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This article, written by members
of the International Union of
Basic and Clinical Pharmacology
Committee on Receptor
Nomenclature and Drug
Classification (NC-IUPHAR)
subcommittee for epigenetic
targets (chromatin-modifying
enzymes and bromodomain-
containing proteins), reviews our
current understanding of their
structure, pharmacology and
functions, and their likely
physiological roles in health and
disease. More information on
these families of targets can be
found in the Concise Guide to
PHARMACOLOGY
(http://onlinelibrary.wiley.com/
doi/10.1111/bph.12445/abstract)
and for each member of the
families in the corresponding
database (http://www
.guidetopharmacology.org/GRAC/
ReceptorFamiliesForward?type
=ENZYME&familyId=865;
http://dev.guidetopharmacology
.org/GRAC/ReceptorFamilies
Forward?type=OTHER&familyId
=866).

The properties of a cell are determined both genetically by the DNA sequence of its
genes and epigenetically through processes that regulate the pattern, timing and
magnitude of expression of its genes. While the genetic basis of disease has been a
topic of intense study for decades, recent years have seen a dramatic increase in the
understanding of epigenetic regulatory mechanisms and a growing appreciation
that epigenetic misregulation makes a significant contribution to human disease.
Several large protein families have been identified that act in different ways to
control the expression of genes through epigenetic mechanisms. Many of these
protein families are finally proving tractable for the development of small molecules
that modulate their function and represent new target classes for drug discovery.
Here, we provide an overview of some of the key epigenetic regulatory proteins
and discuss progress towards the development of pharmacological tools for use in
research and therapy.
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Abbreviations
α-KG, α-ketoglutarate; ADMA, asymmetrical- dimethylarginine; Apo-A1, apolipoprotein A1; BCP,
bromodomain-containing protein; BET, bromodomain and extraterminal; BRD, bromodomain; DNMT,
DNA-methyltransferase; EAE, experimental autoimmune encephalomyelitis; FAD, flavin adenine dinucleotide; HDAC,
histone deacetylase; IPF, idiopathic pulmonary fibrosis; Jmj, jumonji C-domain; KAT, lysine acetyltransferase; KDAC,
lysine deacetylase; KDM, lysine-specific demethylase; KMT, lysine methyltransferase; MMA, mono-methylated arginine;
NET, neutrophil extracellular trap; NMC, NUT midline carcinoma; NOG, N-oxalylglycine; NUT, nuclear protein in
testis; PAD, peptidyl-arginine deiminase; PCPA, trans-2-phenylcyclopropylamine; PRMT, arginine methyltransferase;
SAHA, suberoylanilide hydroxamic acid; SAM, S-adenosyl methionine; SDMA, disymmetrical-dimethylarginine; SIRT,
sirtuin; SNP, single nucleotide polymorphism; TET, ten-eleven translocation

Links to online information in the IUPHAR/BPS Guide to PHARMACOLOGY

TARGETS

ASH1L HDA8 PRDM2

ATAD2 HDAC9 PRMT1

ATAD2B JMJD1C PRMT10

BAZ1A KAT2A PRMT2

BAZ1B KAT2B PRMT3

BAZ2A KAT5 PRMT5

BAZ2B KAT6A PRMT6

BPTF KAT6B PRMT7

BRD1 KAT7 PRMT8

BRD2 KAT8 SETD1A

BRD3 KDM1A SETD1B

BRD4 KDM1B SETD2

BRD7 KDM2A SETD7

BRD8 KDM2B SETD8

BRD9 KDM3A SETDB1

BRDT KDM3B SETDB2

BRPF1 KDM4A SIRT1

BRPF3 KDM4B SIRT2

BRWD1 KDM4C SIRT3

BRWD3 KDM4D SIRT4

CARM1 KDM4E SIRT5

CECR2 KDM5A SIRT6

CLOCK KDM5B SIRT7

CREBBP KDM5C SMARCA2

DOT1L KDM5D SMARCA4

EHMT1 KDM6A SMYD2

EHMT2 KDM6B SP100

EP300 KDM7A SP110

EZH2 KDM8 SP140

FBXO10 KMT2A SP140L

FBXO10 KMT2B SUV39H1

FBXO11 KMT2C SUV39H2

GTF3C4 KMT2D SUV420H1

HAT1 KMT2E SUV420H2

HDAC1 NCOA1 TAF1

HDAC10 NCOA2 TAF1L

HDAC11 NCOA3 TRIM24

HDAC2 NSD1 TRIM28

HDAC3 PBRM1 TRIM33

HDAC4 PHF2 TRIM66

HDAC5 PHF8 ZMYND11

HDAC6 PHIP ZMYND8

HDAC7

LIGANDS

AMI-1

anacardic acid

AZ505

benzo[d]imidazole inhibitors of PRMT4 from BMS

BIX-01294

BMS pyrazole inhibitor 7f

BRD4770

bromo-deaza-SAH

butyric acid

C21

C646

Compound 1 (allosteric)

curcumin

daminozide

EI1

entinostat

epigallocatechin-3-gallate

EPZ-5676

EPZ-6438

garcinol

GSK126

GSK-J1

H3-CoA-20

I-BET-762

Lys-CoA

mocetinostat

nahuoic acid A

NCL-1

OG-L002

PBIT

plumbagin

RM65

rocilinostat

romidepsin

RVX 208

SGC0946

trichostatin A

UNC0638

UNC0642

valproic acid

vorinostat

This table lists protein targets and ligands which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data
from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and the Concise Guide to PHARMACOLOGY 2013/14 (Alexander et al., 2013a, Alexander
et al., 2013b).
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Introduction
The properties of a cell are determined by its specific genetic
material and the pattern in which its genes and, ultimately,
proteins are expressed. While the transmissibility of the
genome is well recognized, the fact that cellular phenotypes
can remain stable through cell division – a dividing T-cell
yields two T-cells, a dividing hepatocyte yields two hepato-
cytes, etc. – indicates that specific gene expression patterns
are also heritable in daughter cells. The latter type of inher-
itance is termed epigenetic (literally, ‘above genetic’) because
the generation and maintenance of differentiated cell pheno-
types is not due to changes in the nucleotide sequence. While
heritable, epigenetic memory is also malleable, in that gene
expression patterns can change in response to environmental
stimuli. This allows for the development of different cell
lineages during processes such as embryogenesis or haemat-
opoiesis, and also for more subtle changes in cell function in
response to physiological requirements, or importantly
pathological stress that occurs during adaptive immunity.

Epigenetic control of gene expression is linked to the
manner in which eukaryotic DNA associates with nuclear
proteins, in a structure known as chromatin. The basic unit of
chromatin is the nucleosome, which consists of approxi-
mately 147 bp of DNA wrapped around an octamer of core
histones (which includes two each of histones H3, H4, H2A
and H2B) (Luger et al., 1997; Davey et al., 2002). Further
higher order structuring of nucleosomes through interactions
with additional histone and non-histone proteins allows for
tight compaction of the DNA into the limited volume of the
nucleus (Talbert and Henikoff, 2010). In addition to permit-
ting efficient DNA packing, chromatin provides an intricate
scaffold for interacting with nuclear proteins such as those of
the gene transcription machinery. Importantly, chromatin is
subject to modifications that generate highly ordered sophis-
ticated heterogeneity in its structure and, as a consequence,
in the potential for different gene regions to be expressed.
This recognition of and response to specific combinatorial
patterns of modifications allows the complex epigenetic code
to be translated into selective control of coordinated clusters
of genes in transcriptional modules (Taverna et al., 2007;
Hardison and Taylor, 2012).

Chromatin can be altered by modifications to both the
DNA and the associated histone proteins. At the level of the
DNA, the main modification described so far is methylation of
cytosine residues, which occurs predominantly in the context
of the dinucleotide sequence CpG and is mediated by
members of the DNA-methyltransferase family (DNMT1,
DNMT3A, DNMT3B) (Okano et al., 1999; Pradhan et al., 1999).
DNA methylation leads to suppression of gene transcription
through a number of mechanisms, including direct inhibition
of transcription factor binding, which is necessary for recruit-
ment of the transcription machinery, and attraction of
methyl-CpG-binding domain-containing proteins that associ-
ate with transcriptionally repressive protein complexes
(Reddington et al., 2013). Methyl marks can be removed from
DNA in a passive manner through a failure to remethylate
daughter DNA strands during cell division, or in an active
process involving ten-eleven translocation (TET1-3) family
proteins or DNA glycosylases and repair-mediated excision of
modified bases (He et al., 2011b; Ito et al., 2011; Maiti and

Drohat, 2011; Spruijt et al., 2013). Notably, TET enzymes gene-
rate intermediates in the pathway between 5-methylcytosine
and cytosine, including 5-hydroxymethylcytosine, 5-
formylcytosine and 5-carboxycytosine, which can be detected
in cellular chromatin and may serve as epigenetic marks in
their own right (Delatte and Fuks, 2013). The therapeutic
potential of targeting DNA methylation including the activity
of licensed pan-DNMT inhibitors to impact certain cancers has
been reviewed recently (Carey et al., 2012), and will not be
discussed further here.

Histone modification has been studied most extensively
for the core histones of the nucleosome. Many different
amino acids in these proteins are subject to post-translational
modification, although the majority of these occur in the
N-terminal or C-terminal ‘tails’ which extend outside of the
main, globular histone domains (Kouzarides, 2007). By con-
trast to the relatively limited complexity of DNA methylation,
histones can be modified in a wide variety of ways; by some
accounts up to 60 different chemical modifications of his-
tones have been documented, including acetylation, meth-
ylation, phosphorylation, ubiquitination, sumoylation, ADP
ribosylation, crotonylation and biotinylation (Stanley et al.,
2001; Kouzarides, 2007; Tan et al., 2011; Nikolov and Fischle,
2013). As discussed further below, several families of enzymes
responsible for the addition (writers) or removal (erasers) of
these modifications have been identified. The multiplicity of
modifications and amino acid substrates can be arranged into
a very high number of distinct combinations, which has
prompted the hypothesis that the different patterns represent
a ‘histone code’ that provides specific instructions for a given
region of DNA (Strahl and Allis, 2000). Although there is
presently little understanding of a detailed code, the func-
tional relevance of histone modification to gene regulation is
evident from observed correlations between the presence of
certain combinations of marks and gene expression.

Histone modifications are thought to impact gene expres-
sion in two broad ways. First, certain modifications such as
acetylation alter the net charge of the histone, weakening the
DNA–histone interaction and yielding a chromatin structure
that is more open and hence accessible to transcription factors
and gene expression machinery (Hong et al., 1993). Second,
and potentially more importantly, histone modifications
serve as recognition marks for proteins termed epigenetic
‘readers’, which can specifically bind to these modified amino
acids (Taverna et al., 2007). Thus, while writers and erasers
produce the histone code, it is the epigenetic readers that
decipher and translate this information (Figure 1). Reader
proteins typically possess activities that lead to activation or
suppression of gene expression, and/or are able to recruit
other proteins that possess such functions. As is the case for
the epigenetic writers and erasers, large families of readers able
to recognize different modified amino acids have been iden-
tified and recently reviewed (Arrowsmith et al., 2012).

Together, DNA and histone modifications help control the
‘transcribability’ of genes. Thus, linked to the state of the
chromatin, a gene or gene cluster may be silenced, constitu-
tively expressed or poised for expression (or suppression) in
response to a specific cell signal (Kouzarides, 2007). The
dynamic nature of chromatin modifications provides a
mechanism for cells to adapt their gene expression pattern in
response to environmental cues. This is now well documented

BJPTargets and pharmacological tools in epigenetics

British Journal of Pharmacology (2014) 171 4981–5010 4983



for fundamental biological processes such as the differentia-
tion of activated T-cells into effector subsets, where the capac-
ity of the cells to produce different cytokines is controlled by
epigenetic modifications in cytokine gene regions that are
induced by specific conditions of T-cell activation (Kanno
et al., 2012). However, there is also growing evidence that
aberrant epigenetic states are associated with a range of
pathologies, including inflammatory, neuropsychiatric, car-
diovascular, and metabolic diseases and cancer. The identifi-
cation of the proteins responsible for writing, erasing and
reading chromatin modifications has opened up a new area of
drug discovery, with the hope of being able to reset abnormal
epigenetic landscapes back to normal and thus provide lasting
health benefits in these diseases. In this review, we discuss
early progress in developing small molecule pharmacological
modulators of epigenetic targets, focusing on a subset of his-
tone writers, erasers and readers where understanding of bio-
logical relevance and chemical tractability is most advanced.

Lysine acetyltransferases

Multiple lysine residues in each of the core histones are
subject to acetylation. Histone acetylation is mediated by a
family of enzymes, the lysine acetyltransferases (KATs), which
utilize acetyl CoA as a cofactor to catalyse the transfer of an

acetyl group to the ε-amino group of lysine side chains (Roth
et al., 2001). At least 17 mammalian KATs able to acetylate
histones have been identified, although the relatively low
sequence homology among protein acetyltransferases sug-
gests that many such enzymes could yet be discovered (Yuan
and Marmorstein, 2012). These enzymes have traditionally
been grouped into families based on similarity in the
sequence of their catalytic domains and biochemical mecha-
nism of acetyl transfer, and are listed utilizing the simplified
nomenclature proposed by Allis et al. (Sterner and Berger,
2000; Roth et al., 2001; Allis et al., 2007; Furdas et al., 2012) in
Table 1. Different KATs have been shown to preferentially
actetylate distinct lysine residues in histones, although con-
siderable overlap appears to exist.

Two things are worth noting with respect to the designa-
tion of these enzymes as histone acetyltransferases. First,
several of these KATs are known to also acetylate non-histone
proteins, which may make an important contribution to their
function; this idea is supported by the detection of lysine
acetylation in nearly 2000 proteins involved in many key
cellular processes (Choudhary et al., 2009). Second, in some
cases, enzymes have only been shown directly to acetylate
histones in vitro, and their ability to do so in a cellular context
remains unknown.

Acetylation of histone tails has long been associated with
active gene transcription (Marushige, 1976). This is linked to

Figure 1
Histone modification in the regulation of chromatin structure. Nucleosomes, which represent the core subunits of chromatin, are subject to
numerous modifications that influence chromatin structure and gene expression. Many different amino acids in the core histones can be altered
by enzymes termed epigenetic ‘writers’ that generate various post-translational modifications, such as acetylation, methylation and phosporyla-
tion. These marks can be removed by ‘erasers’ and are recognised by ‘reader’ proteins which contain domains capable of specific recognition of
the modified peptide sequences.
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the ability of acetylation to generate a more open chromatin
structure (Hong et al., 1993), and to the recruitment of spe-
cific reader proteins able to bind to acetylated histones (see
below). Not surprisingly, therefore, many histone acetyltrans-
ferases are known to function in transcriptional activation.
However, histone acetylation is also known to influence
many other processes, including cell cycle progression, chro-
mosome dynamics, DNA recombination, DNA repair and cel-
lular apoptosis, indicating that acetylation plays a central role
in regulating chromatin-related functions (Khan and Khan,
2010).

Misregulation of histone acetyltransferase activity has
been linked to many different pathogenic states, including
multiple cancers, neurodegenerative disorders, plus meta-
bolic, respiratory, inflammatory and cardiovascular diseases;
as such, KATs represent attractive targets for drug develop-
ment (Adcock and Lee, 2006; Avvakumov and Cote, 2007;
Grabiec et al., 2008; Ghizzoni et al., 2011; Iyer et al., 2011;
Pirooznia and Elefant, 2013). Several different types of KAT
inhibitors have been described (Table 2). Peptide-based bisub-
strate inhibitors, in which CoA is covalently linked to the ζ
nitrogen of the target lysine within histone peptides, act as
structural mimics and can show sub-micromolar potency and
selectivity between KAT subfamilies (Lau et al., 2000).
However, since these inhibitors lack cellular permeability,
they have limited use for evaluation of the cellular function
of the KATs. Natural products isolated from a number of
different plants, as well as their synthetic derivatives,

have been shown to possess KAT inhibitory activity
(Balasubramanyam et al., 2003; 2004a,b; Choi et al., 2009;
Ravindra et al., 2009). In addition, small molecule KAT
inhibitors have been identified by high-throughput bio-
chemical and computational (virtual) screens (Gorsuch et al.,
2009; Bowers et al., 2010). One compound identified from a
virtual screen, C646, was reported to be selective for
KAT3A/3B over other KATs and was shown to inhibit the
growth of tumour cells in vitro (Bowers et al., 2010).

Overall, however, the development of therapeutic KAT
inhibitors is at an early stage, and current compounds are
suboptimal in a number of ways, because they generally lack
potency and selectivity. Nevertheless, one natural product
KAT inhibitor, curcumin, has entered into clinical trials for a
number of diseases, including Alzheimer’s disease, rheuma-
toid arthritis, cystic fibrosis and psoriasis; there are currently
85 studies at different stages in ClincalTrials.gov that list
curcumin or related compounds. As this compound is known
to affect a number of other epigenetic and non-epigenetic
targets, including DNMT I and lysine deacetylases (KDACs),
linking potential efficacy with effects on KATs will not be
straightforward.

Lysine deacetylases

The reversal of histone acetylation is mediated by members of
the KDAC family, which comprises 18 enzymes that can be

Table 1
Lysine acetyltransferases

Family
Proposed
symbol* Synonyms and other symbols

Uni-ProtKB/Swiss-Prot
assession number

GNAT KAT2A GCN5, GCN5L2, HGCN5, PCAF-b Q92830

KAT2B PCAF, P/CAF Q92831

KAT9 ELP3, FLJ10422 Q9H9T3

P300/CBP KAT3A CBP, CREBBP, RSTS, RTS Q92793

KAT3B P300, EP300 Q09472

MYST KAT5 TIP60, PLIP, HTATIP, cPLA2, HTATIP1, ESA1, ZC2HC5 Q92993

KAT6A MOZ, MYST3ZNF220, RUNXBP2, ZC2HC6A Q92794

KAT6B MORF, MYST4, querkopf, qkf, MOZ2, ZC2HC7 Q8WYB5

KAT7 HBO1, MYST2, HBOA, ZC2HC7 O95251

KAT8 hMOF, MYST1, MOF, FLJ14040, ZC2HC8 Q9H7Z6

Transcription
factor-related

KAT4 TAF1, TAF2A, BA2R, CCG1, CCGS, DYT3, NSCL2, TAFII250, DYT3/TAF1 P21675

KAT12 TFIIIC90, GTF3C4 Q9UKN8

NR co-activators KAT13A SRC1, NCOA1, F-SRC-1, NCoA-1, RIP160, bHLHe74 Q15788

KAT13B AIB1, ACTR, SRC3, NCOA3, RAC3, P/CIP, TRAM-1, cAGH16, TNRC16,
bHLHe42, SRC-3

Q9Y6Q9

KAT13C P160, NCOA2, TIF2, GRIP1, NCoA-2, bHLHe75 Q15596

KAT13D CLOCK, KIAA0334 O15516

Type B (cytoplasmic) KAT1 HAT1/HATB O14929

*Proposed symbols are those suggested by Allis et al. (2007). A list of the proposed lysine acetyltransferase names and symbols that have been
approved by the HUGO Gene Nomenclature Committee (HGNC) can be found at http://www.genenames.org/genefamilies/kdm-kat-
kmt#KAT.
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divided into four classes based on their homology to the yeast
orthologues Rpd3, HdaI and Sir2 (Gregoretti et al., 2004)
(Table 3). The class I, II and IV enzymes are termed histone
deacetylases (HDACs), while the class III deacetylases are
named sirtuins (SIRTs). The seven sirtuins (SIRT1–7) share a
conserved catalytic core domain and use NAD+ as an essential
cofactor, while HDACs contain a Zn2+ ion in their active site.
Notwithstanding the nomenclature, several sirtuins do func-
tion as HDACs, while at least one HDAC, HDAC6, appears to
be almost exclusively localized to the cytoplasm and may not
deacetylate histones in vivo (Verdel et al., 2000; Zhang et al.,
2003; Martinez-Redondo and Vaquero, 2013). In addition to

deacetylase activity, some SIRT proteins also possess other
enzymatic activities. Thus, while SIRT1–3 and SIRT7 act pri-
marily as KDACs, SIRT4 is an ADP-ribosyltransferase, SIRT5 is
a deacetylase, demalonylase, and desuccinylase, and SIRT6 is
an ADP-ribosyltransferase and a deacetylase (Roth and Chen,
2013). As for the KATs, KDACs can deacetylate many histone
and non-histone proteins.

In accordance with the key role that acetylation plays in
the regulation of chromatin structure, as well as the expan-
sive function of lysine acetylation in protein networks and
cellular signalling pathways (Choudhary et al., 2009), HDACs
have been implicated in the regulation of gene expression

Table 2
Examples of KAT inhibitors

Compound Structure
Potency
(µM)

Known KAT
target Source Reference

H3-CoA-20 0.5 KAT2B Peptide-based
bisubstrate
inhibitors

(Lau et al., 2000)

Lys-CoA 0.5 KAT3B Peptide-based
bisubstrate
inhibitors

(Lau et al., 2000)

Anacardic acid 5–8.5 KAT2B, KAT3B Cashew nut shell (Balasubramanyam
et al., 2003)

Curcumin HO

O
O OH

OH

O

25 KAT3A, KAT3B Turmeric (spice) (Balasubramanyam
et al., 2004b)

Garcinol 5–7 KAT2B, KAT3B Garcinia indica fruit
rind

(Balasubramanyam
et al., 2004a)

Epigallocatechin-3-
gallate (EGCG)

30–50 Pan-KAT Green tea (Choi et al., 2009)

Plumbagin (RTK1) 20–50 KAT3A, KAT3B,
KAT2B

Plumbago rosea
root

(Ravindra et al.,
2009)

C646 5 KAT3A, KAT3B Small molecule
virtual screen

(Bowers et al.,
2010)

BJP D F Tough et al.

4986 British Journal of Pharmacology (2014) 171 4981–5010



and in the control of many important cellular processes such
as proliferation, DNA repair and apoptosis (Lahue and
Frizzell, 2012; Li et al., 2012; Matthews et al., 2012; Yao and
Rahman, 2012; Joshi et al., 2013; Ververis et al., 2013).
Moreover, dysregulation of HDACs has been proposed to
contribute to a variety of diseases including cancer, intersti-
tial fibrosis, autoimmune and inflammatory diseases, and
metabolic disorders (Tang et al., 2013a). For this reason, con-
siderable effort has gone into the development of HDAC
inhibitors.

Most of the HDAC inhibitors generated to date show
activity against multiple family members. Among these, there
is a range in the breadth of activity (Table 4) – from those that
inhibit essentially all HDACs [e.g. trichostatin A and suber-
oylanilide hydroxamic acid (SAHA)], to some that are active
against class I and IIa HDACs (e.g. butyric acid, valproic acid),
to others that appear more selective to class I HDACs (e.g.
romidepsin, MS-275) (Khan and La Thangue, 2012) or class
IIa HDACs (Lobera et al., 2013). Experiments using such non-
selective HDAC compounds have provided much of the evi-
dence that HDAC inhibition could be effective in a range of
therapeutic areas (Grabiec et al., 2011; Tang et al., 2013a).
More recently, inhibitors with selectivity for HDAC1,
HDAC3, HDAC6 and HDAC8 have been described (Hu et al.,
2003; Schlimme et al., 2011; Cantley and Haynes, 2013;
Jochems et al., 2013). Although there is currently limited
understanding of the biological implications of targeting
individual family members, HDAC6-selective compounds
have been reported to inhibit cancer cell proliferation in vitro
and in xenograft models in vivo and to exert antidepressant
activity in a mouse model (Schlimme et al., 2011; Santo et al.,

2012; Jochems et al., 2013). The latter activity was shown to
be associated with increased acetylation of the HDAC6 target
α-tubulin rather than histone acetylation (Jochems et al.,
2013).

The ability of HDAC inhibitors to induce death, cytostasis
or differentiation of tumour cells in preclinical models, com-
bined with evidence of HDAC up-regulation in a variety of
cancers, has provided a strong rationale for progressing such
compounds into clinical trials for oncology (Giannini et al.,
2012). Presently, there are 394 trials that include the term
‘HDAC inhibitor’ recorded in ClinicalTrials.gov, with the vast
majority of these being in cancer. A large number of trials in
multiple solid and haematological tumour types are in pro-
gress, with the most promising results obtained so far being
observed when HDAC inhibitors were combined with other
agents such as proteasome inhibitors (Khan and La Thangue,
2012; Qiu et al., 2013; Richardson et al., 2013; Ververis et al.,
2013). Currently, there are two HDAC inhibitors that have
received approval from the US FDA for the treatment of
cutaneous T-cell lymphoma: vorinostat (SAHA, Zolinza®;
Merck & Co., Inc., Whitehouse Station, NJ, USA) and depsi-
peptide (romidepsin, Istodax, Celgene Corporation, Summit,
NJ, USA).

Although broadly active HDAC inhibitors are being
tested in the vast majority of trials, one HDAC1-selective
inhibitor (MGCD0103) has progressed into clinical trials
in haematological tumours, and a HDAC6-selective
inhibitor is being evaluated as a monotherapy and also in
combination with other treatments in patients with relapsed
or relapsed/refractory multiple myeloma (NCT01323751,
NCT01583283). By selectively targeting HDAC subfamily

Table 3
Lysine deacetylases

Class Symbol Cellular localization
Uni-ProtKB/Swiss-Prot
assession number

I (Rpd3) HDAC1 Nucleus Q13547

HDAC2 Nucleus Q92769

HDAC3 Nucleus O15379

HDAC8 Nucleus/cytoplasm Q9BY41

IIa (Hda1) HDAC4 Nucleus/cytoplasm P56524

HDAC5 Nucleus/cytoplasm Q9UQL6

HDAC7 Nucleus/cytoplasm Q8WUI4

HDAC9 Nucleus/cytoplasm Q9UKV0

IIb (Hda1) HDAC6 Cytoplasm Q9UBN7

HDAC10 Cytoplasm Q969S8

III (Sir) SIRT1 Nucleus/cytoplasm Q96EB6

SIRT2 Nucleus/cytoplasm Q8IXJ6

SIRT3 Mitochondria Q9NTG7

SIRT4 Mitochondria Q9Y6E7

SIRT5 Mitochondria Q9NXA8

SIRT6 Nucleus Q8N6T7

SIRT7 Nucleolus Q9NRC8

IV (Rpd3/Hda1) HDAC11 Nucleus/cytoplasm Q96DB2
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members, it is hoped that there will be an opportunity to
reduce toxic side effects associated with broadly inhibiting
lysine deacetylation and hence for an improved therapeutic
treatment window. Another strategy being evaluated in this
respect is to design compounds that will preferentially accu-
mulate in specific cell types. This is the basis behind the
HDAC inhibitor CHR-2845, a cell-permeant ester that is
metabolized to give an active acid which selectively accumu-
lates in monocytes and macrophages. This compound has
been evaluated for tolerability in patients with advanced hae-
matological malignancies (NCT00820508), and it is hoped
that this approach will be effective in haematological malig-
nancies involving cells of the monocyte lineage.

Reflecting the broad biological effects of HDAC inhibition
in preclinical studies, HDAC inhibitors have also entered into
trials in other therapeutic areas, including graft versus host
disease (NCT01111526), sickle cell disease (NCT01000155),
Huntington’s disease (NCT00212316), Rubinstein–Taybi syn-
drome (NCT01619644) and human immunodeficiency virus
(HIV; NCT01680094). In the latter study, the aim is to evalu-
ate the ability of the compound to reactivate HIV transcrip-
tion in latently infected CD4+ T-cells, which would form part
of an approach to deplete the latent pool of virus (in combi-

nation with anti-retroviral therapy). Evidence that HDAC
inhibitors can induce such HIV reactivation has come from
studies involving ex vivo compound treatment of cells from
HIV-infected individuals, although initial small scale clinical
trials have yielded conflicting results concerning the com-
bined effects of HDAC inhibition and anti-retroviral therapy
on viral load (Margolis, 2011).

Much of the interest in the SIRT family of KDACs has
focused on the function of these enzymes in metabolic,
oxidative/genotoxic, and oncogenic stress responses, where
their deacetylation of non-histone substrates may play a
predominant role. In view of the protective role of SIRTs in
these processes, a major therapeutic focus has been on the
development of SIRT activators for the treatment of ageing-
associated pathologies, including type II diabetes, cardiovas-
cular disease and neurodegeneration (Hall et al., 2013). SIRT1
activation has also been implicated in suppressing the
immune response, leading to an interest in developing SIRT
activators for treatment of autoimmune and inflammatory
diseases (Kong et al., 2013). In cancer, the role of SIRT pro-
teins is complex, with evidence for SIRTs playing roles in both
promoting and suppressing tumourigenesis (Roth and Chen,
2013).

Table 4
Examples of HDAC inhibitors

Name Structure Potency HDAC specificity Clinical trial (cancer)

TSA (trichostatin A) 1.8 nM (HDAC5) Class I, II, IV –

Vorinistat (SAHA,
suberoylanilide
hydroxamic acid)

10 nM (HDAC1,2,3,8,9) Class I, II, IV FDA approved (2006)
Phase II, III

Romidepsin (FK228) 36–47 nM (HDAC1,2) Class I FDA approved (2009)
Phase I, II

Entinostat (MS-275) 500 nM (HDAC1,2,3,9) Class I Phase II

Mocetinostat
(MGCD0103)

0.15–1.66 µM
(HDAC1,2,3)

HDAC1 Phase I, II

Butyric acid mM Class I, II Phase II

Valproic acid
OH

O 0.7–20 mM (HDAC1,2,3) Class I, II Phase I, II, III

ACY-1215 (rocilinostat) 5 nM HDAC6 Phase I/II
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Small molecules capable of SIRT1 activation have been
identified, including the weakly active polyphenol com-
pound resveratrol, a component of red wine, and a series of
compounds structurally unrelated to resveratrol with 1000-
fold greater potency against SIRT1 (Dittenhafer-Reed et al.,
2011). SIRT1 activators became the subject of controversy
when it was shown that these compounds activated enzyme
activity towards fluorescently labelled peptide substrates but
not their unlabelled counterparts, suggesting a possible assay
artefact (Kaeberlein et al., 2005; Pacholec et al., 2010).
However, an intriguing explanation for these observations
was subsequently provided when it was shown that the bulky
hydrophobic fluorophore tag on the assay peptide mimicked
hydrophobic amino acids present in a subset of natural SIRT1
protein substrates that are selectively subject to increased
deacetylation after SIRT1 activation (Hubbard et al., 2013;
Lakshminarasimhan et al., 2013). In addition, a single amino
acid substitution outside of the catalytic site in SIRT1 was
found to abolish activation of the enzyme as well as the
cellular effects mediated by SIRT1 activators, demonstrating
that SIRT1 is indeed the target of these compounds.

Trials of resveratrol in obese humans produced mild
improvements in a number of different clinical parameters
including systolic blood pressure, circulating cytokines, intra-
hepatic fat content, intramyocellular lipid content, and
muscle mitochondrial oxidative phosphorylation capacity
(Timmers et al., 2011). However, because resveratrol has
known activity against a number of substrates besides SIRT1,
including AMP-activated kinase, a fuel-sensing enzyme that is
responsive to decreases in cellular energy status, the mecha-
nism by which resveratrol mediates these effects, remains a
subject of debate. Early phase clinical trials investigating
higher potency SIRT1 activators (SRT2104, SRT2379) in both
metabolic diseases and inflammation have been conducted
(Libri et al., 2012; Hoffmann et al., 2013). Published results
for SRT2104 indicate that this compound appears to be safe
and well tolerated and associated with an improved lipid
profile (Libri et al., 2012).

Lysine methyltransferases

A large number of enzymes capable of transferring methyl
groups to lysine residues have been described. The 24 human
lysine methyltransferases (KMTs) categorized by Allis et al.
(2007) are listed in Table 5. All KMTs except one [KMT4/
Dot1L, a unique KMT, which belongs to the class I methyl-
transferase family (Min et al., 2003)] contain a catalytic
domain of approximately 130 amino acids, referred to as the
SET domain; both SET domain-containing enzymes and
KMT4 use S-adenosyl methionine (SAM) as the methyl donor.
Based on a systematic screen for SET domains in the human
genome, 51 putative KMTs have been identified, although the
enzymatic activity of many of these is yet to be investigated
(Copeland et al., 2009; Richon et al., 2011). KMTs exhibit
selectivity for both the lysine residue they can modify and
the degree to which that lysine residue is methylated. Thus,
while lysine residues can only accept a single acetyl group,
lysines can be mono-, di- or trimethylated. The site specificity
of lysine methylation is determined by recognition of amino
acid residues flanking the target lysine, whereas particular

amino acids within the lysine-binding channel of the KMTs
play an important role in dictating the methylation multi-
plicity of the SET domain (Qian and Zhou, 2006).

In contrast to histone acetylation, histone methylation
does not alter the charge of the histone tail, but instead
influences its basicity and hydrophobicity (Migliori et al.,
2010). As for acetylation, methylated lysines also serve as
recognition marks for a large family of methyl reader pro-
teins, which show selectivity for both the specific lysine
residue modified and the degree of methylation. As a conse-
quence, different types of lysine methylation are associated
with divergent functions in the regulation of gene expres-
sion. For example, trimethylation of H3K4 (H3K4me3) is
commonly found near the transcription start site of genes
that are actively expressed or poised for expression, whereas
H3K27me3 is a mark that is associated with genes for which
expression is suppressed (Kouzarides, 2007). Conversely, the
presence of H3K4me1 is tightly correlated with the position
of gene enhancers, which are non-coding regions of DNA
that promote the expression of genes that are often located a
considerable distance away (Heintzman et al., 2009).

In addition to the histone tail, the residues within the
core of the nucleosome can also be modified by methylation.
For instance, H3K79 is subject to methylation by KMT4, and
methylated H3K79 is associated with active gene transcrip-
tion (Feng et al., 2002; Steger et al., 2008; Kim et al., 2013).
Lysine 20 is the only well-characterized methylation site on
histone H4, with methylated H4K20 being linked with tran-
scriptional repression and a number of biological processes,
including the DNA damage response, mitotic condensation
and DNA replication (Jorgensen et al., 2013); the transition
from H4K20me1 to me2 and me3 was recently associated
with cellular quiescence (Evertts et al., 2013).

Misregulation of KMTs has been linked to a variety of
human diseases, and therapeutic interest in the development
of KMT inhibitors is particularly strong in cancer, where the
pathological involvement of KMT overexpression, mutation
and translocation has been shown (Copeland et al., 2009).
One interesting example of a potential cancer target is KMT4,
which is implicated in leukaemias involving chromosomal
translocation of another KMT, KMT2A (MLL1). In such
cancers, KMT4 is recruited into the transcriptional complex
via MLL-fusion partners, and aberrant methylation of H3K79
is considered to play a causative role in disease (Steger et al.,
2008; Bernt et al., 2011). Another target of major interest is
KMT6, which is a key mediator of di- and trimethylation of
H3K27 and is overexpressed in many types of cancers (Chang
and Hung, 2012).

In recent years, small molecule KMT inhibitors have been
developed that are directed at either the SAM or the substrate
site of the enzymes (Wigle and Copeland, 2013). Inhibitors
have been reported for various KMTs, including KMT4,
KMT6, KMT1C/D, KMT3C and KMT5A (Table 6). Compounds
targeting KMT4, KMT1C/D and KMT6 have shown promising
efficacy in preclinical tumour models (Daigle et al., 2011;
2013; Yuan and Marmorstein, 2012; Yuan et al., 2012;
Knutson et al., 2013; Liu et al., 2013), strengthening the
rationale for targeting these enzymes in cancer. Building on
this rationale, the KMT6 inhibitor E7438 is currently being
trialled in patients with advanced solid tumours or with B-cell
lymphomas (Knutson et al., 2013) (NCT01897571) while the
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KMT4 inhibitor EPZ-5676 has recently entered phase I studies
in patients with advanced haematological malignancies
(NCT01684150) (Copeland, 2013; Daigle et al., 2013).

Lysine demethylases

Lysine-specific demethylases (KDMs) capable of removing
methyl groups from histones are classified into two families
(Table 7). One family is comprised of KDM1A (LSD1) and the
closely related KDM1B (LSD2), demethylate lysines, utilizing
a flavin adenine dinucleotide (FAD)-dependent oxidation
mechanism (Shi et al., 2004; Karytinos et al., 2009). KDM1A
and KDM1B are able to demethylate mono- and dimethylated
lysines, but cannot remove the methyl group from trimeth-
ylated lysine because of the dependence of the demethylation

mechanism on a protonated amine (Hou and Yu, 2010). The
second much larger family of histone demethylases is formed
by the jumonji C-domain (Jmj)-containing enzymes, which
catalyse lysine demethylation through a hydroxylation
pathway utilizing Fe2+ and α-ketoglutarate (α-KG) as cofactors
(Tsukada et al., 2006). Unlike KDM1A and KDM1B, the Jmj
family of enzymes does not depend on a protonated amine
and therefore can demethylate trimethylated lysines.

As a group, the KDMs have been reported to erase a range
of methyl marks on histones (Table 7). Enzymes show pref-
erences for both the degree of lysine methylation and the
histone sequence, although promiscuity with respect to the
latter is exhibited by some KDMs. This promiscuity can be
attributed to the presence of similar amino acids flanking the
methylated lysine in distinct peptides or to a dominant role
of the peptide backbone, rather than the side chains, in

Table 5
Lysine methyltransferases

Proposed
symbol* Synonyms and other symbols

Histone substrate
specificity

Uni-ProtKB/Swiss-Prot
assession number

KMT1A SUV39H1, SUV39H H3K9me2/3 O43463

KMT1B SUV39H2, FLJ23414 H3K9me2/3 Q9H5I1

KMT1C G9a, EHMT2, C6orf30, BAT8, Em:AF134726.3, NG36/G9a H3K9me1/2, H1K26me1/2 Q96KQ7

KMT1D GLP, EHMT1, Eu-HMTase1, FLJ12879, KIAA1876, bA188C12.1 H3K9me1/2 Q9H9B1

KMT1E ESET, SETDB1, KG1T, KIAA0067, TDRD21 H3K9me2/3 Q15047

KMT1F SETDB2, CLL8, C13orf4, CLLD8 H3K9me2/3 Q96T68

KMT2A MLL1, TRX1, HRX, ALL-1, HTRX1, CXXC7, MLL1A, MLL H3K4me1/2/3 Q03164

KMT2B MLL2, KIAA0304, TRX2, HRX2, WBP7, MLL1B, MLL4 H3K4me1/2/3 Q9UMN6

KMT2C MLL3, KIAA1506, HALR H3K4me1/2/3 Q8NEZ4

KMT2D MLL4, TNRC21, MLL2, ALR, CAGL114 H3K4me1/2/3 O14686

KMT2E MLL5, HDCMC04P H3K4me1/2/3 Q8IZD2

KMT2F hSET1A , SETD1A, KIAA0339, Set1 H3K4me1/2/3 O15047

KMT2G hSET1B, SETD1B, KIAA1076, Set1B H3K4me1/2/3 Q9UPS6

KMT2H ASH1, ASH1L, huASH1, ASH1L1 H3K4me1/2/3, H3K9me1/2/3,
H4K20me1/2/3

Q9NR48

KMT3A SET2, SETD2, HYPB, HIF-1, KIAA1732, FLJ23184 H3K36me3 Q9BYW2

KMT3B NSD1, STO, ARA267, FLJ22263 H3K36me1/2, H4K20me1/2 Q96L73

KMT3C SYMD2, HSKM-B, ZMYND14 H3K36me1/2 Q9NRG4

KMT3D SMYD1, BOP, ZMYND22 Unknown Q8NB12

KMT3E SMYD3, ZNFN3A1, ZMYND1 H3K4me2/3 Q9H7B4

KMT4 DOT1L , KIAA1814, DOT1 H3K79me1/2/3 Q8TEK3

KMT5A Pr-SET7, SETD8, SET07, SET8 H4K20me1 Q9NQR1

KMT5B SUV420H1, CGI-85 H4K20me2/3 Q4FZB7

KMT5C SUV420H2, MGC2705 H4K20me2/3 Q86Y97

KMT6A EZH2, EZH1, ENX-1, KMT6 H3K27me1/2/3, H1K26me2/3 Q15910

KMT6B EZH1, KIAA0388 H3K27me1/2/3 Q92800

KMT7 SET7/9, KIAA1717, SET7, Set9 H3K4me2 Q8WTS6

KMT8 PRDM2, RIZ1, RIZ, RIZ2, MTB-ZF, HUMHOXY1 H3K9me1/2/3 Q13029

*Proposed symbols are those suggested by Allis et al. (2007). A list of the proposed lysine methyltransferase names and symbols that have
been approved by the HUGO Gene Nomenclature Committee (HGNC) can be found at http://www.genenames.org/genefamilies/kdm-kat-
kmt#KMT.
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Table 6
Recent examples of lysine methyltransferase inhibitors

Name Structure Potency KMT specificity Reference

EPZ-6438 2.5 nM MT6 (Knutson et al., 2013)

GSK126 0.5–3 nM KMT6 (McCabe et al., 2012)

EI1 9.4 nM KMT6 (Qi et al., 2012)

BIX-01294 2.7 µM KMT1C/D (Kubicek et al., 2007; Lu
et al., 2013)

UNC0638 <15 nM KMT1C/D (Vedadi et al., 2011)

BRD4770

N

N
NH

O

O

O

6.3 µM KMT1C/D (Yuan and Marmorstein,
2012; Yuan et al., 2012)

UNC0642 <2.5 nM KMT1C/D (Liu et al., 2013)

Bromo-deaza-SAH
O N

OHHO
N N

NH2

Br

S
HO

O

H2N

77 nM KMT4 (Yu et al., 2013)

EPZ-5676 80 pM KMT4 (Daigle et al., 2011)

SGC0946 0.3 nM KMT4 (Yu et al., 2012)

AZ505 0.12 µM KMT3C (Ferguson et al., 2012)

Nahuoic acid 2 µM KMT5A (Williams et al., 2013)
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recognition by the enzyme (Hou and Yu, 2010). Importantly,
while substrate specificity is often defined in vitro using iso-
lated catalytic domains, the actual lysine residues targeted in
vivo may be confined by other mechanisms. For example,
although KDM7B can demethylate H3K9me2/me1,
H3K27me2 and H3K36me2 in vitro, the intact protein con-
tains a plant homeo domain finger that binds to H3K4me3,
directing the catalytic domain towards H3K9me2 (Horton
et al., 2009). In addition to regulation by other domains
within the same protein, KDMs are typically found within
multi-protein complexes that will greatly influence their tar-
geting to chromatin. As for other histone-modifying
enzymes, the KDMs can also act on non-histone substrates,
which may play a key role in their function. For example,
KDM1A has been shown to demethylate key cellular targets
such as p53, DNMT 1, STAT3, E2F1 and MYPT1 (Huang et al.,
2007a; Wang et al., 2009a; Kontaki and Talianidis, 2010; Yang
et al., 2010; Cho et al., 2011).

Given the correlation between particular methyl marks
and the transcriptional state of genes, it is expected that the

activity of specific KDMs will be linked to gene activation or
repression, depending on the KDM substrate. Notably,
however, some KDMs such as KDM1A possess the capacity to
erase marks associated with both active (H3K4me2) and silent
(H3K9me2) genes. In addition, there is considerable apparent
redundancy in substrate specificity, with multiple KDMs able
to erase the same marks (Table 7). Thus, the functions of
KDMs within cells are likely to be determined by multiple
factors such as KDM expression level, enzymatic activity, and
targeting to specific sites within the genome in the context of
particular cells and specific environmental signals. The devel-
opment of potent and selective inhibitors against members of
the family combined with sophisticated epigenetic mapping
of functional outcomes (mark and gene transcription level)
will be essential to define these in a cellular context.

A major focus of therapeutic interest in KDMs is in oncol-
ogy, as mutations and aberrant expression of KDMs have
been linked to various cancers (Hojfeldt et al., 2013). For
example, KDM1A is reported to be overexpressed in a number
of different cancers, including neuroblastoma, breast cancer,

Table 7
Lysine demethylases

Proposed
symbol* Synonyms and other symbols

Reported histone
substrate specificity

Uni-ProtKB/
Swiss-Prot
assession number

KDM1A LSD1, AOF2, BHC, KIAA0601, BHC110, H3K4me1/2, H3K9me1/2 O60341

KDM1B LSD2, AOF1, C6orf193, FLJ34109, FLJ33898, dJ298J15.2,
bA204B7.3, FLJ43328

H3K4me1/2 Q8NB78

KDM2A JHDM1A, FBXL11, CXXC8, FBL7, KIAA1004, FBL11, LILINA,
DKFZP434M1735, FLJ00115

H3K4me3, H3K36me1/2 Q9Y2K7

KDM2B JHDM1B, FBXL10, CXXC2, FBL10, PCCX2 H3K36me1/2 Q8NHM5

KDM3A JMJD1A , JHDM2A, JMJD1, KIAA0742, TSGA H3K9me1/2 Q9Y4C1

KDM3B JMJD1B, JHDM2B, C5orf7, KIAA1082NET22 H3K9me1/2 Q7LBC6

KDM3C JMJD1C, JHDM2C H3K9me1/2 Q15652

KDM4A JMJD2A , JHDM3A, JMJD2, KIAA0677, TDRD14A H3K9me2/3, H3K36me2/3, H1K26me3 O75164

KDM4B JHDM3B, JMJD2B, KIAA0876, TDRD14B H3K9me2/3, H3K36me2/3, H1K26me3 O94953

KDM4C JMJD2C, GASC1, JHDM3C, KIAA0780, TDRD14C H3K9me2/3, H3K36me2/3, H1K26me3 Q9H3R0

KDM4D JMJD2D, JHDM3D, FLJ10251 H3K9me2/3, H1K26me2/3 Q6B0I6

KDM4E JMJD2E, KDM4DL H3K9me2/3 B2RXH2

KDM5A JARID1A, RBBP2, RBP2 H3K4me1/2/3 P29375

KDM5B JARID1B, PLU-1, RBBP2H1, RBBP2H1A, CT31 H3K4me1/2/3 Q9UGL1

KDM5C JARID1C, SMCX, DXS1272E, XE169, MRX13 H3K4me1/2/3 P41229

KDM5D JARID1D, SMCY, HY, HYA, KIAA0234 H3K4me2/3 Q9BY66

KDM6A UTX H3K27me2/3 O15550

KDM6B JMJD3, KIAA0346 H3K27me2/3 O15054

KDM7A JHDM1D, KIAA1718 H3K9me1/me2, H3K27me1/me2 Q6ZMT4

KDM7B PHF8, JHDM1F, KIAA1111, ZNF422, DKFZp686E0868 H3K9me2/me1, H3K27me2, H3K36me2 Q9UPP1

KDM7C PHF2, JHDM1E, GRC5, KIAA0662, MGC176680, CENP-35 H3K9me2 O75151

KDM8 JMJD5, FLJ13798 H3K36me2 Q8N371

*Proposed symbols are those suggested by Allis et al. (2007). A list of the proposed lysine demethylase names and symbols that have been
approved by the HUGO Gene Nomenclature Committee (HGNC) can be found at http://www.genenames.org/genefamilies/kdm-kat-
kmt#KDM.
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lung cancer, prostate cancer and bladder cancer (Schulte
et al., 2009; Chi et al., 2010; Lim et al., 2010; Hayami et al.,
2011). The other FAD-dependent KDM, KDM2B, has also
been linked to cancer, with amplification and high expres-
sion observed in urothelial carcinoma (Heidenblad et al.,
2008). Likewise, Jmj KDMs including KDM2B, KDM4A,
KDM4B, KDM4C, KDM5B and KDM7C have been shown to
be overexpressed in breast, colorectal, lung, prostate, bladder
and other tumours; the functional significance of KDM4C
overexpression is further suggested by the presence of the
KDM4C gene within an amplified region of a chromosome in
multiple cancers (Xiang et al., 2007; Couvelard et al., 2008;
Roesch et al., 2010; He et al., 2011a; Berry and Janknecht,
2013; Kogure et al., 2013; Tzatsos et al., 2013). Notably, both
increased and decreased expressions of KDMs may be associ-
ated with cancer, suggesting a key role for precise control of
lysine methylation in maintaining cellular homeostasis. For
example, while overexpression of KDM6A is associated with
breast cancer and renal cell carcinoma, inactivating muta-
tions in KDM6A are also found in multiple cancer types (van
Haaften et al., 2009; Dalgliesh et al., 2010; Gui et al., 2011;
Shen et al., 2012; Paolicchi et al., 2013). Inactivating muta-
tions in other KDMs such as KDM5A have also been linked to
cancer, supporting the notion that these proteins can have a
tumour suppressor function (Dalgliesh et al., 2010).

Although presently there is much less information linking
KDMs to other therapeutic areas, there is suggestive genetic
evidence that altered KDM activity may be relevant to a
number of diseases. For instance, single nucleotide polymor-
phisms (SNPs) in KDM5A and KDM1A have been linked to the
autoimmune diseases ankylosing spondylitis and Grave’s
disease respectively (Newby et al., 2010; Pointon et al., 2011).
KDM6B has also been implicated in an autoimmune disease
based on its overexpression in antineutrophil cytoplasmic
autoantibody-associated vasculitis (Ciavatta et al., 2010). In

addition, SNPs in KDM4C have been linked with autism, and
SNPs in KDM3C have been linked with a number of metabolic
and haematological parameters, while mutations in KDM5C
cause a form of X-linked mental retardation (Jensen et al.,
2005; Yuan et al., 2008; Chasman et al., 2009; Soranzo et al.,
2009; Johnson et al., 2010; Kantojarvi et al., 2010). Finally,
possible therapeutic applications in virus infections are sug-
gested by the demonstrated role for KDM1A in alpha herpes
virus reactivation from latency (Liang et al., 2009).

A number of small molecules have been described that
inhibit the demethylase activity of KDM1A, the first histone
KDM identified. Early KDM inhibitors were generated based
on the homology of KDM1A/B with MAOs, which also use
FAD as a cofactor. Many of these inhibitors, such as trans-2-
phenylcyclopropylamine (PCPA) and paraglyne, are non-
specific and broadly inhibit MAOs (Metzger et al., 2005; Lee
et al., 2006; Culhane et al., 2010). Derivatives of these mol-
ecules that possess some selectivity for KDM1A over MAOs
have been produced, such as OG-L002 (>30-fold selective for
KDM1A) (Liang et al., 2013) (Table 8). Peptide-based inhibi-
tors (N-propargyl lysine-containing H3 peptides) with greater
potency and selectivity than the MAO inhibitors have also
been developed, but these possess poor cell permeability and
hence are of limited use to investigate cellular activity
(Szewczuk et al., 2007; Yang et al., 2007; Culhane et al., 2010;
Dancy et al., 2012). Conversely, hybrid molecules between
PCPA and lysine produced cell active inhibitors with signifi-
cant selectivity for KDM1A over MAOs (Ueda et al., 2009;
Ogasawara et al., 2011) (Table 8). Selective KDM1 inhibitors
have also been developed based on the homology of this
enzyme to polyamine oxidases and on the basis of structural
features of the KDM1 active site (Huang et al., 2007b; 2009b;
Wang et al., 2011).

In recent years, considerable progress has also been made
in the development of inhibitors targeting the more recently

Table 8
Examples of KDM inhibitors

Name KDM specificity/bias Structure Potency (µM) Reference

OG-L002 KDM1A 0.02 (Liang et al., 2013)

NCL-1 KDM1A 1.6 (Ogasawara et al., 2011)

Daminozide KDM2/7 1.5–2.1 (Rose et al., 2012)

PBIT KDM5B 3 (Sayegh et al., 2013)

GSK-J1 KDM6A/B 5 (Kruidenier et al., 2012)
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discovered Jmj KDMs. Based on the requirement of these
enzymes for α-KG as a cofactor, α-KG analogues such as
N-oxalylglycine (NOG) and α-hydroxyglutarate and their
derivatives have been investigated and shown to act as low
potency non-selective inhibitors of this target class (Cloos
et al., 2006; Rose et al., 2008; 2010; Hamada et al., 2010;
Chowdhury et al., 2011). More potent compounds that func-
tion through α-KG competition have also been identified
based on small molecule screens (Rose et al., 2008; King et al.,
2010; Chang et al., 2011). In addition, compounds showing
selectivity for Jmj KDMs over NOG have been identified
(Hamada et al., 2010).

While most of these ligand-based inhibitors are promis-
cuous KDM inhibitors, some compounds with more selective
activities have been reported. For example, the plant growth
regulator daminozide was shown to be an α-KG-competitive
inhibitor that is much more potent against KDM2 and KDM7
family enzymes than other KDMs (Rose et al., 2012); other
compounds with a biased activity against KDM2 and KDM7
family enzymes have been developed based on the crystal
structure of KDM7B (Suzuki et al., 2013). High-throughput
screening has been used to identify inhibitors of KDM4C and
KDM5B (Hutchinson et al., 2012; Sayegh et al., 2013). In addi-
tion, inhibitors showing selectivity for KDM4 subfamily
enzymes have been developed using a peptide-based
approach, in which an α-KG analogue was linked to a small
histone peptide bearing the target of these enzymes, H3(7–
14)K9me3 (Woon et al., 2012). Finally, structural knowledge
of mode of binding of the H3K27me3 peptide to KDM6B was
used to drive the development of the compound GSK-J1,
which has selectivity for KDM6A/B over other tested KDMs
(Kruidenier et al., 2012) (Table 8).

Given that many of the KDM inhibitors developed so far,
while improving are relatively non-selective, the therapeutic
utility of targeting specific KDMs remains to be determined.
However, inhibitors with some level of selectivity have
shown potentially promising effects in early preclinical
models. For example, certain KDM1A inhibitors have been

shown to inhibit proliferation of cancer cells in vitro and to
block herpes simplex virus lytic replication and reactivation
from latency (Liang et al., 2009; Wang et al., 2011; Willmann
et al., 2012). In addition, a cell-penetrant prodrug version of
GSK-J1 (GSK-J4) was recently shown to inhibit the produc-
tion of pro-inflammatory cytokines by human macrophages,
supporting the notion of targeting KDM6A/B for inflamma-
tory diseases (Kruidenier et al., 2012) consistent with initial
evidence in mouse macrophages (De Santa et al., 2007; 2009).

Arginine methyltransferases

In addition to lysine residues, histone arginines are also
subject to methylation (Di Lorenzo and Bedford, 2011). Such
methylation is favoured by the presence of glycine-arginine
rich sequences (GAR motifs), although these are neither nec-
essary nor sufficient. Methylated guanidine nitrogen atoms
on peptidyl-arginine residue confer differential packaging,
structural changes and altered protein interactions. Addi-
tional levels of intricacy result from differential dimeric pro-
cessing of mono-methylated arginine (MMA) into either an
asymmetrical- dimethylarginine (ADMA) or symmetrical-
dimethylarginine (SDMA) residue.

To date, there are 11 proteins generally accepted as being
members of the family of protein arginine methyltransferases
(PRMTs), identified either on the basis of demonstrable meth-
yltransferase activity, typically using SAM as the methyl
donor, or homology to other family members (Table 9) (Wolf,
2009). However, a systematic survey of the human genome
identified 44 putative PRMTs based on sequence homology at
the active site, suggesting that this number could be much
higher (Richon et al., 2011). The 11 commonly accepted
PRMTs have been classified into subgroups with different
profiles (Yang and Bedford, 2013) (Table 9). All PRMTs can
generate MMA, while type I PRMTs (PRMT1–4, 6 and 8)
generate ADMA and type II PRMTs (PRMT5, 9) produce
SDMA. PRMT7 appears to generate only MMA and has been

Table 9
Arginine methyltransferases

Symbol Family Synonyms and other symbols
Reported histone
substrate

Uni-ProtKB/Swiss-Prot
assession number

PRMT1 Type I ANM1, HCP1, IR1B4, HRMT1L2 H4R3 H4R3 Q99873

PRMT2 Type I MGC11137, HRMT1L1 H4 P55345

PRMT3 Type I HRMT1L3 O60678

PRMT4 Type I CARM1 H3R17, H3R26 Q86X55

PRMT5 Type II JBP1, SKB1, IBP72, SKB1hs, HRMT1L5 H3R8, H4R3 O14744

PRMT6 Type I FLJ10559, HRMT1L6 H3R2, H2AR29, H4R3, H2AR3 Q96LA8

PRMT7 Type II, III FLJ10640, KIAA1933, [Myelin basic
protein]-arginine N-methyltransferase

H4R3, H2AR3, H3R2 Q9NVM4

PRMT8 Type I HRMT1L4 Unknown Q9NR22

PRMT9 Type II FBOX11, VIT1, UBR6, FLJ12673, MGC44383 Unknown Q86XK2

PRMT10 Not classified LOC90826, FLJ46629 Unknown Q6P2P2

PRMT11 Not classified FBX10, FBXO10, FLJ41992, MGC149840 Unknown Q9UK96
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termed as type III PRMT, although its capacity to produce
SDMA remains a subject of debate (Zurita-Lopez et al., 2012).
The most recent family members (PRMT10-11) await defini-
tive characterization. PRMT1 has been proposed to be the
dominant cellular PRMT enzyme on account of its driving
85% of arginine methylation in diverse cells (Tang et al.,
2000).

Most PRMTs are ubiquitously expressed, although PRMT8
is reported to be selectively expressed in the CNS (Lee et al.,
2005; Kousaka et al., 2009). Lethal mouse phenotypes have
been observed after knockout of at least two family members
(PRMT1 and PRMT4), suggesting that these proteins have
non-redundant functions (Pawlak et al., 2000; Yadav et al.,
2003).

The functional consequences of protein arginine meth-
ylation are ranging wide across most physiological processes,
including growing evidence for a role in epigenetic regula-
tion. In accordance with such a function, nuclear shuttling or
localization has been demonstrated for some PRMTs [e.g. for
PRMT1 and PRMT6 (Frankel et al., 2002; Herrmann and
Fackelmayer, 2009)]. Conversely, PRMT3 appears to be pre-
dominantly cytosolic and hence may not have a physiologi-
cal role in histone methylation (Frankel and Clarke, 2000).
Although understanding of histone arginine methylation has
historically trailed that of lysine methylation, PRMTs have
been identified as members of transcriptional complexes and
can be recruited onto promoters by the action of transcrip-
tion factors such as NF-κB and p53 (An et al., 2004; Covic
et al., 2005). A growing number of PRMTs (including PRMT1,
PRMT2, PRMT4, PRMT5, PRMT6 and PRMT7) are known to
methylate different combinations of arginine residues on his-
tones H2A, H3 and H4 (Table 9) with effects on chromatin
accessibility.

Arginine methylation (and ADMA vs. SDMA methylation)
may be stimulatory or inhibitory to transcription, depending
on the histone context, the modifying enzyme and the
degree of dimethylation. Co-integration with other histone
code modifications has been reported. For example, PRMT1-
mediated methylation of H4R3 facilitates subsequent
acetylation (Wang et al., 2001) while PRMT6-mediated meth-
ylation of H3R2 prevents H3K4 methylation by the MLL
complex, effectively repressing transcriptional elongation
(Hyllus et al., 2007). Conversely, histone H3K18 acetylation
primes the histone tail for asymmetric dimethylation at argi-
nine 17 (H3R17me2a) by PRMT4 (Daujat et al., 2002; An
et al., 2004), while H3K9ac blocks H3R8 symmetric dimeth-
ylation (H3R8me2s) by PRMT5 (Pal et al., 2004).

These subtleties further emphasize the combinatorial
complexity and likely exquisite selectivity of such epigenetic
changes. However, histone methylation represents only part
of the regulatory transcriptional potential of PRMTs, which
also includes methylation and modulation of transcription
factors such as CBP (Chevillard-Briet et al., 2002) and Tat
(Boulanger et al., 2005), effects on RNA stability and splicing,
and genomic reorganization via methylation of AT hooks of
nuclear scaffold proteins such as HMGA proteins (Sgarra
et al., 2003; Edberg et al., 2004). In keeping with their broad
effects, PRMT1 and PRMT4 are considered to function as
general transcription factors. Although understanding of how
methylarginine marks are subsequently ‘read’ to activate
transcription is currently limited, a recent study reported that

PRMT4-mediated asymmetric dimethylation of H3R17 (a
stimulatory modification) facilitates transcription elongation
through recruitment of the PAF1 complex to activate
oestrogen-receptor-dependent gene transcription, suggesting
a possible model that other PRMTs may also use (Wu and Xu,
2012).

Abnormal PRMT expression or activity is increasingly
being associated with a growing list of diseases. At present,
the major link is between PRMTs and cancer. In particular,
PRMT1 is considered key for transformation by the MLL
complex (Cheung et al., 2007). However, studies also support
a potential role for therapeutic intervention in pulmonary
and viral disorders (Boulanger et al., 2005; Sun et al., 2012;
Zakrzewicz et al., 2012) as well as spinal muscular atrophy
(Brahms et al., 2001).

Aided by increased understanding of catalytic mecha-
nisms and knowledge of a number of PRMT crystal structures,
several interesting tool molecules have been identified (Wigle
and Copeland, 2013) (see Table 10 for examples). Since the
discovery of the first PRMT family inhibitor truly selective for
methyltransferase activity [AMI-1 (Cheng et al., 2004)],
screens have been run successfully and novel chemical equity
has been disclosed, including the cellular inhibitor RM65
(Spannhoff et al., 2007). In a flurry of recent published activ-
ity, for example (Bissinger et al., 2011; Hart et al., 2011), the
rational design of C21, a chloroacetamidine-bearing histone
H4 tail analogue that acts as an irreversible PRMT1 inhibitor
(Obianyo et al., 2011), has been included. Progress towards
selectivity within the PRMT family, originally thought chal-
lenging due to the high sequence conservation, is also
encouraging (Dillon et al., 2012; Dowden et al., 2012),
because such selectivity may prove necessary to maximize
therapeutic index. Additional exemplars include potent
PRMT4 inhibitors from BMS (Huynh et al., 2009 and Wan
et al., 2009) and a PRMT3-selective inhibitor that is also
reported to be the first allosteric inhibitor of PRMTs or indeed
of any reader, writer, eraser of methyl marks (Siarheyeva et al.,
2012). These promising early probes raise the hope that, with
appropriate lead optimization, molecules with suitable phar-
macokinetic and development properties for in vivo and clini-
cal testing may be identified.

Arginine deiminases

Unlike the removal of lysine methyl marks, there is a scarcity
of candidate enzymes with convincing demethylase activity
against methylated arginines identified to date, with the
exception of JmjD6 (Chang et al., 2007). Consequently, it had
been suggested that enzymes of the peptidyl-arginine deimi-
nase (PAD) family, which are able to catalyse the deimination
(or citrullination) of arginine side chains into citrulline moi-
eties, could similarly act on methylated arginines, and reverse
methylation in the process (Wang et al., 2004). However,
such catalysis is now thought to be unlikely under cellular
conditions (reviewed by Thompson and Fast, 2006). Wider
confirmation of the role of JmjD6 and the identification of
additional demethylase enzymes therefore await further
research.

Nevertheless, the PAD family remains a subject of interest
as potential epigenetic regulators. The PADs include five
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members (PADs 1–4 and PAD6) with noted differences in
function and substrate specificity (reviewed by Jones et al.,
2009). PAD4 has been the primary focus with regard to an
epigenetic function, because it is the only family member
with a clear nuclear localization sequence and it has been
reported to citrullinate accessible arginine residues on the
tails of various histones (most notably R2, R8, R17 and R26
on H3, and R3 on H4). However, in light of recent data
suggesting that PAD2 can also be found in the nucleus (Jang
et al., 2011) and can effectively citrullinate histones (Zhang
et al., 2012), additional PADs may cause epigenetic modula-
tion. PAD2 represents a potential target for multiple sclerosis
based on its CNS expression and ability to citrullinate, and
thereby destabilize, myelin basic protein (Oguz et al., 2009).
PADs 1 and 3 have roles in skin and hair follicle physiology,
respectively, while PAD6 expression is limited to gametes and
has not been shown to citrullinate any substrate to date.

Limited evidence for PAD4-mediated citrullination affect-
ing transcription has come from a small number of reports,

including effects on ER-responsive genes (Cuthbert et al.,
2004; Wang et al., 2004; Zhang et al., 2012) and p53-regulated
promoters (Li et al., 2008; 2010b). Interestingly, a reciprocal
relationship between histone arginine methylation and cit-
rullination has been demonstrated in a number of these
studies [e.g. on p53 target promoters after UV treatment (Li
et al., 2008)], suggesting that citrullination may indeed be an
indirect barrier to methylation via depletion of naive arginine
residues, and that inhibitors of histone citrullination may
have widespread transcriptional effects.

Citrullinated histones are also associated with the forma-
tion of neutrophil extracellular traps (NETs). These elusive
structures (Brinkmann et al., 2004; Yipp et al., 2012) offer
innate immunity functions through the trapping and killing
of pathogens by extruded filaments containing DNA, his-
tones and potent granule proteins. The initial discovery of
citrullinated H3 and H4 epitopes (Neeli et al., 2009; Wang
et al., 2009b) followed by the reported lack of NETosis and
selective interference with host defence in PAD4-deficient

Table 10
Examples of PRMT inhibitors

Inhibitor Structure Potency Reported target Reference

AMI-1

N
H

N
H

O

OH OH

S
OH

O

O
S

HO

O

O

8.8 µM (PRMT1) Pan-PRMT (Cheng et al., 2004)

RM65 55 µM PRMT1 (not tested
vs. other PRMTs)

(Spannhoff et al., 2007)

BMS
pyrazole inhibitor 7f

40 nM PRMT4 (Huynh et al., 2009)

Benzo[d]imidazole
inhibitors of PRMT4
from BMS

N

H
N

O

O

N

H
N

70 nM (best
exemplar)

PRMT4 (Wan et al., 2009)

C21

N
H

O

SG
GKGGKGLGKGGAKRHRKV

NH

HN

Cl

1.8 µM PRMT1 (PRMT6) (Obianyo et al., 2011)

Compound 1
(allosteric)

2.5 µM PRMT3 (Jones et al., 2012;
Siarheyeva et al., 2012)
(Siarheyeva et al., 2012)
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mice (Li et al., 2010a) emphasizes that citrullination by this
enzyme is a key feature in NETosis. There is increasing evi-
dence supportive of the rationale that a selective PAD4 inhibi-
tor may be effective in a wide range of diseases characterized
by an excessive burden of NETs. These range from thrombosis
(Martinod et al., 2012) to systemic lupus erythematosus
(Villanueva et al., 2011), ulcerative colitis (Savchenko et al.,
2011), small-vessel vasculitis (Kessenbrock et al., 2009) and
sepsis (Clark et al., 2007). NETs have also recently been linked
to the pathogenesis of rheumatoid arthritis (Khandpur et al.,
2012), supporting historical non-epigenetic evidence for
PAD4 being important in loss of tolerance to synovial pro-
teins in this disease.

The first notable PAD inhibitors published were peptido-
mimetics, rationally designed to irreversibly modify a key
active site cysteine residue via covalent attachment to a
haloacetaminidine moiety (Luo et al., 2006). The best studied
exemplar, Cl-amidine, has subsequently been used widely as
an in vitro tool. It has also demonstrated impressive efficacy in
animal models of arthritis (Willis et al., 2011), colitis
(Chumanevich et al., 2011) and lupus (Knight et al., 2013),
despite poor pharmacokinetics in vivo and an uncertain
PK–PD relationship. Cl-amidine is also a non-selective inhibi-
tor of all PAD enzymes and subsequent efforts have focussed
on the development of second-generation inhibitors with
increased potency and selectivity for individual PAD enzymes
(e.g. see Table 11). Molecules such as o-F-amidine and Thr-
Asp-F-amidine (Causey et al., 2011; Jones et al., 2012) dem-
onstrate signs of increased selectivity for PAD4, while PAD3-
selective probes have also been described (Knuckley et al.,
2010a). Encouraging signs of wider activity include the devel-
opment of additional screens for PAD inhibitors and the
identification of diverging and additional chemotypes (Wang

et al., 2012; Bozdag et al., 2013). Ultimately, exploiting the
binding determinants between the different PAD enzymes in
order to identify and develop truly selective inhibitors for
individual enzymes should allow definitive mechanistic
understanding and guide optimal therapeutic positioning
across a wider range of diseases.

Bromodomains

Acetylated lysines on histone proteins can be recognized by
bromodomains (BRDs), which are small protein interaction
modules of approximately 110 amino acids (Tamkun et al.,
1992). There are 61 human BRDs found within 42 different
proteins (Table 12), with individual proteins containing
between one and six BRDs (Figure 2). The three-dimensional
structure of more than half of the family of BRD containing
proteins (BCPs) has been experimentally determined
(Figure 2), demonstrating a conserved hydrophobic pocket
that accommodates acetyl-lysine side chains (Jacobson et al.,
2000; Nakamura et al., 2007; Filippakopoulos and Knapp,
2012; Filippakopoulos et al., 2012). BRDs are present in
diverse nuclear proteins that possess intrinsic chromatin-
modifying activity, including KATs (KAT2A, KAT2B, KAT4),
KMTs (KMT2A, KMT2H), ATP-dependent chromatin-
remodelling proteins (BAZ1B), helicases (SMARCA) and
nuclear-scaffolding proteins (PB1) (Muller et al., 2011). In
addition, BCPs are often found as components of large
protein complexes controlling chromatin architecture and
recruit other proteins such as epigenetic writers and readers as
well as transcriptional regulatory proteins to chromatin
(Dawson et al., 2011). Although the ability of BRDs to bind to
acetylated lysine residues within histone proteins is linked to

Table 11
Examples of PAD inhibitors

Inhibitor Structure Potency (µM) PAD selectivity Reference

Cl-amidine 5.9 Pan-PAD (Luo et al., 2006)

o-F-amidine 21.6 PAD4 (Knuckley et al., 2010a;
Causey et al., 2011)

TDFA 2.3 PAD4 (Jones et al., 2012)

Streptonigrin 1.87 PAD4 (Knuckley et al., 2010b)
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Table 12
Bromodomain-containing proteins

Symbol Synonyms and other symbols
Uni-ProtKB/Swiss-Prot
assession number

ASH1L ASH1, ASH1L1, huASH1, KMT2H, KIAA1420 Q9NR48

ATAD2 ANCCA, CT137, DKFZp667N1320, MGC29843, MGC5254, PRO2000 Q6PL18

ATAD2B KIAA1240 Q9ULI0

BAZ1A ACF1, hACF1, WALp1, WCRF180 Q9NRL2

BAZ1B WSTF, WBSCR10, WBSCR9 Q9UIG0

BAZ2A KIAA0314, TIP5, WALp3 Q9UIF9

BAZ2B WALp4, KIAA1476 Q9UIF8

BPTF FALZ, FAC1, NURF301 Q12830

BRD1 BRPF2, BRL O95696

BRD2 KIAA9001, RING3, D6S113E, FSRG1, NAT P25440

BRD3 KIAA0043, RING3L, ORFX Q15059

BRD4 HUNK1, HUNKI, MCAP, CAP O60885

BRD7 BP75, CELTIX1 Q9NPI1

BRD8 p120, SMAP, SMAP2 Q9H0E9

BRD9 FLJ13441 Q9H8M2

BRDT BRD6, CT9 Q58F21

BRPF1 BR140, PEREGRIN P55201

BRPF3 KIAA1286 Q9ULD4

BRWD1 C21orf107, WDR9 Q9NSI6

BRWD3 FLJ38568, MRX93 Q6RI45

CECR2 KIAA1740 Q9BXF3

CREBBP CBP, KAT3A, RTS, RSTS Q92793

EP300 KAT3B, p300 Q09472

KAT2A GCN5, GCN5L2, HGCN5, PCAF-b Q92830

KAT2B PCAF, GCN5, GCN5L, P/CAF Q92831

PBRM1 BAF180, PB1 Q86U86

PHIP WDR11, BRWD2, DCAF14, FLJ20705, ndrp Q8WWQ0

SMARCA2 BAF190B, BRM, hBRM, hSNF2a, SNF2, SNF2LA, Sth1p, SWI2, SNF2L2 P51531

SMARCA4 BAF190A, BRG1, FLJ39786, hSNF2b, SNF2B, SNF2L4 P51532

SP100 – P23497

SP110 IFI41, IFI75 Q9HB58

SP140 LYSP100 Q13342

SP140L – Q9H930

TAF1 DYT3/TAF1, KAT4, NSCL2, TAFII250, BA2R, CCG1, CCGS, TAF2A P21675

TAF1L TAFII210 Q8IZX4

TRIM24 hTIF1, RNF82, Tif1a, TIF1A, TIF1, RNF82 O15164

TRIM28 KAP1, RNF96, TF1B, TIF1B Q13263

TRIM33 FLJ11429, KIAA1113, PTC7, RFG7, TF1G, TIF1G, TIF1GAMMA, TIFGAMMA, KIAA1113 Q9UPN9

TRIM66 C11orf29, KIAA0298, TIF1D O15016

ZMYND8 PRKCBP1, KIAA1125, RACK7 Q9ULU4

ZMYND11 BS69 Q15326
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their gene regulatory activity, these domains have also been
implicated in binding to non-histone acetylated proteins
such as HIV Tat, RelA and p53 (Barlev et al., 2001; Dorr et al.,
2002; Huang et al., 2009a).

Recent studies have implicated BCPs in a wide range of
human diseases, including cancer, inflammatory diseases,
obesity, diabetes, infectious diseases, neurological disorders,
and metabolic and cardiovascular indications (Taverna et al.,
2007; Prinjha et al., 2012). Evidence for the role of BCPs
includes altered expression in disease tissue, chromosomal
translocations, amplifications and deletions involving BCP
gene loci, genome-wide or focused gene sequence analyses
linking SNPs to disease incidence, as well as phenotypes iden-
tified using knock-down or knockout studies. As an example,
among the multiple BCPs reported to be overexpressed
in tumours, which include ASH1L, BPTF, EP300, MLL,
SMARCA2, SMARCA4, TRIM24 and TRIM28, ATAD2 has been
shown to be up-regulated in various cancer types and to be
significantly associated with prostate and endometrial cancer
progression (Zou et al., 2009; Raeder et al., 2013), poor prog-
nosis in breast and lung cancer (Caron et al., 2010), and
occurrence of metastasis and overall survival in breast cancer
(Boussouar et al., 2013). Furthermore, the identification of
three sites of polymorphism in BRD2 associated with rheu-

matoid arthritis and the observation that Brd2-hypomorphic
mice are severely obese and have reduced inflammation in fat
tissue are examples of links of BCPs to inflammation (Muller
et al., 2011).

An understanding of the therapeutic relevance of the
regulatory function of the BRD of BCPs is beginning to
emerge with the recent development of small molecule BRD
inhibitors (Table 13) (Chung, 2012; Hewings et al., 2012). In
some cases, these have been used to explore the interactions
between BCPs and non-histone proteins. For example, com-
pounds that bind to the BRD of PCAF with selectivity over the
structurally related BRDs of CREBBP and TIF1β were identi-
fied by NMR-based small molecule screening and shown to
disrupt the association of PCAF with HIV Tat-AcK50 in vitro
(Zeng et al., 2005). Likewise, ischaemin (Table 13), a selective
modulator of the transcriptional co-activator CREBBP, is able
to block the interaction of acetylated p53 (p53K382ac) with
CREBBP, leading to regulation of tumour suppressor p53-
induced transcriptional activity in cells and preventing apo-
ptosis in ischaemic cardiomyocytes (Borah et al., 2011).

The most advanced targets with respect to the develop-
ment of BRD inhibitors are the members of the bromodo-
main and extraterminal (BET) subfamily of BCPs, which
include BRD2, BRD3, BRD4 and BRDT (Table 13). Recently, a
small number of potent, highly cell-permeable inhibitors
with low nanomolar affinity for BET BRDs have been identi-
fied; these inhibitors appear highly selective for BET BRDs,
but are active against the eight BRDs found in these four
proteins due to their high degree of homology (Mirguet et al.,
2013). Among the diverse chemotypes reported to date are
the first inhibitors disclosed, I-BET762 (GSK525762) and JQ1,
both of which originated from chemical starting points
found by phenotypic screening assays aimed to identify
up-regulators of apolipoprotein A1 (Apo-A1), and I-BET151
and RVX-208 (Table 13).

BET inhibitors have shown promising effects in a variety
of preclinical cancer studies. One cancer of particular interest
is nuclear protein in testis (NUT) midline carcinoma (NMC),
a rare, aggressively lethal tumour type in which chromosomal
translocations between BRD4 (and sometimes BRD3) and the
NUT protein play a causative role. JQ1 has been found to
induce squamous differentiation and growth arrest in
patient-derived BRD4-NUT-positive NMC cell lines and to
decrease tumour size and improve survival in mouse xeno-
graft models (Filippakopoulos et al., 2010). In addition, BET
inhibitors including I-BET762, I-BET151 and JQ1 have been
shown to be active against myeloma (Delmore et al., 2011),
lymphoma (Emadali et al., 2013), acute lymphoblastic leu-
kaemia (Da Costa et al., 2013), prostatic cancer (Gao et al.,
2013), neuroblastoma (Puissant et al., 2013; Wyce et al.,
2013) and glioblastoma (Cheng et al., 2013), in vitro and in
vivo, while I-BET151 has been shown to have considerable
preclinical activity against acute leukaemias, including MLL-
fusion protein-driven leukaemia (Dawson et al., 2011), and
also against JAK2-driven myeloproliferative neoplasms
(Wyspianska et al., 2013). Similarly, I-BET726 was shown to
induce cytotoxicity in mouse xenograft models of human
neuroblastoma (Wyce et al., 2013), and inhibition of BET has
been shown to impair melanoma cell proliferation in vitro
and tumour growth and metastatic behaviour in vivo (Segura
et al., 2013).

Figure 2
Phylogenetic tree of the human bromodomain family of proteins.
The targets for which small molecule inhibitors have been identified
are highlighted with asterisks. Yellow hexagons indicate X-ray struc-
tures in the public domain.
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Table 13
Examples of bromodomain inhibitors

Inhibitor Structure Potency Reported target Reference

Compound 2 1.6 µM KAT2B (Zeng et al., 2005)

Ischaemin (MS120) 19 µM CREBBP (Borah et al., 2011)

I-BET-762 (GSK525762A) 50–60 nM BRD2, BRD3, BRD4, BRDT (Nicodeme et al., 2010)

I-BET-151 (GSK1210151A) 250–800 nM BRD2, BRD3, BRD4, BRDT (Seal et al., 2012)

JQ1 50–90 nM BRD2, BRD3, BRD4, BRDT (Filippakopoulos et al.,
2010)

RVX-208 40 nM – 3 µM BRD2, BRD3, BRD4, BRDT (Khmelnitsky et al., 2013)
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Based on these promising preclinical results, BET inhibi-
tors are now entering clinical trials (Table 14). I-BET762
(Nicodeme et al., 2010; Mirguet et al., 2013), a benzodiaz-
epine derivative developed by GlaxoSmithKline (GSK), was
recently progressed into a phase I clinical trial for treatment
of NMC, as well as other cancers (Mirguet et al., 2013). In
addition, CPI-0610 (Constellation Pharmaceuticals) and
OTX-015 (OncoEthix) are also examples of BET inhibitors
currently in phase I clinical trials for the treatment of various
cancer types.

There is also great interest in the potential application of
BET inhibitors in other therapeutic areas. In particular, there is
considerable evidence that BET inhibitors may have utility in
the treatment of autoimmune/inflammatory disease. In this
regard, I-BET762 was shown to inhibit the expression of
inflammatory cytokines and chemokines in activated mouse
macrophages and to confer protection against LPS-induced
endotoxic shock and bacteria-induced sepsis in mice
(Nicodeme et al., 2010). These anti-inflammatory effects were
replicated by I-BET151, which reduced pro-inflammatory
cytokine production by activated human peripheral blood
mononuclear cells, and was effective at suppressing LPS-
induced inflammation and sepsis in mice (Seal et al., 2012),
and also recently by JQ1 (Belkina et al., 2013). Moreover,
I-BET762 inhibited the ability of antigen-specific T-cells,
differentiated under Th1 conditions in vitro, to induce patho-
genesis in an adoptive transfer model of experimental auto-
immune encephalomyelitis (EAE; Bandukwala et al., 2012),
and JQ1 was recently shown to suppress Th17 differentiation
in vivo and to be protective in mouse models of autoimmunity
(collagen-induced arthritis and EAE) (Mele et al., 2013).

One of the most clinically advanced but significantly less
potent BET BRD inhibitors is RVX-208 (RVX-000222) (Picaud
et al., 2013), which is currently being developed by Resver-
logix Corp for the treatment of atherosclerosis and coronary
artery disease based on its capacity to increase the levels of
Apo-A1 and hence increase high-density lipoprotein choles-
terol (McNeill, 2010) (Table 14). Toxicity and tolerability
studies in animals and phase I/II clinical trials have indicated
that RVX-208 is safe and well tolerated in multiple dosing
regimens. It will be of great interest to see whether more
potent BET inhibitors are similarly well tolerated in phase I
trials mentioned above to gain an understanding of the thera-
peutic index of these inhibitors. RVX-208 is currently in
phase 2 clinical trials for the treatment of atherosclerosis
(Nicholls et al., 2011). In addition, a phase I trial indicated
that RVX-208 may have potential for the removal of
β-amyloid plaques in Alzheimer’s disease and this will be
further assessed in an ongoing phase I/II clinical trial.

Like HDAC inhibitors, BET inhibitors have been shown to
reactivate HIV from latency in cell lines and primary T-cell
models, indicating their possible use in clearance and cure of
the latent viral pool, as described above (Zhu et al., 2012;
Boehm et al., 2013a,b; Li et al., 2013). Their potential utility
as therapeutics for heart failure has also been suggested
recently based on the ability of JQ1 to block cardiomyocyte
hypertrophy in vitro, and to prevent left ventricular hypertro-
phy and improve cardiac function in adult mice subjected to
transverse aortic constriction (Spiltoir et al., 2013). Finally,
the efficacy of BET inhibitors in blocking the pro-fibrotic
responses of idiopathic pulmonary fibrosis (IPF) lung fibro-
blasts and attenuating bleomycin-induced lung fibrosis in

Table 14
Clinical studies of bromodomain inhibitors

Primary
drugs Sponsor

Trial
phase Disease type(s) Trial ID

I-BET-762 GSK I NMC
Leukaemias, lymphomas
Multiple myeloma
Myeloproliferative neoplasms

NCT01587703
NCT01943851

RVX-208 Resverlogix I/II Dyslipidemia
Atherosclerosis
Acute coronary syndrome
Cardiovascular disease

NCT00768274
NCT01067820
NCT01058018
NCT01423188
NCT01863225

II Type 2 diabetes NCT01728467

II Alzheimer’s disease (Study planned) http://www.resverlogix.com/programs/
epigenetics/neurodegenerative-diseases

CPI-0610 Constellation
Pharmaceuticals

I Lymphomas NCT01949883

I Leukaemias
Multiple myeloma
Myelodysplastic syndrome

(Study planned) http://www.constellationpharma.com/
2012/09/constellation-pharmaceuticals-and-the
-leukemia-lymphoma-society-partner-to-develop
-novel-bet-inhibitor-for-the-treatment-of-hematologic
-malignancies/

OTX-015 OncoEthix/ Mitsubishi
Tanabe Pharma

I Leukaemias, lymphomas
Multiple myeloma
Unspecified haematological cancer

NCT01713582
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mice provides a rationale to target the BET proteins for the
treatment of IPF (Tang et al., 2013b).

Concluding remarks

Although the basic scientific understanding of epigenetic
regulatory mechanisms is at an early stage, great progress has
already been made in taking drugs targeting these pathways
into the clinic. The rapid pace of these developments has
been driven by the recognition that dysregulation of epige-
netic processes is apparent in diverse disease states, combined
with the finding that many of the proteins that generate,
remove and recognize histone modifications are tractable to
small molecule drug development. In turn, the tractability of
epigenetic targets has led to the generation of chemical
probes that are being used to accelerate investigation into the
biological function of these proteins.

As work in this young field continues, it will be of great
interest to understand the full potential of this target class for
the treatment of human disease. There will be many impor-
tant questions relating to drug development for epigenetic
pathways. For example, how many proteins within the mul-
tiple target classes of writers, erasers and readers will prove
tractable to the generation of potent and selective small mol-
ecule modulators? Is there redundancy among these targets,
and what role will polypharmacology play? What approaches
can be taken to modulate epigenetic states in disease tissue
while minimizing effects on normal cellular homeostasis? As
well as acutely modifying gene expression, will it be possible
to reset aberrant epigenetic states to normal, allowing for
short-term treatments to induce remission or even ‘cure’
disease? Answering these questions will be aided by the con-
tinuing development of pharmacological tools together with
increasingly sophisticated molecular approaches for elucidat-
ing the mechanisms that regulate chromatin structure and
gene expression.
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