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Abstract The extreme climate of the Canadian Prairies poses a
major challenge to improve yield. Although it is possible to
breed for yield per se, focusing on yield‐related traits could be
advantageous because of their simpler genetic architecture.
The Canadian flax core collection of 390 accessions was
genotyped with 464 simple sequence repeat markers, and
phenotypic data for nine agronomic traits including yield, bolls
per area, 1,000 seed weight, seeds per boll, start of flowering,
end of flowering, plant height, plant branching, and lodging
collected from up to eight environments was used for
association mapping. Based on a mixed model (principal
component analysis (PCA)þ kinship matrix (K)), 12 significant
marker‐trait associations for six agronomic traits were identi-
fied. Most of the associations were stable across environments
as revealed by multivariate analyses. Statistical simulation for
five markers associated with 1000 seed weight indicated that
the favorable alleles have additive effects. None of the modern
cultivars carried the five favorable alleles and the maximum
number of four observed in any accessions was mostly in

breeding lines. Our results confirmed the complex genetic
architecture of yield‐related traits and the inherent difficulties
associated with their identification while illustrating the
potential for improvement through marker‐assisted selection.

Keywords: Linum usitatissimum; marker‐assisted selection;
quantitative trait loci mapping; yield‐related traits; Favorable alleles
Citation: Soto‐Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen
A, Cloutier S (2014) Genomic regions underlying agronomic traits in
linseed (Linum usitatissimum L.) as revealed by association mapping.
J Integr Plant Biol 56: 75–87. doi: 10.1111/jipb.12118
Edited by: Qian Qian, China National Rice Research Institute, China
Received Aug. 22, 2013; Accepted Oct. 13, 2013
Available online on Oct. 19, 2013 at www.wileyonlinelibrary.com/
journal/jipb
©2013 Her Majesty the Queen in Right of Canada. Journal of Integrative
Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of
Institute of Botany, Chinese Academy of Sciences. This is an open
access article under the terms of the Creative Commons Attribution‐
NonCommercial‐NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is
non–commercial and no modifications or adaptations are made.

INTRODUCTION
Linseed (Linum usitatissimum L.) is important for the oil and
nutraceutical industries (Green et al. 2008). Its oil, character-
ized by a high concentration of omega‐3 alpha linolenic acid
(�55%), is widely recognized for its health benefits
(Simopoulos 2000). A unique feature of linseed resides in
the prospect of also commercializing its stems because they
produce good quality fibers that have many end‐uses
(Czemplik et al. 2011) including paper, technical fiber, and
biofuels (Diederichsen and Ulrich 2009; Cullis 2011). In 2011, the
total world production of linseed reached approximately 1.6
million tons, with Canada (�23%), China (�21%), and the Russian
Federation (�14%) being the main producers (FAOSTAT 2013).
Although Canada is the world’s largest linseed producer and
exporter (FAOSTAT 2013), linseed remains a minor crop, in part
because its yield has been stagnating over the last decade,
averaging 1.2 T/Ha compared to other oilseeds such as canola
(rapeseed) that now reach 1.9 T/Ha (Statistics Canada; http://
www.statcan.gc.ca).

Conventional breeding methods have been the corner-
stone for linseed genetic improvement releasing new cultivars

with durable resistance to diseases, agronomic fitness, and
greater yield stability (Green et al. 2008). However, the narrow
genetic base used for the development of Canadian linseed
cultivars (Fu et al. 2002, 2003; Cloutier et al. 2009), the scarce
availability of related species to incorporate new variation, the
lack of hybrid production systems (Green et al. 2008), and the
limited genomic tools for molecular breeding (Cloutier et al.
2011, 2012a) have hampered yield and quality improvements,
limiting linseed competitiveness.

Yield is the most important and complex trait in crops that
shows correlations with other traits (Li et al. 2011). In linseed,
yield and its components such as 1,000 seed weight (TSW),
seeds per boll (SPB), and bolls per area (BPA), are
quantitatively inherited and controlled by many genes affected
by multiple interactions with other genes and the environment
(Shi et al. 2009; Parry and Hawkesford 2012; Cadic et al. 2013).
An understanding of the genetic basis of yield‐related traits is
of practical value to breeders because such information assists
in the design of efficient breeding strategies. This approach,
focused on yield‐related traits, has been embraced in oilseeds
such as Brassica napus (Shi et al. 2009), soybean (Panthee
et al. 2007; Liu et al. 2011), and maize (Huang et al. 2010; Peng
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et al. 2011) focusing on the improvement and inheritance of
yield‐related traits for achieving greater yield. Other important
agronomic traits such as flowering time (FL), plant height (PH),
plant branching (PB), and lodging resistance (LDG) may also
indirectly affect yield through various physiological mecha-
nisms (Huang et al. 2010; Li et al. 2011), allowing crop phenology
and plant architecture to be adapted to regional growing
conditions, thus avoiding yield and quality losses (Duguid
2009). The estimation of the positions of quantitative trait loci
(QTL)with consistent effects across environments for yield and
its components and other agronomic traits is of central
importance for marker‐assisted selection (MAS) and, ultimate-
ly, for enhancing linseed competitiveness.

In oilseed breeding, most of the QTL contributing to yield
and other agronomic traits have been identified through
classical linkage mapping (Panthee et al. 2007; Shi et al. 2009;
Huang et al. 2010; Liu et al. 2011; Peng et al. 2011). Despite the
proven usefulness of this technique to identify QTL involved in
complex traits, the limited genetic diversity and recombination
events accumulated in biparental populations impede the
simultaneous identification of favorable alleles available to
breeding programs and the precision of the location of QTL,
thus weakening MAS applications (Würschum 2012). Often
presented as an alternative approach, association mapping
(AM) makes use of all recombination events that have
occurred during the history of a germplasm collection
representing a broader genetic diversity and, consequently,
leading to a higher mapping resolution and the simultaneous
survey of a larger number of alleles (Flint‐Garcia et al. 2003;
Würschum 2012). In the last decade, AM has been successfully
applied to crops (reviewed in Gupta et al. 2005; Soto‐Cerda and
Cloutier 2012), showing that faster breeding progress can be
achieved (Myles et al. 2009; Cadic et al. 2013; Huang et al. 2013).

In 2009, the Total Utilization Flax GENomics (TUFGEN;
http://www.tufgen.ca) project was initiated in Canada, gener-
ating awealth of genomic resourceswith one of themain goals
being applications to flax breeding (Cloutier et al. 2009,
2011, 2012a, 2012b; Ragupathy et al. 2011; Venglat et al. 2011;
Kumar et al. 2012; Wang et al. 2012a). The comprehensive
characterization of the Canadian flax world collection pre-
served by Plant Gene Resources Canada permitted the
assembly of the Canadian flax core collection of 390 accessions
representing the diversity from 76 countries (Diederichsen
et al. 2013). This valuable genetic resource ensures a cost‐
effective access to the diversity harbored in the whole
collection of approximately 3,500 accessions (Diederichsen
et al. 2013). Further molecular characterization of the Canadian

flax core collection revealed its abundant genetic diversity,
weak population, and family structure, and quantified its
relatively fast genome‐wide linkage disequilibrium (LD) decay,
all positive attributes for AM studies (Soto‐Cerda et al. 2013). In
the present study, we carried out AM for yield, TSW, SPB, BPA,
start of flowering (FL 5%), end of flowering (FL 95%), PH, PB,
and LDG on the Canadian flax core collection assessed in
Western Canada over 4 years. The objective of this research
was to identify QTL contributing to these agronomic traits that
could be capitalized upon to assist in breeding superior linseed
cultivars with improved yield and consequently market
competitiveness.

RESULTS
Agronomic traits
All agronomic traits showed significant genotype (G), location
(L), and year (Y) effects (P< 0.001; Table S1). Most of the
genotype‐by‐environment (GE) interactions (G� L, G� Y,
L�Y, and G� L�Y) were significant, except for yield where
only L�Y was significant. The overall means, ranges, H, and
coefficient of variations are summarized in Table 1. In MB, H
ranged 0.15–0.83, while in SK, it ranged 0.37–0.78, indicating
that the repeatability was highly variable among the agronomic
traits at both locations. Among the 36 possible correlations, 25
were significant at P<0.01 (Table 2). Yield and its components
were positively correlated with one another but they were
negatively correlated with the phenological traits FL 5% and
FL 95%, the morphological traits PH and PB, and the LDG
agronomic trait.

Association between population structure and agronomic
traits
Due to different population sizes (G1¼ 153; G3¼ 211) and
unequal variances within the two major groups for the
agronomic traits, the Kruskal–Wallis test was applied as
suggested by Lin et al. (2008). Only PH showed significant
differences (P¼0.03) with G1 accessions being 3 cm taller than
G3 accessions (Figure S1).

Of the 92 fiber flax accessions of the core collection, 48
(36% of G1) clustered within G1 while 23 (12.8% of G3) belonged
to G3, suggesting that although the coefficient of population
differentiation (FST) was weak (0.09), the fiber morphotype
could be the main factor responsible for the population
structure of the flax core collection. We investigated the
pattern of population structure within G1 and G3 separately
and showed that both major groups were organized in two

Table 1. Number of environments, descriptive statistics, and broad sense heritability (H) for the nine agronomic traits assessed in
the Canadian flax core collection

Trait Environments Mean Range C.V. (%) H (MB) H (SK)

Yield (K/ha) 6 1312.10 565.2–2468.8 36.2 0.59 0.59
Bolls per area (bolls/m2) 6 4134.80 1653.6–6482.8 22.8 0.41 0.49
1,000 seed weight (g) 6 5.10 2.7–8.4 3.9 0.75 0.76
Seeds/boll 6 6.20 3.5–8.1 11.5 0.63 0.63
Flowering 5% (d) 7 45.10 40.0–61.9 3.3 0.83 0.47
Flowering 95% (d) 7 51.20 45.9–71.4 3.3 0.80 0.49
Plant height (cm) 6 51.30 28–92.9 11.8 0.63 0.76
Plant branching 4 3.40 1.7–5.3 23.1 0.15 0.78
Lodging 8 1.34 1.0–3.3 19.1 0.20 0.37
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subpopulations (Q� 0.7) and one admixed subpopulation
(Q< 0.7) (Figure S2). Within G1, the two subpopulations largely
corresponded to the oil and fiber morphotypes, with 91% of the
fiber accessions initially clustering within G1 (Figure S2). Within
G3, however, the two subpopulation clusters reflected their
geographic distribution with no clear sub‐clustering of the 23
fiber accessions (Figure S2). Thus, flax morphotype and
geographic distribution constituted the main factors responsi-
ble for the population structure patterns observed in the

Canadian flax core collection, with the Q matrix and the first
three principal component analyses (PCAs) explaining 11.3% and
39% of PH variation, respectively.

AM analysis in the core collection and subgroups
As depicted by the cumulative probability–probability (P–P)
plots generated using the 390 accessions (Figure 1), numerous
spurious associations for all traits were observed with Q
general linear model (GLM). This model was characterized by

Table 2. Pearson correlation coefficients amongst the nine agronomic traits in the Canadian flax core collection

Trait Yield BPA TSW SPB FL 5% FL 95% PH PB LDG

Yield —
BPA 0.528�� —
TSW 0.173�� �0.285�� —
SPB 0.541�� 0.272�� �0.123� —
FL 5% �0.111� 0.029 �0.361�� �0.323�� —
FL 95% �0.108� 0.036 �0.352�� �0.347�� 0.964�� —
PH �0.140�� �0.046 �0.361�� 0.026 0.506�� 0.497�� —
PB �0.073 0.007 �0.265�� �0.049 0.429�� 0.416�� 0.633�� —
LDG �0.134�� �0.005 0.094 �0.354�� 0.005 0.007 �0.261�� �0.238�� —

�P< 0.01 and ��P< 0.001.

Figure 1. Probability‐probability (P‐P) plots of observed versus expected �log10 (P) values for nine agronomic traits evaluated
with five association mapping models
Q general linear model using the Qmatrix, PCA general linear model using the principal component analysis matrix, Kmixed linear
model using the kinshipmatrix,Qþ Kmixed linearmodel using theQ and Kmatrices, PCAþ Kmixed linearmodel using the PCA and
K matrices.
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an excess of small P‐values causing spurious associations. On
the other hand, the PCA GLMovercorrected themajority of the
small P‐values with few higher P‐values departing at the very
end of the expected distribution. The mixed linear models
(MLMs) K andQþK performed similarly for the nine agronomic
traits with their observed P‐values deviating the most from the
expected ones for TSW, SPB, PH, PB, and LDG, indicating that
inclusion of the Q matrix brought little or no improvement to
the AM model. Nevertheless, they displayed a better
distribution of P‐values for BPA and FL 95% (Figure 1). The
PCAþ K MLM had the smallest deviation from the expected
distribution for all agronomic traits. The three first PCAs in
combination with the K matrix were sufficient to control the
majority of the potential false‐positive associations created by
population and family structures. Therefore, the PCAþ K
model was selected to conduct AM for the nine agronomic
traits in the core collection.

Mixed linear models may overcompensate when traits are
correlatedwith population structure, leading to false negatives
(Zhao et al. 2011). Because up to 39% of the variation for PH
was explained by population structure, we conducted AM for
this trait within G1 and G3 separately. The P–P plot of G1
showed an improvement for the K and Qþ K models, with
the latter performing as well as the PCAþ K (Figure S2). On the
other hand, the P–P plot of G3 exhibited a better performance
for the QþKmodel only, the PCAþ K being the most suitable.
Thus, AM model comparisons indicated that conducting
subpopulation‐independent AM analyses partially alleviated
the effect of population structure within G1 but did not correct
it for G3, making it necessary to consider population structure
as a fixed covariate. Hence, AM analyses for PH were
conducted using the QþK and PCAþ K models.

Marker‐trait associations
After removing alleles with a minor allele frequency (MAF) of
less than 0.05, 37 simple sequence repeat (SSR) markers
becamemonomorphic, leaving 427 polymorphic loci for the AM
analyses. Using the PCAþ K model, a total of 12 significant
marker‐trait associations (estimated false discovery rate
(qFDR)<0.01) were identified as significant in at least half of
the environments tested. They corresponded to 10 different
markers distributed across six linkage groups (LGs). The

majority of these associations remained significant even after
Bonferroni correction (0.05/427¼ 1.17E� 4) (Table 3). Numer-
ous other significant associations were detected but they were
not consistent in at least half of the environments. This was
the case for yield, SPB, and BPA, although six markers were
associatedwith these traits in oneormore of the environments.

A total of five significant markers were associated with
TSW, together explaining approximately 30% of the phenotypic
variation for the trait. Marker Lu943 was associated with FL5%,
FL 95%, and PH, in agreement with their positive and significant
correlations (Table 2). LG6markers Lu2560 and Lu2564 located
0.7 cM apart formed a candidate QTL for LDG. For PH AM
analyses, no additional associations were identified. However,
for G1, marker Lu2067a associated with PB, which was
correlated with PH (r¼0.633) and showed associations in
two of the six environments evaluated.

Allelic effects of significant markers
Some of the alleles significantly improved TSW. For example,
the 289 bp allele of Lu526 significantly increased TSW by an
average of 1.02 g (P¼ 8.5E� 13) across the six environments
tested (Figure 2A). For Lu2532, the 270 bp allele had the largest
effect, increasing TSW by 1.91 g (P¼ 1.7E� 6) over the 280 bp
allele and 1.3 g (P¼ 0.003) over the 282 bp allele (Figure 2B).
The 271 bp allele of Lu943 significantly shortened FL 5% by 2.13 d
(P¼ 1.64E� 9) compared to the other two alleles (Figure 2C).
These allelic differences carried through to FL 95% (Table 4). A
reduction of up to 23.7 cm (P¼ 2.2E� 13) in PH was associated
with the 241 bp allele of Lu316 compared with the 223 bp allele
(Figure 2D). However, this large allelic effect can be inflated by
the higher PH of the fiber accessions, where the 223 bp allele
was present in 33% of the fiber morphotype and only 6% of the
linseed morphotype while the 241 bp allele was present in 31%
of the linseed morphotype but only 7% of the fiber
morphotype. The 205 bp allele of marker Lu2067a, increased
PB up to 0.76 units compared with the 211 bp allele
(P¼ 2.03E� 8) (Figure 2E). The null allele of Lu2560 decreased
LDG by 0.34 units (P¼ 3.14E–6) (Figure 2F).

Marker effect and stability
The additive main effect and multiplicative interaction (AMMI)
analysis established that one third of the marker‐trait

Table 3. Marker loci significantly associated with 1,000 seed weight (TSW), start of flowering (FL5%), end of flowering (FL95%),
plant height (PH), plant branching (PB) and lodging (LDG), and their explained phenotypic variance (R2)

Trait Marker LG (cM)1
MB09

(P‐value)
MB10

(P‐value)
MB11

(P‐value)
MB12

(P‐value)
SK09

(P‐value)
SK10

(P‐value)
SK11

(P‐value)
SK12

(P‐value) R2 (%)

TSW Lu2164 3 (76.5) N.E. n.s. n.s. 1.61E� 4 N.E. 7.50E� 5 1.10E� 8 1.10E� 4 0.50
Lu2555 6 (72.0) N.E. n.s. n.s. 1.78E� 4 N.E. 7.10E� 4 1.24E� 4 6.51E� 4 0.72
Lu2532 7 (2.7) N.E. n.s. n.s. 1.53E� 5 N.E. 9.60E� 5 2.36E� 6 7.90E� 5 8.0
Lu58a 7 (104.3) N.E. n.s. n.s. 3.92E� 4 N.E. n.s. 2.38E� 6 1.90E� 4 5.5
Lu526 9 (32.6) N.E. 4.20E� 5 n.s. 6.81E� 6 N.E. 2.27E� 4 1.10E� 4 n.s. 15.2

FL 5% Lu943 1 (149.9) n.s. 4.42E� 7 7.88E� 5 n.s. N.E. n.s. 4.34E� 5 7.35E� 7 7.1
FL 95% Lu943 1 (149.9) n.s. 2.60E� 5 8.94E� 5 n.s. N.E. n.s. 8.74E� 5 4.90E� 6 7.6
PH Lu943 1 (149.9) N.E. N.E. 1.31E�4 n.s. 1.01E� 4 n.s. n.s. 2.31E� 4 4.6

Lu316 Unknown N.E. N.E. 1.15E� 5 9.23E� 5 n.s. n.s. n.s. 1.62E� 5 18.5
PB Lu2067a 2 (59.7) n.s. N.E. n.s. N.E. N.E. 9.08E� 5 3.35E� 5 N.E. 12.9
LDG Lu2560 6 (63.4) n.s. 4.95E�4 n.s. N.V. N.V. 5.73E� 5 1.38E� 18 n.s. 8.9

Lu2564 6 (64.1) 1.53E� 4 8.74E� 4 9.05E� 11 N.V. N.V. n.s. 1.20E� 4 n.s. 7.1
1Linkage group and, in bracket, loci position in centiMorgan according to Cloutier et al. (2012b). N.E., trait not evaluated; N.V., trait
not phenotypically variable; n.s. non‐significant. Values in bold script are significant at qFDR< 0.01 and after Bonferroni correction
(0.05/427¼ 1.17E� 4); those in normal script are significant at qFDR<0.01.
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Figure 2. Comparisons of allelic effects of six associated markers with agronomic traits in linseed
(A) Lu526 and (B) Lu2532 associatedwith 1 000 seedweight. (C) Lu943 associatedwith start of flowering. (D) Lu316 associatedwith
plant height. (E) Lu2067a associated with plant branching. (F) Lu2560 associated with lodging. Box plots followed by the same
letter do not differ statistically according to the Kruskal–Wallis test (a¼0.01).

Table 4. Favorable alleles at the ten SSR loci associatedwith agronomic traits, their frequencies, phenotypic effects, and stability

Trait Marker Favorable allele (bp) Frequency (%) Effecta K–W testb IPCA1c ASVd

TSW Lu2164 377 44.9 0.68 g 1.9E� 3� 0.907 3.222
Lu2555 202 47.9 0.85 g 2.1E� 12� �0.411 1.446
Lu2532 270 8.0 1.91 g 5.6E� 7� �0.729 1.537
Lu58a 209 72.5 0.72 g 3.1E� 3� 0.209 1.441
Lu526 289 15.8 1.02 g 8.4E� 13� 0.023 1.178

FL 5% Lu943 271 60.8 �2.13 d 5.5E� 5� �0.215 0.215
FL 95% Lu943 271 60.8 �2.15 d 1.2E�9� �0.181 0.181
PH Lu943 271 60.8 �9.25 cm 8.4E� 9� 2.532 2.532

Lu316 241 17.3 �23.7 cm 1.6E� 14� �2.532 2.532
PB Lu2067a 205 27.6 �0.76 u 1.5E� 9� 0.265 0.321
LDG Lu2560 null 47.5 �0.34 u 4.7E� 8� �0.557 0.558

Lu2564 257 11.7 �0.28 u 6.4E� 4� 0.557 0.558
aEffect of favorable alleles represented in grams (g) for TSW, days (d) for FL 5% and FL 95%, centimeters (cm) for PH, and units (u) of
the respective scales for PB and LDG. bP‐value for Kruskal‐Wallis test for the allelic effect between favored alleles and others
�P<0.01. cFirst interaction principal component. dAMMI stability values.
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associations were highly stable with first interaction principal
component (IPCA1) values close to� 0.2 and that another
third were moderately stable with values ranging from�0.25
to�0.6 (Table 4). The AMMI stability values (ASV) parameter
indicated that six marker‐trait associations were highly stable
with values ranging 0.18–1.17. The QTL main effect and QTL‐by‐
environment interaction (QQE) biplot displays the average
environment defined by the average IPCA1 and IPCA2 scores
across environments (indicated by an open circle) (Figure 3A).
The arrow passing through the biplot origin is called the AEC
abscissa and points towards increasing marker/QTL main
effect. The AEC ordinate line, perpendicular to the abscissa,
indicates stability/instability. Highly unstable markers have
longer projections on the AEC ordinate irrespective of their
direction. The markers associated with TSW varied in stability.
For example, Lu2532 and Lu526weremore stable than Lu2555,
Lu2164, and Lu58a (Figure 3A). The intersection of the two
axes defines the average marker/QTL main effect, hence, the
latter three markers had effects below average; whereas,

Lu2532 and Lu526 had the largest main effects on TSW across
the six environments in which TSW was tested (Figure 3A,
Table 4). Taking into consideration that approximately 300
accessions of the core collection are of linseed type, the
favorable alleles of Lu2532 and Lu526, present in 31 and 62
accessions, respectively, clearly demonstrate that they have
not been the target of intensive selection by linseed breeders
to date.

Linear regression analysis between TSW and the number of
favorable alleles of associated markers showed a linear
correlation, suggesting additive effects (Figure 3B). No
accession had all five favorable alleles but 10 accessions had
four of them. Among these, only one US modern cultivar
(Maritime, mean TSW¼ 7.3 g) showed four alleles while the
remaining nine were breeding lines including three belonging
to the convar. mediterraneum characterized by its large seeds
and high TSW (Figure 4). The high yielding and broadly adapted
Canadian cultivar CDC Bethune (mean TSW¼ 5.2 g) possesses
only two of the five TSW favorable alleles.

DISCUSSION
Yield is a complex trait that can be broken down into its
components which are in turn affected by other traits involving
diverse pathways (Shi et al. 2009). For example, seed number,
seed weight, flowering time, plant height, and plant branching
have all been identified as affecting yield in rapeseed
(Ishimaru 2003; Salamini 2003; Ashikari et al. 2005; Clark
et al. 2006; Cockram et al. 2007). Phenotypic correlations and
QTL analyses suggest that yield‐associated traits tend to be
clustered in the genome and have pleiotropic effects (Shi
et al. 2009; Li et al. 2011; Liu et al. 2011). Hence, understanding
the genetic bases and relationships of yield‐associated traits
and agronomic traits in linseed through AM can provide the
scientific background needed to devise breeding strategies
that would permit and/or accelerate yield improvements
beyond the 1.2 T/Ha achieved to date.

Agronomic traits
The ANOVA showed that the genotype effect was highly
significant for all nine traits, indicating that abundant and likely
unexploited genetic diversity is harbored within the Canadian
flax core collection (Tables 1, S1). Yield, BPA, and TSW had
ranges that spanned five, four, and three orders of magnitude,
respectively (Table 1). GE interactions also contributed
significantly to trait variations highlighting the need to identify
stable germplasm across environments having favorable
alleles (Zhang et al. 2010).

Broad sense heritability (H) is a suitable indicator of the trait
repeatability and the proportion of trait variation accounted
for by genetic factors. H varied largely between traits and
locations. For example, the MB and SK locations had opposite
effects on FL 5%, FL 95%, PB, and LDG while their effects on
yield‐related traits followed similar trends (Table 1). Historical
meteorological data indicates that the MB location is warmer
and wetter than the SK location, this was particularly true
during the growing seasons of 2010 and 2011 (Agriculture and
Agri‐Food Canada; http://ablethr2/Weather.html). This compli-
cates phenotypic selection of suitable parents with broad
adaptation, the design of efficient breeding schemes and,
ultimately, yield improvement.

Figure 3. Marker effect and stability
(A)QTLmain effect and QTL‐by‐environment interaction (QQE)
biplot for marker/quantitative trait loci (QTL) main effect and
marker/QTL stability of 1,000 seed weight. (B) Linear regres-
sion analysis of 1,000 seed weight based on six environments.
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Correlations among phenotypic traits are commonly
observed in crops. Plant breeders need to consider trait
correlations for the simultaneous improvement of numerous
correlated traits or for reducing undesirable effects when the
goal is to apply changes to one or a subset of the correlated
traits (Chen and Lubberstedt 2010). Yield was positively
correlated with its yield components and negatively correlated
with FL5%, FL95%, PH, and LDG (Table 2) suggesting that further
yield improvement could come from the breeding of an early
flowering, shorter linseed plant producing larger seeds per boll
and more bolls per area. Similar phenotypic correlations
among yield‐related traits and other agronomic traits have
been reported in soybean (Panthee et al. 2007), rapeseed
(Honsdorf et al. 2010), and maize (Peng et al. 2011).

Association between population structure and agronomic
traits
Correlations between population structure and variation for
phenotypic traits have been reported (Camus‐Kulandaivelu
et al. 2006; Caniato et al. 2011; Zhao et al. 2011). In maize, a null
allele of the Dwarf8 (D8idp) gene associated with flowering
time was found in high frequency among Northern Flint
accessions but was rare in tropical accessions (Camus‐
Kulandaivelu et al. 2006). In sorghum, aluminum tolerance
conferred by the Sorghum bicolor multidrug and toxic
compound extrusion (SbMATE) gene was almost exclusive to

West African genotypes (Caniato et al. 2011). Likewise in rice,
several height genes such as Oryza sativa BRI1‐associated
receptor kinase 1 (OsBAK1) and dwarf and gladius leaf 1 (DGL1)
were population‐specific and were only detected when no
correction for population stratification was applied (Zhao
et al. 2011). In our study, PH variation appeared to correlate
with population structure caused by differences in plant
morphotype because fiber flax and linseed differ considerably
in morphology, anatomy, physiology, and agronomic perfor-
mance (Diederichsen and Ulrich 2009). Although incorporation
of population structure covariate is important to control false
positives in AM, a substantial fraction of the PH variation likely
remained undetected as a consequence of the morphotypes in
flax (Caniato et al. 2011).

AM analysis in the core collection and subgroups
Association mapping has demonstrated its power to detect
QTL across multiple plant species and germplasm collections
(reviewed in Gupta et al. 2005; Soto‐Cerda and Cloutier 2012).
However, a potential problem of AM resides in its inherent
population stratification which is recognized as a source of
spurious associations because phenotypic and genotypic
variations end up highly correlated between subpopulations
(Würschum 2012). To circumvent this limitation, a number of
approaches have been suggested (Pritchard et al. 2000; Price
et al. 2006; Yu et al. 2006). For all nine agronomic traits studied

Figure 4. Linseed accessions with different number of favorable alleles associated with 1,000 seed weight
(A) Accessions with zero favorable alleles. (B) Canadian cultivars with two favorable alleles. (C) Accessions with four favorable
alleles. Values in brackets are the 1,000 seed weights for each accession. �Indicates the accessions that belong to the convar.
mediterraneum.
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herein, the PCAþ Kmodel provided the best approximation to
the expected cumulative distribution of P‐values (Figure 1),
being superior to the K and QþKmodels. This suggests that, in
the case of linseed, the PCA matrix can better correct for
population stratification, in line with the larger PH variation
explained by the first three PCAs, which turned out to also be
computationally advantageous even with thousands of
markers (Price et al. 2006).

When alleles segregate across multiple subpopulations,
MLMs are more powerful but when they segregate in only one
or a subset of the subpopulations or, when different alleles
are present in the subpopulations, MLMs will fail to detect the
associations entirely (Zhao et al. 2011). Although we conducted
AM for PH within each major group to minimize the
confounding effects of flax morphotype and geographic
distribution, it was necessary to use MLMs with population
structure as covariate, but no significant associations were
identified within the major groups. Because the simultaneous
use of PCA and K matrices may result in overcorrection
(Würschum 2012), additional PH QTL could be detected using
biparental mapping populations developed from parents
belonging to different subpopulations (Zhao et al. 2011) or,
as recently proposed, through the design of multi‐parent
advanced generation intercross (MAGIC) or nested association
mapping (NAM) populations (Mackay and Powell 2007; Yu
et al. 2008).

Marker‐trait associations
The number of significant associations varied considerably
between traits, with no associations detected for yield per se,
BPA, and SPB, clearly emphasizing the genetic complexity and
high GE interaction of yield and its components (Shi
et al. 2009). For example, five markers showed consistent
associations with TSW, but more than 30 significant markers
(qFDR< 0.01) were identified in at least one environment.
These environment‐specific associations were detected for all
traits. These associations may also result from weak LD
between associated markers and QTL caused by: (i) an
insufficient number of markers to cover all LD blocks across
the genome (Würschum 2012); (ii) low trait heritability (Pasam
et al. 2012); and (iii) the removal of rare alleleswith large effects
excluded from the analyses for statistical reasons (Breseghello
and Sorrells 2006). In our study, marker density was likely a
limitation considering that our LD analysis indicated that at
least 1,500 markers would be required to provide the
comprehensive coverage of the genome necessary for AM in
the flax core collection (Soto‐Cerda et al. 2013). Trait heritability
likely negatively impacted marker‐trait association detection
because the observed H was low to moderate for the majority
of the traits which also displayed significant location effect
(Tables 1, S1). Other pitfalls include genomic regions close to
fixation or totally monomorphic and that do not occur by
chance, especially in large and diverse germplasm collections.
We hypothesized that some of the 37 SSRs that became
monomorphic after removal of the alleles with MAF of less
than 0.05 have been selected during domestication or modern
flax breeding, such as the dehiscence trait, considering that
they are shared across different populations (Kovach et al.
2007). As a result, they are totally uninformative using AM
because the strength of LD mapping relies on polymorphisms
between loci to estimate correlations between traits and their
allele variants; thus, many potentially large‐effect QTL were

missed (Zhao et al. 2011). Genetic studies involving wild
relatives, landraces, and modern cultivars should help in
elucidating this question (Vigouroux et al. 2002; Würschum
2012).

Yield improvement through yield components and related
traits such as flowering time and plant morphology could be
advantageous because of their simpler genetic architecture
and higher stability than yield per se (Peng et al. 2011). In
rapeseed, 785 QTL for eight yield‐related traits were identified
across 10 environments, but only 85 QTL for yield, of which
none were consistent across environments (Shi et al. 2009).
Exploiting the phenotypic correlations between yield‐related
traits can facilitate the pyramiding of favorable alleles because
correlations may indicate linkage or pleiotropy (Li et al. 2011;
Zhao et al. 2011; Zhang et al. 2012). PH is an important
developmental and yield‐related trait and many genes
regulating PH have been shown to affect harvest index and
yield in rice (Xue et al. 2008; Xing and Zhang 2010), and yield
and flowering time in soybean (Liu et al. 2011). The seemingly
pleiotropic effect of the 271 bp allele of Lu943 on FL 5%, FL 95%,
and PH illustrates the feasibility of developing short early
flowering linseed cultivars with apparently no yield penalties
using pleiotropic QTL (Li et al. 2011). Similarly, TSW is an
important yield component determining yield in crops (Li
et al. 2011; Liu et al. 2011;Wang et al. 2012b); thus, the combined
selection of the five favorable alleles associated with TSW is a
readily applicable strategy involving indirect yield improvement
through yield components (Shi et al. 2009; Wang et al. 2012b).

Marker effect and stability
The majority of the associated QTL detected in biparental
populations explained larger proportions of the variance than
those detected in AM studies (Stich et al. 2008; Honsdorf
et al. 2010; Pasam et al. 2012). Conversely, bias of biparental
populations leads to an overestimation of the QTL effect,
especially in small populations (Melchinger et al. 2004). In our
study, the variance explained by the associated markers ranged
0.5–18.5% (Table 3). Although no comparisons can bemadewith
the non‐existing previous QTL studies in flax for agronomic
traits, these estimates are likely minimum estimates of the real
QTL effects because incomplete LD between marker and QTL
leads to an underestimation of the variance explained by the
QTL (Honsdorf et al. 2010; Würschum 2012). Comparable results
between biparental mapping population QTL analysis and AM
should be observed when LD is perfect (r2¼ 1) and the same
alleles segregate in both populations (Myles et al. 2009). Even if
LD was perfect, underestimation of the phenotypic variance
could ensue from allelic frequency differential in the AM
population (Stich et al. 2008). The maximum proportion of the
variance explained by amarker is observed for allele frequencies
of 0.5, as expected in biparental populations such as
recombinant inbred lines or F1‐derived doubled haploids. For a
germplasm collection, the allele frequencies are expected to be
considerably different from 0.5, especially when multi‐allelic
markers such as SSRs are used (Stich et al. 2008). Thus, the
proportion of the variance explained by a marker is notably
lower despite the same underlying allelic effect (Stich
et al. 2008). As a result, when AM is conducted with suitable
marker density and the phenotypes are measured in represen-
tative environments, the variance explained by the associated
markers should provide a more accurate estimation of the
impact that the favorable alleleswill have in a breedingprogram.
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Quantitative trait loci with major effects and stable
expression across environments and genetic backgrounds are
better for MAS. Associations were declared only for markers
significant in at least half of the tested environments and, using
multivariate analyses, we estimated their stability and effects
(Table 4, Figure 3A). This approach enabled the identification of
MAS candidate markers such as Lu2532, Lu526, and Lu943 that
exhibited both high stability and large effects on TSW and
flowering traits. Other associatedmarkers identified herein also
may be useful for breeding because they all had moderate
stability, although few had marginal R2‐values.

Molecular breeding aims to select the most valuable
genotypes or alleles and to combine them in developing a
desirable cultivar (Zhang et al. 2012). The identification of
favorable alleles helps in selecting parents for crosses to
ensure the pyramiding of the maximum number of favorable
alleles in the best genetic background. In rice, linear correlation
between TSW and favorable alleles was reported (Wang
et al. 2012b; Zhang et al. 2012). We observed the same in
linseed, an observation that should be carefully considered
because the additive effects of the five QTL could be
capitalized upon to directly improve TSW and indirectly yield.
Interestingly, none of the modern linseed cultivars carried the
five favorable alleles, indicating that further improvement of
TSW within the modern linseed gene pool is feasible by MAS.
The new Canadian cultivar AAC Bravo registered in 2012,
possesses high TSW (6.8 g), that is, well above the current
Canadian linseed varieties ranging 5–5.5 g, and yields similar to
CDC Bethune (S. Duguid, pers. comm., 2013). Independent
marker testing of this variety that was not part of the core
collection, showed that it possesses four of the five TSW
favorable alleles (data not shown). In addition to providing
validation to our TSWmarkers, AAC Bravo illustrates a practical
example of indirect yield improvement through yield compo-
nents. However, additional validation in biparental populations
testing various genetic backgrounds is warranted before
implementation of molecular breeding strategies.

The current study provides initial insights into the genomic
regions underlying agronomics traits. Although only 12 marker‐
trait associations were identified for six agronomic traits, these
markers were consistent across environments and mostly
stable. An attribute of AM is the identification and validation of
favorable alleles in germplasm collections (Wang et al. 2012b).
The accessions carrying favorable alleles, especially for TSW,
will be useful to ensure their transfer into the best modern
linseed cultivars. To further disentangle the genetic bases of
yield and yield‐related traits, marker density will be increased
with thousands of single nucleotide polymorphism markers
obtained by the re‐sequencing of the entire core collection.
This resource should enable us to take advantage of the
existing and comprehensive phenotypic data and the germ-
plasm resources represented in the Canadian flax core
collection (Diederichsen et al. 2013).

MATERIALS AND METHODS
Plant material, genotyping, and field trials
The Canadian flax core collection assessed in this study
contains 381 accessions selected by Diederichsen et al. (2013)
and nine accessions of relevance to recent Canadian flax
breeding programs. The 390 accessions were genotyped with

464 SSR markers (Roose‐Amsaleg et al. 2006; Cloutier
et al. 2009, 2012a; Deng et al. 2010, 2011) distributed across
the 15 linkage groups of flax (Cloutier et al., 2012b). All
accessionswere evaluated during 4 years (2009, 2010, 2011, and
2012) at the Morden Research Station, Morden, Manitoba
(MB), and at the Kernen Research Farm located near
Saskatoon, Saskatchewan (SK), Canada. A type‐2 modified
augmented design (MAD) (Lin and Poushinsky 1985) was used
for the field experiments from which phenotyping data was
collected for nine agronomic traits. Main plots were arranged
in grids of 10 rows and 10 columns. Each main plot was divided
into five paralleled subplots (2m� 2mwith 20 cm row spacing)
with a plot control (CDC Bethune) located in the center.
Additional subplot controls (Hanley and Macbeth) were
assigned to five randomly selected main plots.

Phenotyping of agronomic traits
Yield and its components including TSW, SPB, and BPA were
obtained by harvesting two 0.5m sections of a row from the
central part of each subplot. The boll weight fromeach0.5m row
was measured to obtain the BPA. Four 25 boll subsamples were
counted for each 0.5m row which were weighed and threshed.
The seeds from each subsample were counted and weighed to
obtain the SPB and TSW. FL 5% and FL 95% were recorded as the
number of days between sowing and when 5% and 95% of the
flowers had opened, respectively. Plant height (in cm) was
recorded atmaturity using the average of 10 plants located in the
center of the subplots. Plant branching was evaluated according
to Kulpa and Danert (1962) using a 1–6 scale which describes PB
as the ratio of the total stem lengthwithout sidebranches to that
with side branches as follows: 1¼ 1/1, 2¼ 1/2, 3¼ 1/3, 4¼ 1/4,
5¼ 1/5, and 6¼ 1/6. Plant branching ratings of five and six
correspond to the typical fiber flaxwith long stems and bolls only
in the upper part of the plants while ratings of three and four
correspond to intermediate flax or linseed. Lodging resistance
was scored using a 1–7 scalewhere 1¼ upright, 3¼ intermediate,
and 7¼ lodged. The number of environments in which each
agronomic trait was assessed differed between traits as
indicated in Table 1.

Statistical analysis
Adjusted datawas obtained for each trait as previously described
based on the MAD (You et al. 2013). Normal distribution of the
adjusted agronomic trait data was tested using the Shapiro‐Wilk
test (Shapiro and Wilk 1965) and normal probability plots. Traits
with significant deviation from a normal distribution were log‐
transformed prior to AM analysis including FL 95% (SK12), PH
(SK11), and PB (MB09, SK10, andMB11). The adjusted phenotypic
valueswere used to estimate the variance components using the
GLM procedure in SAS version 9.1 (SAS Institute 2004) as
described in You et al. (2013). Broad sense heritability (H) across
years within location was estimated to elucidate the location
effect on each agronomic trait as follows:

H ¼ s2
G=½s2

G þ ðs2
GE=eÞ þ ðs2

e=erÞ�

where s2
G, s

2
GE, s

2
e, e, and r correspond to the genetic variance,

the genetic by environment interaction variance, the residual
variance, the number of environments, and the replications per
environment, respectively. Pearson’s correlation coefficients
were calculated to express the relationships between
agronomic traits.
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Population structure and LD
Population structure and LD analyses for this core collection
were previously reported (Soto‐Cerda et al. 2013). Briefly, the
flax core collection was assessed with 259 mapped neutral SSR
loci which indicated that all accessionswere organized into two
major groups (G1 and G3) and one admixed group (G2) with a
weak population structure (FST¼ 0.09). G1 included mostly
accessions from South Asia, Western Europe, and South
America, while G3 included accessions fromNorth America and
Eastern Europe (Soto‐Cerda et al. 2013). A relatively fast
genome‐wide LD decay of approximately 1 cM (r2¼ 0.1) was
estimated. To determine whether the nine agronomic traits
differed between the two major groups as a consequence of
the population structure, we applied the Kruskal–Wallis non‐
parametric test (Kruskal and Wallis 1952). For the significantly
different traits (P< 0.05), a GLM was fitted to estimate the
amount of phenotypic variation explained by the population
structure as estimated by the membership coefficient (Q)
matrix and the PCA, considering traits as dependent variables
and Q and PCAs as fixed.

Association mapping
The adjusted phenotypic values of the agronomic traits were
used for AM. Five AM models were tested in TASSEL 2.1
(Bradbury et al. 2007) including two GLMs and three MLMs.
The first GLM incorporated the Qmatrix as the fixed covariate
while the second used PCA (Price et al. 2006). The first MLM
incorporated the K (Yu et al. 2006) as a random effect only,
while the second and third used in addition to the Qmatrix and
PCA as fixed covariates, respectively. The Q matrix was
estimated using 259 mapped neutral SSRs (Soto‐Cerda
et al. 2013). The PCA matrix calculated in TASSEL 2.1 retained
the first three components. The K matrix was constructed on
the basis of 448 SSRs using SPAGeDi (Hardy and Vekemans
2002). All negative values between individuals were set to zero
(Yu et al. 2006). The best AM model was selected using
cumulative P–P plots. For the AM analysis, only MAF of more
than 0.05 were retained (Breseghello and Sorrells 2006).

Association mapping analyses for the agronomic traits
were carried out for each year and location independently.
Correction for multiple testing was performed using the
estimated false discovery (qFDR) values (Benjamini and
Hochberg 1995). The q values were calculated with the
Q‐Value R package using the smoother method (Storey and
Tibshirani 2003). Markers with qFDR of less than 0.01 in at least
half of the tested environments were considered significant.
For markers significantly associated with a trait, a GLM with all
fixed‐effect terms was used to estimate the amount of
phenotypic variation explained by each marker (R2). Allelic
effects of the significant marker loci were calculated as the
difference between the average phenotypic values of the
homozygous alleles withMAF greater than 0.05. The significant
differences between the allele means were estimated by the
Kruskal‐Wallis non‐parametric test (Kruskal and Wallis 1952)
and visualized as box plots.

Stability and effect of significant markers
Marker effects were calculated as the difference between the
average values of the two most contrasting homozygous
classes in each environment (defined as location‐year), and
significance between allele means was evaluated using the
Kruskal‐Wallis non‐parametric test (Kruskal and Wallis 1952).

Marker stability was estimated using the AMMI model (Zobel
et al. 1988; Gauch 1992) in GenStat 14 (VSN International 2011).
Markers with an IPCA1 near zero are more stable than those
with positive or negative values. The ASV (Purchase 1997) were
calculated using the following formula:

ASV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSIPCA1
SSIPCA2

ðIPCA1Þ2 þ ðIPCA2Þ2
r

where SSIPCA1 and SSIPCA2 are the sum of squares of the
interactions of the first and second PCAs, respectively. We
defined ASV values in the range of 0 to 1, as indicative of high
stability across environments. In addition, the stability and
effect of associated markers/QTL were graphically displayed
using the QQE (QTL main effect and QTL‐by‐environment
interaction) approach where the first two IPCAs were plotted
in a QQE biplot (Yan and Tinker 2005) using GenStat 14.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online
version of this article:
Figure S1. Box plots for nine agronomic traits for the twomajor
groups G1 and G3. Significant differences for traits between
major groups was tested by the Kruskal–Wallis test (P< 0.05)
Figure S2. Structure analysis within major groups and model
comparison for plant height
(A) and (D) Estimation of the most probable number of
subgroups (K) using the ad hoc DK (Evanno et al. 2005) for K
values ranging from 1–5 within G1 and G3, respectively. (B) and
(E) Estimation of the hypothetical number of subpopulations
using STRUCTURE (Pritchard et al. 2000) within G1 and G3,
respectively
Each individual is represented by a vertical column partitioned
into K colored segments proportional to their coefficient
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of membership (Q) to each subpopulation. (C) and (F)
probability–probability (P–P) plots of observed versus
expected �log10(P) values for plant height evaluated with
five associationmappingmodelswithin G1 and G3, respectively.
Q general linear model using the Q matrix, PCA general linear
model using the PCA matrix, K mixed linear model using the
kinship matrix, QþK mixed linear model using the Q and K

matrices, PCAþ K mixed linear model using the PCA and K
matrices
Table S1. ANOVA for nine agronomic traits in the flax core
collection, namely yield, bolls per area (BPA), 1 000 seedweight
(TSW), seeds per boll (SPB), start of flowering (FL 5%), end of
flowering (FL 95%), plant height (PH), plant branching (PB), and
lodging (LDG)
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