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Abstract

A wealth of research has revealed that electrical synapses in the central nervous system exhibit a 

high degree of plasticity. Several recent studies, particularly in the retina and inferior olive, 

highlight this plasticity. Three classes of mechanisms can alter electrical coupling over time 

courses ranging from milliseconds to days. Changes of membrane conductance through synaptic 

input or spiking activity shunt current and decouple neurons on the millisecond time scale. Such 

activity can also alter coupling symmetry, rectifying electrical synapses. More stable rectification 

can be accomplished through molecular asymmetry of the synapse itself. On the minutes time 

scale, changes in connexin phosphorylation can change coupling quasi-stably with order of 

magnitude dynamic range. On the hours to days time scale, changes in expression level of 

connexins alter coupling through the course of circadian time, over developmental time, or in 

response to tissue injury. Combined, all of these mechanisms allow electrical coupling to be 

highly dynamic, changing in response to demands at the whole network level, in small portions of 

a network, or at the level of an individual synapse.

Introduction

Synaptic communication is the most fundamental property of a nervous system. The two 

dominant forms of synaptic communication, chemical and electrical, serve complementary 

functions and frequently interact to provide a rich diversity of capabilities. Essential to the 

ability of the nervous system to assimilate and respond to information from the environment 

is synaptic plasticity. While plasticity has long been considered the domain of chemical 

synapses, electrical synapses have proven also to show remarkable plasticity on several time 

scales, making critical contributions to sensory adaptation and learning. This article will 

review recent advances in understanding the molecular mechanisms of electrical synaptic 

plasticity in the vertebrate central nervous system, and will provide some examples of how 

this plasticity contributes to the functional output of neural systems.
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Electrical synaptic plasticity comes in three flavors

There are several mechanisms by which the strength of electrical coupling between two 

neurons can be changed. These can be distilled down to three groups of mechanisms: 1) 

those that alter membrane properties of the communicating cells, 2) those that change the 

conductance of the gap junction, and 3) those that change the expression level of connexins, 

the gap junction proteins. First, mechanisms that alter the membrane properties of the 

coupled cells can have a significant impact on electrical coupling. Opening of ion channels 

that reduce the membrane resistance of the coupled cells can impose transient decoupling. 

This was first demonstrated by Spira and Bennett [1] in neurons that control pharyngeal 

contraction in the sea slug Navanax. Such transient decoupling has an onset time of a few 

milliseconds and can last for several seconds. An interesting corollary of this form of 

shunting inhibition is that it can lead to electrical rectification if the input resistances of the 

coupled cells differ. This is often the case with the coupled G and M cells of Navanax 

pharyngeal ganglia [1], and is also the case for heterologous coupling between AII amacrine 

cells and On cone bipolar cells in the mammalian retina [2].

Membrane conductances are not exclusively inhibitory to electrical coupling. In the club 

endings of goldfish auditory nerve afferents that form mixed chemical/electrical synapses on 

Mauthner cells, subthreshold Na+ currents amplify spikelets propagated antidromically 

through the electrical synapses [3]. The magnitude of the elicited Na+ current depends non-

linearly on the membrane potential of the afferent, so changes of just a few millivolts can 

dramatically alter the efficacy of antidromic spike propagation. The presence of 

subthreshold Na+ currents and differences in input resistance between the Mauthner cell and 

the club endings result in a strong asymmetry in coupling coefficients (the fraction of input 

voltage transmitted to the follower cell: V2/V1) for prodromic and antidromic spike 

propagation, favoring antidromic propagation. This electrical rectification is reinforced by 

molecular asymmetry in the gap junction, with Connexin 35 (Cx35), the closest fish 

homolog of mammalian Cx36, on the presynaptic (club ending) side and the closely related 

Cx34.7 on the postsynaptic side [••4]. The molecular asymmetry accounts for about 4-fold 

rectification in favor of antidromic current flow from the Mauthner cell to the club endings; 

differences in membrane properties amplify that to an average of more than 20-fold. The 

rectification of current flow supports a form of lateral excitation among the numerous 

auditory afferents, which are not directly electrically coupled, favoring their synchronized 

firing [••4].

Changes in the connexin protein itself can potently alter coupling. In gap junctions made of 

Cx36, the connexin forming the majority of electrical synapses in the vertebrate central 

nervous system, the magnitude of tracer transfer and electrical coupling are directly 

regulated by phosphorylation of the connexin [5,6]. This can be seen in the strong 

correlation between the diffusion coefficients for tracer through networks of coupled 

neurons and the phosphorylation state of Cx36 (Figure 1) [••7,••8]. The phosphorylation-

driven changes in tracer coupling cover an order of magnitude change in diffusion 

coefficient, producing a large dynamic range for plasticity. Changes in tracer coupling in 

neurons have been correlated to indices of electrical coupling such as receptive field 

diameter in retinal AII amacrine cells [9] and intercellular electrical conductance in inferior 
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olive neurons [••10], indicating that changes in tracer coupling correspond to real changes in 

electrical coupling. Tracer coupling, by its nature, reports a system-level average of the 

functional states of the participating gap junctions. Within a single cell, the phosphorylation 

states of individual gap junctions are highly variable [••7,•11], with gap junctions well under 

one micron apart being in vastly different phosphorylation states. This reveals that the 

functional state is controlled at the level of the individual synapse, and suggests that the 

dynamic range for plasticity of individual electrical synapses is likely larger than the order 

of magnitude average value.

The biophysical basis for phosphorylation-driven changes in coupling strength has not been 

established. While phosphorylation has been found to change the relative prevalence of 

different subconductance states for several connexins [12–15], there is no evidence that it 

does so for Cx36. Instead, it is more likely that phosphorylation increases the number or 

open probability of functional channels in a gap junction. In gap junctions, it is understood 

that only a small fraction of channels present are functional, with estimates ranging from 

about 10% [16] to as low as 0.1% [17]. Changes in this parameter provide large latitude for 

plasticity, easily encompassing the order of magnitude dynamic range observed for 

phosphorylation-dependent plasticity.

Changes in connexin phosphorylation can occur on a seconds to minutes time scale and 

achieve quasi-stable states that depend on the activities of protein kinases and phosphatases 

that regulate it. This represents an intrinsic capability for intermediate-term plasticity that is 

a fundamental property of all electrical synapses composed of Cx36. Indeed, electrical 

synaptic plasticity driven by signaling pathways that control protein kinase or phosphatase 

activity is also well known in neurons that employ connexins other than Cx36. Retinal 

horizontal cells, which express Cx57 or Cx50 in mammals and several homologous 

connexins in fish, display strong regulation of coupling by protein kinase A signaling 

pathways [18]. The strong similarity to plasticity mechanisms in Cx36 electrical synapses 

suggests that such plasticity is a common feature of electrical synapses.

Finally, changes in expression level of connexins forming electrical synapses can influence 

coupling on a time scale of hours to weeks. Katti et al. [•19] observed circadian regulation of 

Cx36 transcript and protein level in mouse retina. Cx36 was elevated at night only in the 

photoreceptor synaptic layer, consistent with the time period when photoreceptor coupling is 

enhanced [••8,20,••21]. Profound changes in neuronal coupling during development are well 

known (reviewed in [22]). Park et al. [••23] have found recently that activation of group II 

metabotropic glutamate receptors drives the developmental increase in Cx36 expression in 

rodent hypothalamus and cortex via both transcriptional and translational mechanisms. 

GABAA receptor activation has the opposite effect. The interplay of these two signaling 

mechanisms plays a key role in shaping the stereotyped elevation of neuronal coupling in 

early postnatal development and gradual decline at later ages.

Transient increases in neuronal coupling are also observed following various forms of 

neuronal injury. Wang et al. [•24] found that group II mGluR activation is responsible for 

the pathological increase in coupling and Cx36 expression that occurs within 2 hours of 

ischemic injury, although only the translational mechanism played a role in this time 
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window. GABAA receptor activity played only an indirect role to reduce coupling by 

reducing excessive excitatory activity. Curiously, a recent study found that 24 hours of sleep 

deprivation in rats caused a reduction in Cx36 expression in the hypothalamus that persisted 

even after sleep recovery [25]. These findings suggest that even relatively mild stress can 

induce changes in coupling, although the significance of those changes is not fully 

understood at this time.

Seeing all of the light

Sensory systems are tasked with detecting and encoding huge dynamic ranges of stimulus 

intensity. The retina encounters a billion-fold range of light intensity daily, sending useful 

information to higher centers of the visual system throughout that range. A wide variety of 

adaptation mechanisms enable it to do so, and electrical synaptic plasticity plays a 

prominent role in tuning sensitivity of some circuits and in rewiring circuits during the 

transition from nighttime to daytime vision. The most complete understandings of the 

molecular mechanisms that control electrical synaptic plasticity have been developed in 

retinal neurons in recent years, revealing that mechanisms of plasticity are cell type specific 

but built around the core mechanisms discussed above.

Vertebrate photoreceptors are coupled both homologously (rod-rod and cone-cone) and 

heterologously (rod-cone), serving important functions to suppress voltage noise and shunt 

rod signals into the cone pathway, expanding the rod pathway dynamic range at its upper 

end. Coupling is reduced and rod input effectively eliminated from the cone pathway by 

adaptation to bright light and by a circadian mechanism during the subjective day [••21]. Li 

and colleagues have elucidated the signaling pathways that control these changes (Figure 2). 

Li et al. [•11] found that protein kinase A-mediated phosphorylation of Cx36 is responsible 

for supporting coupling, and that regulation of PKA activity is the central control point. In 

keeping with an extensive retinal literature, activation of dopamine D4 receptors in the 

daytime was found to reduce PKA activity and suppress coupling [••8]. However, Li et al. 

also found that nighttime activation of adenosine A2a receptors drove PKA activity and 

coupling up [••8]. The opposing actions of the Gi-coupled D4 receptor and the Gs-coupled 

A2a receptor, regulating adenylyl cyclase and consequently PKA activity, allow the 

photoreceptors to respond to extracellular cues that have opposite phases (dopamine: high in 

the day, low at night; adenosine: high at night, low in the day) [26]. Li et al. further found 

that transcript levels of D4 receptor, A2a receptor, and adenylyl cyclase isoform AC1 all 

varied rhythmically [••8], suggesting that changes in receptor abundance over the course of 

the day change the magnitude and relative efficacy of responses to the external cues. As a 

final twist, Li et al. [•27] have recently found in zebrafish retina that the adenosine A1 

receptor, a Gi-coupled receptor with higher affinity for adenosine than A2a, actually uses the 

low daytime level of extracellular adenosine to reinforce the dopamine signal, keeping 

coupling low. The tight interplay of several G-protein coupled receptors allows 

photoreceptor coupling to be controlled with precision and high dynamic range by 

extracellular cues.

In the mammalian rod pathway, the AII amacrine cell is a central lynchpin neuron. It is the 

sole recipient of excitatory input from the rod bipolar cells of the primary rod pathway, and 
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through synaptic convergence from rod bipolar cells and receptive field expansion via 

extensive electrical coupling with its neighbors, sets the ultimate sensitivity limit of the 

retina. The excitatory output of the AII amacrine cell is obligately routed through electrical 

synapses with On cone bipolar cells, which in turn make excitatory synapses onto the On 

subset of retinal output neurons, the ganglion cells. These electrical synapses also provide 

the only known daytime function of the AII amacrine cell, to provide glycinergic inhibition 

of the Off pathway driven by On bipolar cell signals [•28].

The AII amacrine cell undergoes well-known and prominent changes in electrical coupling 

driven by light adaptation [9] that contribute to rewiring retinal circuitry from rod pathway 

dominated during dim light conditions to cone pathway dominated during bright light 

conditions. Kothmann and colleagues have recently identified the mechanisms that control 

this plasticity (Figure 3). The AII amacrine cell is characteristically poorly coupled in 

prolonged, complete darkness, but develops extensive coupling with dim background light 

[9]. Kothmann et al. [••29] found that this light-dependent enhancement in coupling is 

driven by glutamate spillover from On bipolar cell (either rod- or cone-driven) activity. 

Enhancement of coupling depends on activation of non-synaptic NMDA receptors, 

activation of CaM Kinase II, and phosphorylation of Cx36. The NMDA receptors involved 

do not contribute to the synaptic responses of AII amacrine cells to rod bipolar cells, but 

instead are co-localized with the gap junctions and are apparently present for the sole 

purpose of regulating electrical synaptic conductance. This activity-dependent potentiation 

of electrical synapses is very similar to that in the goldfish Mauthner cell [30], in which 

Ca2+ influx through synaptic NMDA receptors drives CaMKII activity, presumably 

phosphorylating the connexin present.

In the presence of bright light, AII amacrine cell coupling is reduced again in response to 

dopamine secretion and activation of dopamine D1 or D1-like receptors. Kothmann et al. 

[••7] found that activation of D1-like receptors reduced Cx36 phosphorylation. The Gs 

signaling of D1 receptors and their close relatives activates adenylyl cyclase and enhances 

PKA activity. Kothmann et al. [••7] found that PKA activity indeed drove de-

phosphorylation of Cx36, and did so by activating protein phosphatase 2A. The AII 

amacrine cell thus differed from photoreceptors in that PKA activity had a negative impact 

on Cx36 phosphorylation and coupling. The signaling pathway in which PKA activates 

PP2A to dephosphorylate targets is replicated in non-neuronal cultured cells as well as other 

neurons, suggesting that this is a signaling module that is commonly used. The independent 

signaling pathways for phosphorylation and de-phosphorylation of the connexin that 

Kothmann described in AII amacrine cells are activated at different light intensity 

thresholds, imparting a biphasic pattern of electrical synaptic plasticity.

Among the many channels of information encoded by the retina, object motion is truly 

critical to life, as its detection can make the difference between catching prey and becoming 

prey. Trenholm and colleagues [•31] have found that electrical coupling among the dorsally 

coding On-Off directionally-selective ganglion cells imparts the remarkable ability to 

encode the leading edge of a stimulus at the same spatial location regardless of the speed of 

stimulus motion. This lag normalization depends on the transmission of a subthreshold 

excitatory receptive field surround through the electrical synapses to reinforce sparse 
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synaptic input from distant stimuli within the classical receptive field center [••32]. This 

lateral priming does not result in back-propagation of excitation after the trailing edge of the 

stimulus passes, which would result in stretching of the coded object. The skewed 

distribution of inhibitory input toward the null direction, which is critical for establishing 

direction selectivity and could produce shunting inhibition, does not particularly account for 

this phenomenon. Instead, currents associated with spiking activity of the cell create a 

transient refractory state that reduces electrical synaptic efficacy and transiently rectifies 

electrical synaptic transmission [••32]. The result is an effective system to encode object 

motion over a wide range of speeds without resulting in runaway excitation in the network.

Timing is everything

The olivo-cerebellar system is thought to provide timing signals to coordinate motor tasks 

and to provide timing information for non-motor and cognitive tasks [33]. Spontaneous 

subthreshold 5–10 Hz membrane potential oscillations in inferior olive (IO) neurons are 

thought to be the basis of this timing signal, entraining their sparse spike output. IO neurons 

are richly endowed with electrical synapses that can synchronize these oscillations, although 

coupling among IO neurons is typically weak. This can be useful in that, in the presence of 

strong excitatory input, moderately weak coupling can lead to chaotic desynchronization of 

subthreshold oscillations [34]. This increases the information content of the timing signals at 

the system level and enhances timing precision. The concept of adaptive coupling [•35] has 

been introduced to explain how motor learning can be accomplished by gradual reduction of 

coupling strength in appropriate pools of IO neurons to induce chaotic resonance and 

increase precision of the timing signal.

Several recent studies have revealed mechanisms through which IO coupling is controlled 

adaptively at a variety of time scales (Figure 4). Turecek et al. [••10] found that NMDA 

receptor activation, either through bath application of NMDA or through high-frequency 

stimulation of excitatory input to the IO, strengthened coupling over the course of several 

minutes. This effect required activation of CaMKII and was limited to weakly coupled IO 

neurons. Turecek et al. [••10] further found that non-synaptic NMDA receptors were closely 

associated with Cx36 gap junctions in the IO glomeruli, implicating a signaling pathway 

highly analogous to that of retinal AII amacrine cells [••29]. NMDA application induced 

synchrony and enhanced the amplitudes of subthreshold oscillations, revealing a mechanism 

by which excitatory input can enhance the synchrony of the IO network [••10].

In contrast to the findings of Turecek et al. [••10], Mathy et al. [••36] describe a mechanism 

through which excitatory input depresses IO coupling. Low frequency (1 Hz) stimulation of 

the excitatory input to the IO reduced coupling over the course of several minutes. This 

reduction in coupling depended on NMDA receptors, intracellular Ca2+, and CaMKII 

activity [••36]. A potentially similar form of long-term depression of electrical synapses has 

been described in the thalamic reticular nucleus [37]. Coupling among IO neurons has been 

found to be highly variable [38], and the NMDA receptor-dependent mechanisms described 

by Mathy et al. [••36] and Turecek et al. [••10] can explain how local excitatory input can 

tune coupling strength in a manner analogous to the delicate balance between long-term 

potentiation and long-term depression in central glutamatergic synapses.
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Finally, Lefler et al. [••39] have recently examined the mechanism through which 

GABAergic projections from the deep cerebellar nuclei (DCN) transiently decouple IO 

neurons. The arrangement of IO dendritic spines in glomeruli containing electrical synapses 

surrounded by inhibitory and excitatory terminals (Figure 4) prompted Llinas to propose 40 

years ago that synaptic activation could transiently decouple IO neurons through shunting 

inhibition [40]. Lefler et al. [••39] tested this hypothesis using optogenetic stimulation of 

GABAergic neurons from the DCN that project to the IO. Light pulses produced inhibitory 

currents in IO neurons with slow time courses, which merged into steady sustained 

inhibitory currents during trains of pulses. This is in keeping with the recent finding that 

transmitter release from DCN neurons is largely asynchronous [•41], resulting in slow, 

sustained inhibition. The activation of GABAergic inhibitory currents reduced coupling 

coefficients between pairs of IO neurons and generally changed the coupling symmetry as 

well for time courses of a few hundreds of milliseconds. Single pulses of DCN activation 

altered the subthreshold oscillations of IO neurons, often shifting their phase, while trains of 

pulses eliminated subthreshold oscillations altogether. The oscillations recovered after pulse 

trains ended, implying that coupling within the IO network was necessary to sustain the 

oscillations. This bonanza of recent studies shows well how synaptic input tunes the network 

of IO neurons, with excitatory input adjusting coupling strength stably to set an optimal state 

to support timing signals via subthreshold oscillations, and inhibitory input transiently 

decoupling portions of the network to isolate their activity from that of their neighbors.

Concluding remarks

Electrical synapses have often been thought to represent simple and static elements of neural 

circuitry. The recent wealth of studies has highlighted the fact that they are highly dynamic 

and revealed a variety of mechanisms that change electrical coupling over time courses 

varying from milliseconds to days. The picture that has emerged is of synapses that can be 

constantly tuned to meet the needs of their specific circuit. Such plasticity is not a unique 

feature of the few electrical synapses discussed in this review, but should be considered a 

general feature of all electrical synapses. Indeed it is likely that electrical synaptic plasticity 

works alongside with chemical synaptic plasticity in most nervous system processes.
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Highlights

• Electrical synapses have a high degree of functional plasticity.

• Different mechanisms alter electrical coupling in milliseconds to days time 

domains.

• Steady-state changes depend largely on electrical synapse protein 

phosphorylation.

• Many neural network mechanisms rely upon electrical synaptic plasticity.
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Figure 1. 
Changes of tracer coupling in neurons correlate strongly with phosphorylation of Cx36. A) 

Neurobiotin injection into single AII amacrine cells in the rabbit retina results in filling 

arrays of cells (i–iii) by tracer diffusion through gap junctions. Tracer diffusion is reduced 

by application of dopamine D1 receptor agonist SKF38393 (ii) and increased by D1 receptor 

antagonist SCH23390 (iii). Immunostaining of the regions outlined with boxes in i–iii for 

total Cx36 (red channel) and Cx36-phospho-Ser293 (green channel) is shown in iv–vi; the 

blue channel shows Neurobiotin-filled dendrites of the injected cell. The phospho-Ser293 

channel is shown alone in vii–ix. The D1 agonist reduces and D1 antagonist increases Cx36 

phosphorylation. Arrowheads show gap junctions on the injected cell. B) Correlation 

between the average phosphorylation state of Cx36, defined as the ratio of phospho-S293 to 

total Cx36 on each Cx36 gap junction, and the diffusion coefficient for Neurobiotin derived 

by fitting tracer intensity data in somata of AII amacrine cells at various distances from the 

injected cell with a compartmental diffusion model. R2 of the linear fit is 0.86. C) Similar 

correlation of data for photoreceptor coupling in C57Bl/6 mouse photoreceptors with 

parallel measurements of Cx36 phosphorylation. Animals were collected at night in 

darkness or in the day in light, or adapted to darkness for various times during the day. R2 of 

linear fit to the data is 0.81. For both rabbit AII amacrine cells and mouse photoreceptors, 

the dynamic range for Neurobiotin diffusion coefficient was 20-fold. Panels A and B 

adapted from [••7]; Panel C adapted from [••8].
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Figure 2. 
Molecular mechanisms that control photoreceptor coupling. Changes in steady-state 

coupling are accomplished by altering the phosphorylation state of Cx36 through 

phosphorylation by PKA and dephosphorylation by a phosphatase. PKA activity is 

controlled dynamically through opposing G-protein signaling pathways that regulate 

adenylyl cyclase activity. These are in turn controlled by extracellular diffusible cues. At 

night (left side), extracellular adenosine (Ad) is relatively high and dopamine (DA) 

relatively low, favoring activation of adenosine A2a receptors and stimulation of adenylyl 

cyclase through Gs signaling. In the day (right side), extracellular dopamine is relatively 

high and adenosine relatively low, favoring activation of dopamine D4 receptors and 

adenosine A1 receptors. These both inhibit adenylyl cyclase through Gi signaling. The 

phosphatase is critical for regulation of coupling, but it is not currently known if its activity 

is constitutive or regulated.
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Figure 3. 
Molecular mechanisms that control AII amacrine cell coupling. Changes in steady-state 

coupling are accomplished by opposing actions of an activity-dependent phosphorylating 

mechanism and a diffusible cue-dependent dephosphorylating mechanism. Non-synaptic 

NMDA receptors associated with the Cx36 gap junctions are activated by spillover 

glutamate derived from On pathway bipolar cells in response to any light (left side). NMDA 

receptor activation in turn activates CaMKII and phosphorylates Cx36 to enhance coupling. 

In the presence of bright light (right side), dopaminergic amacrine cells secrete dopamine, 

which activates D1 dopamine receptors on AII amacrine cells and many other targets. Gs 

signaling from D1 receptors activates adenylyl cyclase, increasing PKA activity. PKA 

activity in turn activates PP2A, which dephosphorylates Cx36 to reduce coupling. PP1 

inhibits the pathway and is presumed to dephosphorylate PP2A. The light thresholds for 

these two pathways differ by several orders of magnitude, imparting a biphasic pattern of 

electrical coupling that adapts the AII amacrine cell to operate in different light regimes.
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Figure 4. 
Mechanisms that modulate coupling of Inferior Olive neurons on different time scales. IO 

neurons have electrical synapses on dendritic spines organized as glomeruli surrounded by 

GABAergic afferents descending from deep cerebellar nuclei (DCN) and glutamatergic 

afferents arising from brain stem and spinal chord neurons. Intrinsic subthreshold 

oscillations of IO neuron membrane potential are partially supported by electrical coupling. 

Activation of DCN neurons reduces and may rectify electrical coupling through shunting 

inhibition on a millisecond time scale. DCN input also suppresses subthreshold oscillations 

temporarily. High frequency stimulation of excitatory afferents from the brain stem and 

spinal chord (BS/SC afferents) increases steady-state coupling on a minutes time scale 

through a Ca2+ and CaMKII-dependent mechanism equivalent to that shown in figure 3. 

Conversely, low frequency stimulation of the excitatory afferents results in depression of 

steady-state coupling. This also occurs through a Ca2+ and CaMKII-dependent mechanism. 

This mechanism requires the activation of a phosphatase, but the details of this phosphatase 

activity are not yet known. The frequency-dependent modulation of coupling by excitatory 

afferents provides a mechanism to impose a learned code on the matrix of coupled IO 

neurons.
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