCS) are mediated in part by the prefrontal cortex (PFC). Unpredictable threats elicit large 

emotional responses, while the response is diminished when the threat is predictable. A better 

understanding of how PFC connectivity to other brain regions varies with threat predictability 

would provide important insights into the neural processes that mediate conditioned diminution of 

the emotional response to threat. The present study examined brain connectivity during predictable 

and unpredictable threat exposure using a fear conditioning paradigm (previously published in 

Wood et al., 2012) in which unconditioned functional magnetic resonance imaging data was 

reanalyzed to assess effective connectivity. Granger causality analysis was performed using the 

time series data from 15 activated regions of interest after hemodynamic deconvolution, to 

determine regional effective connectivity. In addition, connectivity path weights were correlated 

with trait anxiety measures to assess the relationship between negative affect and brain 

connectivity. Results indicate the dorsomedial PFC (dmPFC) serves as a neural hub that 

influences activity in other brain regions when threats are unpredictable. In contrast, the 

dorsolateral PFC (dlPFC) serves as a neural hub that influences the activity of other brain regions 

when threats are predictable. These findings are consistent with the view that the dmPFC 

coordinates brain activity to take action, perhaps in a reactive manner, when an unpredicted threat 

is encountered, while the dlPFC coordinates brain regions to take action, in what may be a more 

proactive manner, to respond to predictable threats. Further, dlPFC connectivity to other brain 
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regions (e.g. ventromedial PFC, amygdala, and insula) varied with negative affect (i.e. trait 

anxiety) when the UCS was predictable, suggesting that stronger connectivity may be required for 

emotion regulation in individuals with higher levels of negative affect.
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1.0 Introduction

Pavlovian conditioning research has traditionally focused on learning-related changes in 

behavior that develop in anticipation of a threat (i.e. the unconditioned stimulus; UCS). 

However, the advantage to being able to predict a threat is that it allows one to respond to 

that threat more effectively. Thus, from a functional perspective, the response to the threat 

itself is equally, if not more important than the anticipatory response (Domjan, 2005). 

Although prior research suggests conditioned changes in the emotional response to threat are 

mediated by neural circuitry that includes the prefrontal cortex (PFC) and amygdala 

(Dunsmoor et al., 2008, Wood et al., 2012), the effective connectivity of these brain regions 

during threat exposure has received limited attention. A better understanding of the 

connectivity of this network would provide valuable insight into the neural processes that 

mediate conditioned changes in the emotional response to threat.

Prior conditioning research has demonstrated learning-related changes in the emotional 

response to a threat. Specifically, the emotional response is diminished when a threat is 

predictable (Knight et al., 2010, Knight et al., 2011). These conditioned changes in the 

threat-elicited response appear to be mediated by brain regions that include the amygdala, 

insula, PFC, and inferior parietal lobule (IPL) (Dunsmoor et al., 2008, Knight et al., 2010, 

Wood et al., 2012, Wood et al., 2013). Many of these brain regions have been implicated in 

emotion regulation (Ochsner and Gross, 2005, Hartley and Phelps, 2010, Ochsner et al., 

2012), and functional interactions between these brain regions likely influence the emotional 

response produced.

Neural circuitry that includes the PFC and amygdala is functionally connected and appears 

to mediate the conditioned emotional response. Prior work has demonstrated increased 

functional connectivity between the dorsomedial PFC (dmPFC) and amygdala following 

fear conditioning (Schultz et al., 2012). Further, the ventromedial PFC (vmPFC) shows 

learning-related connectivity to dmPFC and amygdala during the conditioned response 

(Delgado et al., 2008). Other research indicates that dorsolateral PFC (dlPFC) connectivity 

to the amygdala is dependent on the formation of predictive associations (Eippert et al., 

2012). These findings suggest that the connectivity of the dlPFC, dmPFC, vmPFC, and 

amygdala is important for anticipatory fear learning (Delgado et al., 2008, Eippert et al., 

2012, Schultz et al., 2012). However, there has been limited research on the functional 

connectivity of these brain regions in response to the threat itself (UCS). Although prior 

work has shown weaker parahippocampal gyrus connectivity to vmPFC during threat 

exposure in individuals with PTSD compared to individuals without PTSD (Linnman et al., 
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2011), there has been no prior research investigating differences in brain connectivity to 

predictable compared to unpredictable threat.

Functional and effective connectivity techniques are often used to investigate the neural 

network interactions underlying cognitive function. While functional connectivity describes 

non-directional instantaneous correlations in activity between brain regions, effective 

connectivity describes the directional influence of one neural system on another (Friston, 

2011). Specifically, time lagged effective connectivity techniques (e.g. Granger causality), 

can infer the directional causal influence of one brain region on another (Granger, 1969). 

Further, network analysis of connectivity data allows the investigation of hierarchical and 

modular patterns of brain connectivity (Rubinov and Sporns, 2010, Park and Friston, 2013). 

These techniques may provide new insight into the network interactions that mediate threat-

related learning.

Personality traits, such as negative affect, also appear to vary with the function and 

connectivity of brain regions that support emotion processes. Prior work has shown that 

negative affect is associated with the threat-elicited response within the dmPFC, dlPFC, and 

IPL (Wood et al., 2012). Similarly, individuals with high trait anxiety show low dmPFC 

activity when attending to threatening faces (Klumpp et al., 2011). Furthermore, individuals 

with high trait anxiety show high amygdala activity and low vmPFC activity during cues 

that predict threat (Indovina et al., 2011). Additionally, healthy individuals with higher 

anxiety demonstrate greater functional connectivity between dmPFC and the amygdala 

during rest (Kim et al., 2011, Robinson et al., 2012). Thus, effective connectivity of brain 

regions that support emotion processes may vary with negative affect. However, little is 

known about how these psychological traits relate to brain connectivity during threat 

exposure.

The present study investigated fMRI effective connectivity during predictable and 

unpredictable threat exposure to better understand the processes that influence learning-

related changes in the emotional response to threat by reanalyzing data from a previously 

published Pavlovian conditioning study (Wood et al., 2012). Given the importance of the 

amygdala, dlPFC, dmPFC, and vmPFC in the diminution of the emotional response to threat 

(Dunsmoor et al., 2008, Knight et al., 2010, Wood et al., 2012, Wood et al., 2013), we 

hypothesized that these brain regions would show differential connectivity to predictable 

and unpredictable threats. Further, we expected connectivity within this neural network to 

vary with individual differences in trait anxiety.

2.0 Materials and Methods

2.1 Participants

Data from twenty-one healthy right-handed volunteers (12 males, 9 females; age = 20.81 ± 

0.71 years; range = 19–33 years) that participated in a previously published neuroimaging 

study of fear conditioning (Wood et al., 2012) were reanalyzed for the present investigation. 

All subjects provided written informed consent as approved by the University of Alabama at 

Birmingham Institutional Review Board.
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2.2 Task design

Presentation software (Neurobehavioral Systems, Inc.; Albany, CA) was used to present 

visual and auditory stimuli during fMRI using an IFIS-SA LCD video screen (Invivo Corp.; 

Gainesville, FL) with MR-compatible pneumatic headphones. During the task, participants 

were exposed to a fear conditioning procedure during which two distinct tones (700 and 

1300 Hz) served as conditioned stimuli (CSs). Each of the first four scans were 590 seconds 

long and contained 8 trials in which one tone (CS+) co-terminated with a white noise UCS 

(100dB; 500 milliseconds duration) and 8 trials in which the second tone (CS−) was 

presented without the UCS. Each of the four scans contained three test trials that consisted 

of one trial in which the CS+ co-terminated with the UCS (CS+UCS), one trial in which the 

CS− co-terminated with the UCS (CS−UCS), as well as one presentation of the UCS alone 

for a total of 19 trials in each scan (see Wood et al., 2012 for additional detail). The final 

scan was 920 seconds long and contained 30 test trials (10 CS+UCS trials, 10 CS−UCS 

trials, and 10 UCS alone trials) (see Supplemental Figure S1). The current analysis assessed 

connectivity during the 30 test trials of the last scanning block.

2.3 Behavioral data

Participants rated the unpleasantness of the UCS on a scale from 0 (not unpleasant) to 10 

(most unpleasant). Participants generally rated the UCS as moderately unpleasant (M = 3.44, 

SEM = 0.54). UCS expectancy, skin conductance response (SCR), and State-Trait Anxiety 

Inventory (STAI form Y; Spielberger, 1983) data were also collected. The methods and 

results of the behavioral data collection and analysis have been described previously (Knight 

and Wood, 2011, Wood et al., 2012). Briefly, participants were asked to rate their 

expectancy of the UCS using a continuous rating scale from 0 to 100 (Supplemental Figure 

S2). UCS expectancy did not differ between early CS−UCS test trials and UCS alone 

presentations. However, on late test trials, participants had significantly higher UCS 

expectancy ratings on CS−UCS trials compared to the UCS alone. UCS expectancy to the 

CS+UCS remained significantly greater than the UCS alone and CS−UCS throughout the 

task. Skin conductance was also collected during the task as a physiological index of 

learning. SCR was significantly diminished on CS+UCS trials compared to CS−UCS trials 

and UCS alone trials. Unconditioned SCR did not differ on CS−UCS and UCS alone trials. 

The scores on the trait scale of the STAI were used in the current study as an index of the 

long term predisposition for negative affectivity (Spielberger, 1983). Detailed statistical 

analyses of these data have been published previously (Wood et al., 2012).

2.4 Functional MRI acquisition

Functional magnetic resonance imaging (fMRI) data were acquired on a 3 Tesla Siemens 

Allegra scanner (TR = 2000ms, TE = 30ms, flip angle = 70°, FOV = 24cm, matrix = 64×64, 

slice thickness = 4mm). A high-resolution anatomical image (MPRAGE) was obtained in 

the sagittal plane using a T1 weighted series (TR = 2300 ms, TE = 3.9 ms, flip angle = 12°, 

FOV = 25.6 cm, matrix = 256×256, slice thickness = 1 mm, 0.5 mm gap).
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2.5 Analyses

Detailed information on functional image processing and analyses have been previously 

reported (Wood et al., 2012). Briefly, image processing was executed using the Analysis of 

Functional NeuroImages (AFNI) software package (Cox, 1996), using standard processing 

techniques (see Wood et al., 2012 for more details). Functional MRI data were modeled with 

the gamma variate hemodynamic response function and analyzed at the individual subject 

level using multiple linear regression. The regressors included reference waveforms for the 

CS+, CS−, CS+UCS (i.e. UCS that followed the CS+), CS−UCS (i.e. UCS that followed the 

CS−), and UCS alone, as well as nuisance regressors for joystick movement and head 

motion parameters. Functional data were normalized to the Talairach and Tournoux 

stereotaxic coordinate system (Talairach and Tournoux, 1988).

A group level repeated-measures ANOVA was conducted to identify regional differences in 

unconditioned fMRI signal amplitude during CS+UCS, CS−UCS, and UCS alone test trials. 

Additional analyses comparing brain behavior relationships were also conducted. A FWE 

p<0.05 cluster level correction was applied in all analyses to control for multiple 

comparisons. Based on these analyses (Wood et al., 2012), 15 activation defined regions of 

interest (ROI) were chosen for the effective connectivity analysis. ROI volume and center of 

mass are listed in Table 1. The mean time series from the entire volume of each functional 

ROI were extracted for all participants and used in subsequent effective connectivity 

analysis.

2.5.1 Effective Connectivity Model—In this study we utilized the concept of Granger 

Causality (GC) to perform effective connectivity analysis. GC is based on the principle that 

the causal influence of one region X on another region Y can be obtained if past values of 

the time series from the region X help predict the present and future values of the time series 

from the region Y (Granger, 1969). This method is implemented using a multivariate 

autoregressive (MVAR) model. Given n fMRI time series represented as X(t) = [x1(t) x2(t) 

… xn(t)], the MVAR model with the n time series as its input can be formulated as shown 

below
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(1)

In the above equation (Eq. 1) the parameters α, Δ, and σ represent the model coefficients, 

the model error and the order of the model, respectively. The order of the model (σ) is 

determined using the Akaike/Bayesian information criterion (Akaike, 1974, Schwarz, 1978). 

In this model, the effect of instantaneous correlation on causality is minimized by including 

both instantaneous influences between the time series α(0) and causal influences between 

the time series α(g) (here g=1 … σ) (Deshpande et al., 2010b). These model coefficients 

represent causal relationships between time series over the entire duration of the experiment, 

and allowing them to dynamically vary across time permits comparative evaluation of 

effective connectivity evoked by different external stimuli. The MVAR model shown in Eq. 

1 can be made dynamic by varying the model coefficients (α) as a function of time (as 

shown below in Eq. 2)
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(2)

Using the algorithm proposed by Arnold et al. (Arnold et al., 1998), the coefficients of the 

dynamic model αpq(g,t) (with p,q = 1 ‥ n) can then be adaptively estimated and used to 

obtain the Dynamic Granger causality (DGC) as shown below

(3)

Several earlier studies have used these MVAR models based on the GC framework to study 

the predictive relationship between time series from different brain regions (Roebroeck et 

al., 2005, Abler et al., 2006, Stilla et al., 2007, Deshpande et al., 2008, Stilla et al., 2008, 

Deshpande et al., 2009, Deshpande et al., 2010a, Deshpande et al., 2011, Hampstead et al., 

2011, Krueger et al., 2011, Lacey et al., 2011, Preusse et al., 2011, Sathian et al., 2011, 

Strenziok et al., 2011, Deshpande and Hu, 2012, Deshpande et al., 2012). However it was 

shown that using raw fMRI time series in GC analysis could lead to confounds in the 

estimated causal connectivity metrics (David et al., 2008, Deshpande et al., 2010c), which 

can be attributed to the spatial variability of the hemodynamic response function (HRF) 

which may in part be of non-neural origin (Handwerker et al., 2004). Furthermore, recent 

work has suggested that vascular confounds may pose a concern for causal modeling (Webb 

et al., 2013). However, a vascular effect must manifest itself in the hemodynamic response. 

Consequently, blind deconvolution of the hemodynamic response and subsequent GC 

analysis in the latent neuronal space has been employed previously (David et al., 2008, Ryali 

et al., 2011, Deshpande et al., 2013, Sathian et al., 2013, Grant et al., 2014). Since the 

hemodynamic response is itself deconvolved from the fMRI time series, any vascular or 

other effects of non-neural origin that manifest in the hemodynamic response are also 

removed from the fMRI signal. Therefore, in the current study, we obtained the condition 

specific connectivity values by applying the dynamic MVAR model described earlier (Eq. 2) 
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to the latent neuronal variables estimated by blind hemodynamic deconvolution using a 

cubature Kalman filter as described below (Havlicek et al., 2011).

Let us consider the n fMRI time series x1(t), x2(t) … xn(t). A dynamic state-space model can 

be formulated as shown below

(4)

In the state equation (Eq. 4), variables r, i, and h represent the latent neuronal state variables, 

the exogenous input and the HRF parameter variables respectively. The subscript T and 

superscript n represent continuous time and number of time series, respectively, while the 

function J links the current neuronal state to the previous neuronal state, HRF parameters, 

and exogenous input. The variables C, V, and B represent the zero mean Gaussian state noise 

vectors. The measurement equation linking the state variables to the observed variables 

(fMRI time series) is shown in Eq. 5.

(5)

Here M is the measurement function, and the variables t and k represent the discrete time 

and measurement noise, respectively. The inputs to the model are the exogenous input (i) 

and the fMRI time series xn(t). As shown earlier, the cubature Kalman filter performs very 

efficient joint estimation of the latent neuronal variables and the HRF parameters (Havlicek 

et al., 2011). In addition to this, the latent neuronal variables can be successfully estimated at 

a finer temporal resolution by using a smaller time step (10 times smaller than the TR) while 

discretizing the continuous time model during the estimation. In this study, instead of the 

raw fMRI time series xn(t), the estimated neuronal variables rn(t) were input to the dynamic 

MVAR model (Eq. 2) to obtain the condition specific GC values.

2.5.2 Effective connectivity analysis—The mean time series from 15 regions of 

interest were extracted for all participants. These average time series were temporally 

normalized and then the latent neuronal state variables were obtained by hemodynamic 

deconvolution of the fMRI time series using the cubature Kalman filter (Havlicek et al., 

2011). A boxcar function corresponding to the input stimulus (CS+UCS, CS−UCS, and 

UCS alone) was used as the exogenous input to the deconvolution model along with 

normalized fMRI time series from previously identified activated ROI. The hidden neuronal 

variables obtained after deconvolution were input into a dynamic MVAR model to obtain 

dynamic effective connectivity between every pair of ROI for all the participants. Samples 

of task specific connectivities were obtained by populating the causality values from all 

participants into three different samples based on the CS+UCS, CS−UCS, and UCS alone 

(test trials) conditions.

An ANOVA was performed on these samples to find the paths which were significantly 

different (p<0.05) between the three trial types. Only such paths were considered for further 
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statistical analyses. For the paths identified above, differences in effective connectivity were 

evaluated by first using a one sample t-test to identify the paths that were significant within 

CS+UCS, CS−UCS, and UCS alone trial types (p<0.05) followed by a two sample t-test to 

determine paths that were significantly different between the CS+UCS and UCS alone trial 

types (p<0.01). A schematic illustrating the effective connectivity analysis pipeline and 

associated statistical analyses is shown in Figure 1.

The results of this analysis were summarized using Gephi (Bastian et al., 2009). Topological 

properties of effective connectivity networks were investigated using various graph-theoretic 

metrics (i) closeness was calculated as the shortest path length between two ROI, (ii) 

Betweenness was calculated as the number of times a ROI acted as a bridge along the 

shortest path between two other ROI, (iii) In-degree was defined as the total number of paths 

directed to a ROI, (iv) Out-degree was defined as the number of paths directed from an ROI 

to other ROI, and finally (v) Neural hubs, which are ROI that were most central to the 

network, were identified based on out-degree.

We also investigated the relationship between individual differences in brain connectivity 

and negative affect as indexed by trait anxiety scale scores. Correlation analysis was used to 

compare ROI connectivity path weights on CS+UCS and UCS alone trials with trait anxiety 

scores to assess the relationship between general negative affect and effective connectivity. 

Trait anxiety scores were missing for one subject. Thus, data from 20 subjects were used for 

the correlation analysis.

3.0 Results

The effective connectivity analysis revealed several common hubs across trial types (Figure 

2). Based on out-degree, the left IPL was identified as a neural hub during UCS presentation 

on CS+UCS, CS−UCS, and UCS alone trials. On CS−UCS trials the left IPL, amygdala, and 

dlPFC (left dlPFC(2)) had the highest number of outward projections (out-degree =14, 14, 

14 respectively; Table S1 and Figure 2b). Neural hubs on UCS alone trials included the left 

IPL, dmPFC, and dlPFC (left dlPFC(3)) (out-degree = 14, 10, 10 respectively; Table S1 and 

Figure 2c). On CS+UCS trials, the dlPFC (left dlPFC(2)) had the highest number of outward 

projections (out-degree = 14; Table S1 and Figure 2a) followed by the left IPL (out-degree = 

12) and right Insula (out-degree = 11).

Our previous paper (Wood et al., 2012) showed that UCS expectancy on the CS−UCS trials 

increased from early to late test trials, resulting in a combination of both low and high UCS 

expectancy on CS−UCS trials in the current connectivity analysis. In other words, the UCS 

was unpredictable on early CS−UCS trials, but predictable on late CS−UCS trials. These 

changes in the behavioral response to the CS−UCS makes interpreting the connectivity data 

related to predictability difficult. Due to the complexity of interpretation the CS−UCS 

connectivity data, all further results focus on differences in effective connectivity on CS

+UCS and UCS alone trials.
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3.1 Primary Hubs

3.1.1 Dorsolateral PFC—The dlPFC (left dlPFC(2)) showed greater effective 

connectivity to other ROI during CS+UCS than UCS alone trials (Figure 3a and Table S2). 

Further, the dlPFC had the highest number of outward projections of any ROI in the network 

(out-degree = 14; Table S4). Based on out-degree, the dlPFC was identified as the primary 

hub differentiating effective connectivity on CS+UCS versus UCS alone trials (Figure 3a).

3.1.2 Dorsomedial PFC—The dmPFC showed greater effective connectivity to other 

ROI during UCS alone than during CS+UCS trials (Figure 3b and Table S3). Further, the 

dmPFC also had the highest number of outward projections (out-degree = 10) of any ROI in 

the network (Table S5). Based on out-degree, the dmPFC was identified as the primary hub 

differentiating effective connectivity on UCS alone compared to CS+UCS trials (Figure 3b).

3.2 Secondary Hubs

3.2.1 Insula—The right insula showed greater effective connectivity during CS+UCS than 

during UCS alone trials (Figure 3a and Table S2). Further, the insula had the second highest 

number of outward projections of any ROI in the network with an out-degree of 9 (Table 

S4). Based on out-degree, the insula was identified as an important secondary neural hub 

that differentiates effective connectivity on CS+UCS compared to UCS alone trials (Figure 

3a).

3.2.2 Amygdala—The left amygdala was also identified as a secondary neural hub. The 

amygdala showed greater effective connectivity during UCS alone than during CS+UCS 

trials (Figure 3b and Table S3). The amygdala had the second highest number of outward 

projections of any ROI in the network (out-degree = 5; Table S5) in this contrast. Based on 

out-degree, the amygdala was identified as an important secondary neural hub during UCS 

alone compared to CS+UCS trials (Figure 3b).

3.3 Effective Connectivity and Negative Affect

Individual differences in brain connectivity and negative affect (trait anxiety scores) were 

also investigated. CS+UCS and UCS alone connectivity path weights (obtained from each 

subject) were correlated with trait anxiety scores. Effective connectivity path weights on CS

+UCS, but not UCS alone trials, showed significant correlations with trait anxiety scores. 

Specifically, connections from dlPFC (left dlPFC(2)) to dmPFC, vmPFC, left amygdala, 

right insula, IPL (left IPL and right IPL(2)), and PCC were positively correlated (p<0.05 

uncorrected) with trait anxiety scores (Figure 4, Table 2).

4.0 Discussion

The present study examined differences in effective brain connectivity to predictable and 

unpredictable presentations of a threat (i.e. UCS) to better understand the neural 

mechanisms of threat-related learning. Our findings indicate that predictable and 

unpredictable threats elicit significantly different patterns of effective connectivity between 

several brain regions that mediate learning-related changes in the emotional response to 

threat. Specifically, dlPFC (left dlPFC(2)) connectivity to brain regions including the 
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vmPFC, amygdala, bilateral insula, and bilateral IPL was greater during predictable (i.e. CS

+UCS trials) than unpredictable (i.e. UCS alone trials) UCS presentations. In contrast, the 

dmPFC showed greater connectivity to regions that include the vmPFC, dlPFC, amygdala, 

insula, and IPL when the UCS was unpredictable (i.e. UCS alone trials) compared to 

predictable (i.e. CS+UCS trials). Furthermore, the effective connectivity between dlPFC 

(left dlPFC(2)) and several brain regions was correlated with trait anxiety scores when the 

UCS was predictable (i.e. CS+UCS). These findings suggest that dlPFC and dmPFC 

connectivity mediates learning-related changes to threat and indicates individual differences 

in negative affect may be associated with the connectivity of brain regions that respond to 

threat.

The dlPFC and dmPFC are part of a neural circuit that plays an important role in emotion 

regulation (Arnsten, 2009, Hartley and Phelps, 2010, Ochsner et al., 2012). In general, the 

dlPFC and dmPFC appear to regulate activity in vmPFC (Hartley and Phelps, 2010) which, 

in turn, regulates amygdala activity that controls important aspects of the peripheral 

expression of emotion. Further, prior work indicates that activity within the dmPFC and 

dlPFC is highly correlated (Fox et al., 2005), suggesting these brain regions closely interact 

with one another (Fan et al., 2005, Seeley et al., 2007). In fact, prior research investigating 

the neural mechanisms of threat-related learning have consistently shown activation of the 

dmPFC and dlPFC (Dunsmoor et al., 2008, Knight et al., 2010, Wood et al., 2012, Wood et 

al., 2013), suggesting both of these regions are important for threat-related learning.

Although the dmPFC and dlPFC both appear to support emotion regulation processes, these 

brain regions may mediate slightly different aspects of cognitive control (Cole and 

Schneider, 2007, Dosenbach et al., 2008, Braver, 2012). More specifically, different 

components of the PFC-amygdala circuit may support somewhat distinct aspects of 

emotional control. One component, centered on the dlPFC, may use a proactive process to 

maintain attentional resources in preparation for important upcoming events (Braver et al., 

2007, Braver, 2012), like a threat. Findings from the present study demonstrate the dlPFC 

has stronger effective connectivity to other brain regions during predictable (CS+UCS) than 

unpredictable threat (UCS alone). Further, the dlPFC was identified as the primary neural 

hub during predictable threat exposure (Figure2a and 3a). These findings are consistent with 

the view that the dlPFC is a central component of a neural network that manages threat-

related information in a proactive manner.

In contrast to the proactive control processes the dlPFC appears to support, the dmPFC 

(including the dorsal anterior cingulate (dACC)) appears to mediate reactive control 

processes (MacDonald, 2000, Braver, 2012). Reactive control processes detect and resolve 

information only as needed (i.e. primarily after a stimulus is presented) (Braver, 2012). 

Reactive control is necessary when events are unpredictable, surprising, or ambiguous (Keri 

et al., 2004, Hayden et al., 2011). For example, neuronal firing rate within the dmPFC is 

greater when a reward is unexpected (Hayden et al., 2011). Further, dmPFC activity varies 

with the uncertainty of the information being processed (Hayden et al., 2011). The dmPFC 

also demonstrates functional connectivity to the amygdala and other prefrontal brain regions 

when processing ambiguous stimuli (Nomura et al., 2003, Zaretsky et al., 2010). In the 

present study we observed greater effective connectivity during unpredictable threat (UCS 
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alone) within the dmPFC. This finding is consistent with prior work that suggests the 

dmPFC supports reactive control processes (Braver, 2012) in the face of uncertain 

(Touroutoglou et al., 2012) or unexpected (Hayden et al., 2011) events. Further, the dmPFC 

was identified as the primary neural hub during unpredictable threat exposure in the present 

study (Figure2c and 3b), suggesting the dmPFC coordinates brain activity in a reactive 

manner to respond to unpredictable threat during fear conditioning.

While prefrontal regions play an important role in controlling the response to predictable 

and unpredictable threats, other brain structures also appear to contribute to the emotional 

processing of threat. For example, the insula has been implicated in the integration of 

disparate brain networks that process information and produce appropriate feelings and 

actions (Chang et al., 2013). Further, prior work suggests the insula is involved in learning 

cues that predict negative events (Knight et al., 2005, Cheng et al., 2006). In the present 

study, the insula showed greater effective connectivity during predictable threat (CS+UCS) 

than to unpredictable threat (UCS alone). Further, the insula was identified as a secondary 

hub during the CS+UCS (Figure2a and 3a) reflecting the importance of insula connectivity 

during the emotional response to threat.

The amygdala was also identified as an important secondary hub in the present study. The 

amygdala plays an important role in the evaluation of emotional stimuli and production of 

the peripheral emotional response (Davis and Whalen, 2001, Cheng et al., 2003, Knight et 

al., 2005, Cheng et al., 2006, Berntson et al., 2007). Further, the amygdala is critical for fear 

learning and memory (Knight et al., 2005, Cheng et al., 2006). Specifically, the amygdala is 

important for fear acquisition and fear extinction (Stein et al., 2007). The amygdala has also 

been shown to respond in a bottom-up manner when a threat is surprising (Ochsner et al., 

2009), and appears to play an important role in evaluating uncertainty (Etkin et al., 2009, 

Prater et al., 2013) and ambiguity (Brown et al., 2014). The amygdala is connected to the 

dmPFC (Phan et al., 2002, 2004, Ochsner et al., 2012), and dmPFC connectivity with 

amygdala is altered by stress exposure (van Marle et al., 2010). Amygdala connectivity is 

also altered in disorders of emotion regulation such as generalized anxiety disorder (Etkin et 

al., 2009) and post-traumatic stress disorder (Dosenbach et al., 2008, Singh-Curry and 

Husain, 2009). In the present study, we observed greater effective connectivity from the 

amygdala to other brain regions during unpredictable threat (UCS alone; Figure2c and 3b). 

Further, the amygdala was identified as an important neural hub during unpredictable threat 

trials, consistent with the view that the amygdala plays an important role in bottom-up 

threat-related processes.

In the present study, we identified several brain regions that showed differential effective 

connectivity to predictable and unpredictable threat. However other regions appear to 

support threat-related processes as well, regardless of the threat’s predictability. Specifically, 

the IPL was identified as a major hub during CS+UCS, CS−UCS, and UCS alone trials 

(Figure 2). However, the effective connectivity analysis did not differentiate IPL 

connectivity between these trial types (Figure 3). This finding suggests that the IPL is 

necessary for processing and producing the threat response independent of the predictability 

of the threat. This suggests the IPL may play a more general role in emotion processing. 

Although meta-analyses of emotion research typically focus on the role of brain regions like 
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the amygdala, vmPFC, and dmPFC, the findings from these meta-analyses also clearly show 

the IPL is typically activated in emotion studies (Phan et al., 2002, 2004, Ochsner et al., 

2012). In fact, IPL activation is observed in nearly 65% of all emotion research (Viviani, 

2013). This prior work suggests the IPL plays a vital role in emotion processing. Further the 

IPL effective connectivity to dlPFC observed during threat exposure in the present study is 

consistent with theories of a frontoparietal attention network (Dosenbach et al., 2008, Singh-

Curry and Husain, 2009), and suggests important attentional resources are deployed in 

response to threat.

Finally, we assessed the relationship between connectivity (i.e. during predictable and 

unpredictable threats) and trait anxiety scores in the present study. This analysis showed that 

when a threat was predictable, dlPFC connectivity to other emotion brain regions such as the 

amygdala and vmPFC were correlated with trait anxiety scores. Trait anxiety scores were 

not correlated with network connectivity during UCS alone trials. These analyses were 

performed with significance criteria that were not corrected for multiple comparisons and 

should be considered preliminary. However, these preliminary findings suggest that 

individuals with higher negative affect may require greater dlPFC connectivity to coordinate 

brain activity during predictable threats than individuals with low negative affect. This 

increased connectivity during predictable threat is consistent with research suggesting there 

is a threat-related attentional bias in individuals with anxiety disorders (Bar-Haim et al., 

2007, Bishop, 2009), and suggests that dlPFC connectivity may play an important role in the 

etiology of anxiety related-disorders.

The present findings are based on analyses that compared CS+UCS (predictable) and UCS 

alone (unpredictable) trials. These two trials types differed in their predictability of the UCS, 

as demonstrated by our UCS expectancy data. However, these trial types also differed in 

relation to the tone CS that preceded the UCS. Specifically, a tone preceded the UCS on CS

+UCS (predictable) trials, but not on UCS alone (unpredictable) trials. Although the tone CS 

certainly influences the predictability of the UCS, our prior work indicates learning-related 

changes in unconditioned fMRI signal and behavioral responses are not simply due to the 

presentation of a tone prior to the UCS(Dunsmoor et al., 2008, Knight et al., 2010, Knight et 

al., 2011, Wood et al., 2012). For example, greater diminution of unconditioned SCR and 

fMRI signal responses were demonstrated on CS+UCS than CS−UCS trials in the original 

analyses of these data (Wood et al., 2012). Both CS+UCS and CSUCS trials were preceded 

by a tone CS. Thus, the learning-related changes we observed cannot be explained merely 

by the presentation of a tone prior to the UCS. Instead, the evidence indicates these 

differential responses are due to associative learning processes that influence UCS 

predictability (Dunsmoor et al., 2008, Knight et al., 2010, Knight et al., 2011, Wood et al., 

2012).

5.0 Conclusions

This study provides evidence of distinct prefrontal network connectivity that appears to 

mediate learning-related changes in the threat response. Specifically, this study demonstrates 

dlPFC has greater effective connectivity during predictable threat and dmPFC has greater 

effective connectivity during unpredictable threat. These findings are consistent with the 
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view that separate brain networks support related, yet distinct aspects of emotional control. 

This study also highlights the importance of IPL connectivity during the threat response. 

Finally, our findings suggest that individuals with high negative affectivity preferentially use 

a dlPFC network during predictable threat.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CS conditioned stimulus

UCS unconditioned stimulus

CS+ CS paired with the UCS

CS+UCS UCS that follows CS+ on test trials

CS− CS presented alone on acquisition blocks

CS−UCS UCS that follows CS− on test trials

PFC prefrontal cortex

IPL inferior parietal lobule

dmPFC dorsomedial prefrontal cortex

dlPFC dorsolateral prefrontal cortex

vmPFC ventromedial prefrontal cortex
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Highlights

• We used Granger causality to assess brain connectivity during fear conditioning

• Inferior parietal lobule was connected during predictable and unpredictable 

threat

• Dorsolateral prefrontal cortex was a hub during a predictable threat

• Dorsomedial prefrontal cortex was a hub during an unpredictable threat

• Negative affect varied with strength of dorsolateral prefrontal cortex 

connectivity
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Figure 1. 
A schematic illustrating the effective connectivity analysis pipeline. Based on prior analyses 

(Wood et al., 2012), 15 activation defined regions of interest (ROI) were chosen for the 

effective connectivity analysis. The mean fMRI time series from each ROI were extracted 

for all participants. The time series was temporally normalized and deconvolved using a 

cubature Kalman filter to obtain the latent neuronal response. The neuronal response from 

each ROI was included in the dynamic multivariate autoregressive model to obtain the 

causal connectivity metrics between every pair of ROI. Samples of task specific 

connectivities were obtained by populating the causality values into three different samples 

based on the CS+UCS, CS−UCS, and UCS alone (test trials) conditions. Statistics were 

performed within trial type to obtain significant connections during CS+UCS, CS−UCS, and 

UCS alone. Two sample t-tests were used to find connections which were significantly 
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different between CS+UCS compared to UCS alone. Finally, path weights on CS+UCS and 

UCS alone trials were correlated with negative affect (as measured with trait anxiety scale 

score).
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Figure 2. 
Effective connectivity on CS+UCS (A), CS−UCS (B), and UCS alone (C) trials. Arrows 

depict connectivity direction. Line size and color reflect the t-value for the one sample t-test 

using the sample of connectivity values obtained from the corresponding condition. ROI size 

and color depict ‘out degree’ (i.e. the total number of outward projections from a ROI). 

Numbers within parentheses reflect distinct ROI within a particular brain region (e.g. 

dlPFC). Abbreviations: L, left; R, right; dlPFC, dorsolateral prefrontal cortex; dmPFC, 

dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; Amyg, amygdala; 

IPL, inferior parietal lobule; PCC, posterior cingulate cortex. (1.5 columns)
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Figure 3. 
Differential effective connectivity. Greater connectivity during a predictable UCS (CS

+UCS) than during an unpredictable UCS (UCS alone) (A) and greater connectivity during 

an unpredictable UCS than during a predictable UCS (B). Line size and color reflect the t-

value for the two sample t-test. ROI size and color depict ‘out degree’ (i.e. the total number 

of outward projections from a ROI). Numbers within parentheses reflect distinct ROI within 

a particular brain region (e.g. dlPFC). Abbreviations: L, left; R, right; dlPFC, dorsolateral 

prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal 
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cortex; Amyg, amygdala; IPL, inferior parietal lobule; PCC, posterior cingulate cortex. (2 

columns)
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Figure 4. 
Relationship between negative affect (indexed as trait anxiety score) and connectivity during 

a predictable threat (i.e. CS+UCS). Trait anxiety correlated with left dlPFC hub connectivity 

strength to regions depicted in the figure (p<0.05 uncorrected). Trait anxiety score also 

correlated with dlPFC connectivity strength to PCC and dmPFC (graphs not shown). 

Abbreviations: Abbreviations: L, left; R, right; dlPFC, dorsolateral prefrontal cortex; 

dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; Amyg, 

amygdala; IPL, inferior parietal lobule; PCC, posterior cingulate cortex. (2 columns)

Wheelock et al. Page 25

Neuroimage. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wheelock et al. Page 26

Table 1

Regions of Interest

Region Volume
(mm3)

Talairach
(x,y,z)

Medial PFC

  dmPFC 22771 1, 20, 39

  vmPFC 656 12, 49, 14

dlPFC

  Right(1) 3668 30, 44, 27

  Right(2) 14229 40, 13, 37

  Left(1) 1110 −33, 50, 19

  Left(2) 908 −21, 41, 40

  Left(3) 11710 −38, 10, 38

IPL

  Right(1) 892 49, −42, 25

  Right(2) 3210 42, −53, 43

  Left 4672 −42, −51, 43

Insula

  Right 1398 38, 15, 0

  Left 4731 −38, 14, −1

Amygdala

  Right 460 25, −4, −16

  Left 511 −25, −4, −15

PCC 11381 −2, −34, 33

Numbers within parentheses reflect distinct ROI within a particular brain region (e.g. dlPFC).

Abbreviations: L, left; R, right; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal 
cortex; Amyg, amygdala; IPL, inferior parietal lobule; PCC, posterior cingulate cortex.

Neuroimage. Author manuscript; available in PMC 2015 November 15.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wheelock et al. Page 27

Table 2

Correlation of Trait anxiety and CS+UCS connectivity path weights from dlPFC hub

Left dlPFC hub connectivity to Pearson r R2 p value

dmPFC 0.461 0.212 0.041

R dlPFC(1) 0.474 0.225 0.035

PCC 0.450 0.202 0.047

L IPL 0.510 0.261 0.021

R Insula 0.523 0.273 0.018

R IPL(2) 0.402 0.213 0.040

vmPFC 0.546 0.298 0.013

L Amygdala 0.509 0.259 0.022

Abbreviations: L, left; R, right; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal 
cortex; IPL, inferior parietal lobule; PCC, posterior cingulate cortex.
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