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Summary

Interferon-c (IFN-c) is an integral and critical molecule of the immune

system, with multiple functions, mostly related to the T helper type 1

(Th1) response to infection. It is critical for defence against mycobacterial

infection and is of increasing interest in defence against fungi. In this arti-

cle, we review the genetic and epigenetic variants affecting IFN-c expres-

sion and investigate its role in disease, with an emphasis on fungal

diseases such as invasive and chronic pulmonary aspergillosis. Over 347

IFN-c gene variants have been described, in multiple ethnic populations.

Many appear to confer a susceptibility to disease, especially tuberculosis

(TB) and hepatitis, but also some non-infectious conditions such as aplas-

tic anaemia, cervical cancer and psoriasis. Several epigenetic modifications

are also described, increasing IFN-c expression in Th1 lymphocytes and

reducing IFN-c expression in Th2 lymphocytes. Recombinant IFN-c

administration is licensed for the prophylaxis of infection (bacterial and

fungal) in patients with the phagocyte functional deficiency syndrome

chronic granulomatous disease, although the benefits appear limited.

Interferon-c therapy is given to patients with profound defects in IFN-c

and interleukin-12 production and appears to be beneficial for patients

with invasive aspergillosis and cryptococcal meningitis, but the studies are

not definitive. A high proportion of patients with chronic pulmonary

aspergillosis are poor producers of IFN-c in response to multiple stimuli

and could also benefit from IFN-c administration. The investigation and

management of patients with possible or demonstrated IFN-c deficiency

in adulthood is poorly studied and could be greatly enhanced with the

integration of genetic data.
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Introduction

Interferon-c (IFN-c; also known as type II interferon) is a

cytokine that is critical in both innate and adaptive

immunity in humans. It is a highly pleiotropic cytokine

produced by many immune cells in response to interleu-

kin-12 (IL-12) as well as to microbial stimuli such as

zymosan, lipopolysaccharide and b-glucan, which acts to

stimulate and modulate the immune response by modu-

lating the production or activities of several cytokines and

chemokines.1,2 It is also an important activator of macro-

phages and one of the key cytokines that distinguishes

differentiated T cells as either T helper type 1 (Th1; IFN-

c-producing) or Th2.1,2 Because of the importance of

IFN-c in human immune responses, it is unsurprising

that genetic and epigenetic variations within the IFN-c
gene are associated with a range of diseases. These genetic

and epigenetic variations are reviewed here. Several

genetic IFN-c and IL-12 receptor defects are also

described, but are not reviewed here. The currently

under-studied role of IFN-c genetic and epigenetic varia-

tion in fungal disease is also discussed.

Abbreviations: CPA, chronic pulmonary aspergillosis; IA, invasive aspergillosis; IFN-c, interferon c; IL, interleukin; MAF, minor
allele frequency; NF-jB, nuclear factor-jB; RCT, randomised control trial; rIFN-c, recombinant interferon-c; SNP, single nucleo-
tide polymorphism; STAT, signal transducer and activator of transcription; SUMO, small ubiquitin-like modifier; TB, tuberculo-
sis; Th1, T helper type 1
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IFN-c and host immunity

Interferon-c is important in the immune response to vari-

ous pathogens. Recognition of these pathogens by Toll-

like receptors or other receptors induces production of

IL-12 by macrophages and dendritic cells, which in turn

stimulates Th1 responses and production of IFN-c.1,3

Thus IFN-c has many important immunostimulatory and

immunomodulatory effects.

Interferon-c up-regulates antigen presentation by MHC

class I and class II by increasing expression of the subunits

as well as by increasing the expression and activity of the

proteasome.4 Increased presentation by MHC increases

the visibility of the pathogen to the host, and so increases

the host ability to recognize and respond to the pathogen.

Interferon-c is also important in activation of macrophages

to produce tumour necrosis factor-a, which then acts

together with IFN-c to increase macrophage phagocytosis

and microbicidal activity, such as production of reactive

nitrogen and oxygen species including superoxide radicals,

nitric oxide and hydrogen peroxide.1,3,5 In addition, IFN-c
enhances lymphocyte recruitment and results in prolonged

activation within the tissues, induces components of the

complement cascade and the acute phase response, plays a

role in IgG class switching, and has direct anti-viral

effects.6,7 Interferon-c is also key in controlling naive CD4

T-cell differentiation into Th1 effector T cells, critical

mediators of cellular immunity against viral and intracellu-

lar bacterial infections.4

Production of IFN-c is affected by various other mem-

bers of the immune response, via the action of various

transcription factors which activate or repress its transcrip-

tion. Interleukin-12 enhances IFN-c production via activa-

tion of signal transducer and activator of transcription 4

(STAT4) and subsequent increased expression of IFNG.8

Interleukin-18, IFN-a, IL-12 and IL-2 also promote IFN-c
production and can augment IL-12-induced IFN-c produc-
tion.4,9 Interleukin-21, IL-18 and IL-15 can act in synergy

to enhance IFN-c production by cells.9 In addition, IFN-c
strongly up-regulates its own expression.10 Transforming

growth factor-b inhibits IFN-c expression by inhibiting

expression of the transcription factors T-bet and STAT4,

which are important for IFN-c expression.11 Transforming

growth factor-b also induces phosphorylation of SMAD3,

which then binds with SMAD4 forming a heterodimer that

can bind to the IFNG promoter and repress transcription.12

Interleukin-6 potentiates expression of the suppressor of

cytokine signalling-1, which then prevents the phosphory-

lation and subsequent activation of STAT1.13 As STAT1

influences IFN-c expression by potentiating the expression

T-bet, prevention of STAT1 activation prevents IFN-c
expression.13

Genetic variation in the IFN-c gene

A number of studies have identified 419 variations in the

IFN-c gene (data from Ensembl website;14 Table 1,

Fig. 1). These fall into different categories, described in

Table 1. These variations may or may not affect the

expression of the IFN-c gene or function of the protein,

depending on their location within the gene and on their

effect on the DNA sequence (Fig. 2).

IFN-c genetic variation and disease

Many variations within the IFN-c gene have been shown

to be associated with disease (Table 2).15–46 These associ-

ations may be related to expression of the IFN-c gene.

Table 1. Types and number of variations within the interferon-c (IFN-c) gene

Type of variation Description

Number

present in

IFN-c gene

Splice donor variant A splice variant that changes the two-base region at the 50 end of an intron 1

Gain of stop variant A sequence variant whereby a premature stop codon is created, leading to a shortened transcript 1

Loss of stop variant A sequence variant whereby at least one base of the stop codon is changed, resulting in an elongated

transcript

1

Non-synonymous

(Missense) variant

A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but

where the transcript length is preserved

31

Splice region variant A sequence variant in which a change has occurred within the region of the splice site, either within

one or three bases of the exon or three to eight bases of the intron

7

Synonymous variant A sequence variant where there is no resulting change to the encoded amino acid or transcript length 10

50 UTR variant A variant in the 50 untranslated region (UTR). This is upstream of the gene 3

30 UTR variant A variant in the 30 untranslated region (UTR). This is downstream of the gene 16

Intron variant A variant that occurs within an intron 119

Upstream gene variant A sequence variant located 50 (upstream) of a gene 119

Downstream gene variant A sequence variant located 30 (downstream) of a gene 118

A codon is a group of three bases that code for one amino acid, or start/stop signal. Data from Ensembl website14.
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Genetic Epigenetic Other

HistoneH3 K4 methylation (K4me2)
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IFN-γ G
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HSI HSII HSIII
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(intron 1)

Th1

Epigenetic variation of gene and nearby regions Genetic variation

Th2

CNS-54 CNS-6 CNS+18-20 CNS+29 CNS+46 CNS+55

rs2069709
(–179)

rs2069709
(–179)

rs2430561
(+874)

rs2430561
(+874)

+2109

+2109

+3810

+3810IFNG geneCNS-34 CNS-22

(intron 3)

SNP

IL-12

TGE-β

IL-6

AP1

AP1
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GAAG

A

CD28-RE

CD28-RE

NF-κB

NFκB

IL-18

(a) (b)

(c)
(f) (g)

(d)

(e)

(h)

Figure 2. Differential mechanisms to impairment of interferon-c responses. Epigenetic (a) and genetic (b) variations affect the chromatin struc-

ture and result in a specific pattern of variation at the DNA level of the interferon-c gene (IFNG) and surrounding regions (c). Epigenetic varia-

tions include histone acetylation and H3K4 methylation, which activate gene expression, and DNA CpG methylation and histone H3K27

methylation, which repress gene expression. Genetic variation includes single nucleotide polymorphisms (SNPs) that affect the presence or func-

tioning of a transcription factor binding site. Rs2430561 (+874T/A) is located in a nuclear factor-jB (NF-jB) binding site and NF-jB binds pref-

erentially to the T allele. Rs2069709 (�179G/T) is located in the promoter. The T may create a putative activator protein 1 (AP-1) binding

element or oestrogen-like response element. SNPs in intron 3 (+2109A/G and +3810G/A) may also affect transcription, by altering the binding of

protein complexes such as CD28-RE. Binding of transcription factors (d) is affected by this genetic and epigenetic variation as well as by the

presence or absence of the transcription factors themselves, and binding of different transcription factors activates or represses expression of the

IFNG gene, to affect production of IFN-c protein (e). Cytokines such as interleukin-12 (IL-12) and IL-18 can promote IFNG expression (f), while

those such as IL-6 and transforming growth factor-b (TGF-b) can prevent expression (g), so altering the production of IFN-c protein (e). This

IFN-c protein can be prevented from functioning by the presence of IFN-c antibodies (h).
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Gene expression is often affected by single nucleotide

polymorphisms (SNPs) in either the promoter region or

in nuclear factor-jB (NF-jB) binding regions. In the case

of IFN-c, there are two genetic variations that are known

to affect expression. These are a polymorphic CA repeat

region, where allele #2 (12 repeats) has been shown to

result in high IFN-c production when cells are stimu-

lated,47 and a T/A SNP (rs2430561, +874T/A) in intron 1,

where the T allele correlates to allele #2 of the CA repeat

and high IFN-c production.48 This T/A SNP is located in

an NF-jB binding site and NF-jB binds preferentially to

the T allele; the presence of the A allele reduces NF-jB
binding, thereby reducing IFN-c expression in response

to stimuli.48 Studies have found that the rs2430561 SNP

is associated with various diseases, including hepati-

tis20,41–43 and TB,19,21,27,34 in various populations

Table 2. Interferon-c (IFN-c) genetic associations with disease

Variation Association Ethnicity References

rs2430561 (+874A/T)

rs2069718 (+3234C/T)

rs2069705/rs2430561/rs2069718 haplotype

Paediatric tuberculosis, particularly in females Han Chinese 21

rs3138557 (CA repeat) Ossification of the posterior longitudinal ligament Korean 22

rs2430561 (+874T/A) Increased fatigue during the acute sickness response Caucasian 23

rs2430561 (+874T/A) Paroxysmal nocturnal haemoglobinuria Han Chinese 24

rs3138557/rs2430561 haplotype Number of vessels affected and severity in coronary

heart disease

Korean 25

rs2430561 (+874T/A) Cortical cataracts and posterior subcapsular cataracts Indian 26

rs2430561 (+874T/A) Mild pulmonary tuberculosis Pakistani 27

rs2430561/IL10 rs1800870/IL6

rs1800795 haplotype

Tuberculosis (mild or advanced) Pakistani 27

rs2430561 (+874T/A) Aplastic anaemia Chinese 28

rs2430561 (+874T/A) Response to immunosuppressive therapy in aplastic anaemia Chinese 28

rs2069727 (A/G) Acute lymphoblastic leukaemia in males Welsh and Mexican 29

rs2430561 (+874T/A) Protective against leprosy Brazilian 30

rs11177074 (C/T) Cervical cancer Costa Rican 31

rs2069727/rs2069718/rs2430561/

rs2069705 haplotype

Atopic dermatitis complicated by eczema herpeticum Mixed African

American and

Caucasian

32

rs2430561 (+874T/A) Chagas disease Colombian 33

rs2430561 (+874T/A) Tuberculosis (pulmonary and extra-pulmonary) Brazilian 34

rs2430561 (+874T/A) Cervical cancer Swedish 35

rs2069705 Systemic lupus erythematosus Korean 36

rs2430561 (+874T/A) Mediterranean spotted fever Sicilian 37

TNFA rs1800629/IL6 rs1800795/IFNG

rs2430561 haplotype

Spontaneous preterm birth Brazilian 38

rs2430561 (+874T/A) Cervical cancer Indian 39

rs2430561 (+874T/A) Psoriasis vulgaris Polish 40

rs2069707 (�764C/G) Recovery from hepatitis C virus infection American 41

rs3138557 (CA repeat) rs2430561(+874T/A) Chronic hepatitis B virus infection Polynesian 42

rs2430561(+874T/A) Liver cirrhosis in chronic hepatitis C Taiwanese 43

rs2430561(+874T/A) rs3138557 (CA repeat) IgA nephropathy Italian 44

rs2430561 (+874T/A) rs3138557 (CA repeat)

rs2430561(+874T/A)

Intrauterine hepatitis B virus infection Chinese 20

rs2430561(+874T/A) Tuberculosis Sicilian 19

�1616G/A Pulmonary tuberculosis West African 18

+3234T/C Pulmonary tuberculosis West African 18

rs2069709 (�179G/T) AIDS progression in HIV-positive individuals African American 17

+2109A/G Severe hepatic fibrosis in hepatic schistosomiasis Sudanese 16

+3810G/A Severe hepatic fibrosis in hepatic schistosomiasis Sudanese 16

rs2430561(+874T/A) Tuberculosis Chinese 15

rs3138557 (CA repeat) Tuberculosis Chinese 15

rs3138557 (CA repeat) Hepatitis E Indian 45

rs3138557 (CA repeat) Tuberculosis Chinese 46

rs2430561(+874T/A) Tuberculosis Chinese 46
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(Table 2). Other, less well studied IFN-c SNPs also

appear to affect IFN-c expression. Rs2069709 is a G to T

transition at position �179 in the promoter region.49 It

has been proposed that the T allele may create a putative

activator protein 1 binding element or oestrogen-like

response element, and electrophoretic mobility shift

analysis has identified a unique complex that binds to the

�179T variant but not to the �179G variant.49,50 Cells

transfected with reporter complexes containing the T

allele produce up to 13-fold more IFN-c than those con-

taining the G allele.49 This is true in T cells and periph-

eral blood mononuclear cells, but does not have the same

effect in lamina propria cells, perhaps because of differ-

ences in oestrogen or CD2 signalling within these

cells.49,50 This SNP was identified in HIV-infected indi-

viduals, and appears to affect AIDS progression.17,49 It is

rare in Europeans (minor allele frequency 0�001), but is

more common in African Americans (minor allele fre-

quency 0�021).49 Two SNPs in intron 3 (+2109A/G and

+3810G/A) of the IFN-c gene may also affect transcrip-

tion, by altering the binding of protein complexes,

including CD28-RE, which itself binds to the transcrip-

tion factors nuclear factor of activated T cells and to NF-

jB.16 The +2109 G allele and +3810 A appear to form a

DNA/protein complex that was not formed by the respec-

tive A and G alleles.16

Other SNPs in IFN-c may affect its function. Of partic-

ular interest are SNPs within the exons of the gene, as

these are the regions that are made into the final protein.

Amino acid changing SNPs, called non-synonymous or

missense SNPs, are more likely to have an effect than syn-

onymous SNPs, and, depending on the location, may or

may not affect the expression or function of the final pro-

tein. The effect of an SNP on protein function can be

predicted using the POLYPHEN-251 and SIFT52 programs.

POLYPHEN-2 predicts variation effects based on physical

Table 3. Non-synonymous and loss/gain of stop single nucleotide polymorphisms within the interferon-c gene

SNP ID Location (Chr:bp) Alleles Type AA change AA position SIFT PolyPhen

COSM942843 12:68551973 C/A Stop gain E/* 61 N/A N/A

COSM549550 12:68549134 T/A Stop lost */L 167 N/A N/A

rs372093951 12:68549141 A/G Missense S/P 165 tolerated benign

rs369578383 12:68549144 C/A Missense A/S 164 deleterious benign

rs201359065 12:68549155 C/T Missense R/Q 160 tolerated benign

rs374634889 12:68549161 A/T Missense L/Q 158 tolerated possibly damaging

rs377736305 12:68549179 C/T Missense R/Q 152 deleterious possibly damaging

rs150875052 12:68551842 C/T Missense V/I 73 tolerated benign

rs76012457 12:68551993 C/T Missense G/D 54 tolerated benign

rs371849964 12:68553385 G/A Missense T/I 4 deleterious probably damaging

COSM942837 12:68549155 C/T Missense R/Q 160 tolerated benign

COSM356728 12:68549164 A/T Missense M/K 157 tolerated benign

COSM549549 12:68549203 G/A Missense S/L 144 tolerated benign

COSM1476858 12:68549246 G/A Missense R/C 130 deleterious probably damaging

COSM549548 12:68549249 G/T Missense Q/K 129 deleterious probably damaging

COSM1363841 12:68551694 G/A Missense S/L 122 deleterious probably damaging

COSM942839 12:68551724 C/T Missense R/Q 112 tolerated benign

COSM1210288 12:68551729 C/A Missense K/N 110 tolerated benign

COSM1582160 12:68551730 T/A Missense K/M 110 tolerated benign

COSM1476859 12:68551735 G/C Missense N/K 108 tolerated benign

COSM1210289 12:68551752 T/C Missense K/E 103 tolerated possibly damaging

COSM942840 12:68551754 A/G Missense V/A 102 tolerated benign

COSM942841 12:68551796 C/T Missense S/N 88 tolerated benign

COSM942842 12:68551865 C/A Missense R/I 65 tolerated benign

COSM694678 12:68551865 C/G Missense R/T 65 tolerated benign

COSM942844 12:68551983 C/A Missense K/N 57 deleterious benign

COSM942845 12:68552003 G/T Missense L/I 51 tolerated probably damaging

COSM942846 12:68553283 A/C Missense F/C 38 deleterious possibly damaging

COSM194534 12:68553291 C/A Missense K/N 35 deleterious probably damaging

COSM1705908 12:68553320 G/A Missense P/S 26 tolerated benign

COSM942847 12:68553338 C/T Missense G/S 20 tolerated benign

COSM240197 12:68553353 C/T Missense V/I 15 tolerated benign

COSM1363842 12:68553388 T/C Missense Y/C 3 tolerated possibly damaging

AA, amino acid.

Data from Ensembl14.
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and comparative considerations, while SIFT predicts vari-

ation effects based on sequence homology and the physi-

cal–chemical similarity between the alternative amino

acids. The non-synonymous variations in the IFN-c gene,

and their predicted effects on protein function, are shown

in Table 3 (data from Ensembl website14). This table

shows that there are many variations in the IFN-c gene

that are predicted to have deleterious or damaging

effects on the IFN-c protein function. In addition to

non-synonymous SNPs, SNPs that cause gain or loss of

‘stop’ signals can result in a truncated or elongated pro-

tein, which may affect function. Two such SNPs exist in

IFN-c (Table 3).

Epigenetic variation

Epigenetic modifications are extremely flexible and often

reversible inheritable changes that can affect the accessi-

bility of DNA for gene expression without affecting the

DNA sequence itself. DNA is stored wrapped around cyl-

inder-like structures called histones to form chromatin

fibres. Epigenetic modifications of these histones or of the

DNA itself can affect the structure of the chromatin fibre,

making the DNA within it more or less accessible to the

DNA binding proteins that are required to initiate the

process of transcription, consequently affecting produc-

tion of RNA and protein. Modifications that result in

compacted (closed) chromatin lead to gene silencing,

while those that result in relaxed (open) chromatin allow

for gene expression.

Histone modification occurs predominantly at the N-ter-

minal ‘tails’ of histones, which can undergo enzymatic

post-translational modification including methylation,

acetylation, phosphorylation, ubiquitination and sumoyla-

tion [addition of a small ubiquitin-like modifier (SUMO)

protein].53 The effect of these varies depending on their

location within a gene, and which residue is affected, but

generally, histone acetylation causes activation of a gene

and increased gene expression, while the effect of histone

methylation is dependent on position; histone methylation

at positions H3K4, H3K36, H3K79 results in activation and

histone methylation at positions H3K9, H3K27, H4K20

results in silencing of a gene.53 The effects of phosphoryla-

tion, ubiquitination and sumoylation are less clearly

defined, however, ubiquitination may increase transcrip-

tional elongation and sumoylation appears to antagonize

ubiquitination and acetylation to repress transcription.53

At the DNA level, the major epigenetic modification is

CpG methylation, where the cytosine nucleotide of a CpG

dinucleotide (CpG island) is methylated. This prevents

recruitment of methyl-sensitive DNA binding proteins,

preventing the initiation of transcription, and also gener-

ates an inaccessible chromatin structure.54 Together, these

effects prevent gene expression and silence the gene. DNase

hypersensitivity sites are areas of chromatin with increased

sensitivity to an enzyme called DNase I. These areas of

chromatin are highly accessible to DNA binding proteins,

resulting in increased transcription and gene expression.

Epigenetic modifications occur naturally (e.g. during

development and cellular differentiation), but can also be

influenced by environmental factors including diet,55

smoking56 and microbial infections.57,58 The epigenetic

modifications caused by these environmental exposures

may have disease contributing effects, and may be one

explanation for the disease discordance observed in iden-

tical twins as they age.59,60 Many diseases have been

shown to involve aberrant epigenetic profiles, including

cancer, atherosclerosis and osteoarthritis.60–63 Environ-

mental exposure may contribute to these. For example, it

has been proposed that early stage nutrition can affect

CpG methylation levels, in turn affecting susceptibility to

chronic disease as an adult,55 and smoking may cause

promoter hypermethylation and silencing of p16, a

tumour suppressor gene, possibly increasing susceptibility

to oral cancer.56

Epigenetic variation and the IFN-c gene

There is much evidence that the IFN-c gene is subject to

epigenetic modification, and that this modification is

Table 4. Interferon-c epigenetic modification and disease

Modification of interferon-c gene Association References

Hypermethylation in effector T cells Asthma (in discordant asthmatic twins) 76

Hypermethylation of the promoter in blood DNA Diisocyanate induced occupational asthma 71

Hypomethylation Increased diastolic blood pressure in elderly subjects 72

Hypomethylation of the promoter in T cells Biliary atresia 73

Hypomethylation in bile duct cells Biliary atresia 74

Hypomethylation of the promoter Gingival biopsy samples of sites of chronic periodontitis 77

Hypomethylation Samples of inflamed dental pulp, compared with healthy dental pulp 78

Hypomethylation in peripheral T cells Inflammatory bowel disease patients requiring surgery, compared with

non-surgical patients

68

Hypomethylation of the promoter in blood DNA Increasing job seniority in chemical plant workers 69

Hypomethylation of the promoter Severe acute graft-versus-host disease 70
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flexible and reversible. The epigenetic modifications are

controlled by various transcription factors, including t-bet

and GATA3, and those modifications that occur at pro-

moter regions or conserved non-coding sequence sites are

particularly important as these areas are involved in gene

expression.64,65 In particular, much work has been com-

pleted investigating the differing patterns of epigenetic

modification of the IFN-c gene in Th1 and Th2 cells.

Interferon-c is one of the key cytokines that distin-

guishes differentiated T cells as either Th1 (produce IFN-

c) or Th2 (do not produce IFN-c). Differentiation of T

cells involves various epigenetic changes in a 100-kb

region surrounding the IFN-c gene itself.66 These epige-

netic modifications include gain or loss of histone modifi-

cations and changes in DNase hypersensitivity sites and

CpG dinucleotide methylation, which activate the IFN-c
gene in Th1 cells and silence the IFN-c gene in Th2

cells.66,67

Th1 cells produce IFN-c. Within these cells, the IFN-c
gene shows histone H4 acetylation and histone H3 lysine

4 (H3K4) methylation and DNase hypersensitivity sites

that are not present in naive T cells, including strong sites

within the conserved non-coding sequence regions and

the promoter.65–67 In addition, the CpG methylation seen

in specific sites within the IFN-c gene in naive T cells is

largely lost during Th1 differentiation such that Th1 cells

show reduced CpG methylation.66 The promoter is com-

pletely non-methylated.66 These changes in methylation

and DNase hypersensitivity are associated with an open

chromatin structure and increased production of IFN-c.66

Like Th1 cells, natural killer cells produce IFN-c. The

IFN-c gene within these cells also shows histone H4 acet-

ylation and histone H3K4 methylation.67

Th2 cells do not produce IFN-c. Within these cells, the

IFN-c gene shows histone H3K27 di-methylation and tri-

methylation and no hyperacetylation.65,66 These modifica-

tions repress gene expression. As with Th1 cells, DNase

hypersensitivity sites that are not present in naive T cells

are observed, but these are different to the pattern in Th1

cells and fall adjacent to but not within conserved non-

coding sequence sites.66 In contrast to Th1 differentiation,

during Th2 differentiation the CpG methylation of naive

T cells is largely maintained and the promoter becomes

hypermethylated.66 These modifications silence gene

expression.

IFN-c epigenetic variation and disease

Interferon-c gene epigenetics has been investigated in a

growing number of conditions over recent years, and

IFN-c methylation has now been implicated in diseases

from asthma to periodontitis (Table 4).68–74 Some dis-

eases are associated with decreased (hypo-) methylation

of the IFN-c gene, others with increased (hyper-) methyl-

ation.

Interferon-c methylation, and consequently IFN-c gene

expression in humans, has been shown to be modified by

various microbial factors. HIV causes hypermethylation

and silencing of the IFN-c gene, possibly as a method to

evade the immune response,58 while hypomethylation and

activation of the IFN-c gene is found in Epstein–Barr
virus-transformed B cells.57 It has been suggested that

low-level microbial exposure during early life can reduce

demethylation of the IFN-c gene in naive T cells, reduc-

ing activation of this gene and leading to an increased

risk of allergic disease.75

Asthma in humans appears to be associated with

increased methylation and consequent decreased expres-

sion of the IFN-c gene. Effector T cells from discordant

asthmatic twins show increased methylation and

decreased expression of the IFN-c gene, compared with

their non-asthmatic twin.76 T-cell function is also

reduced.76 Similarly, hypermethylation of the IFN-c pro-

moter has also been found in blood DNA from workers

with diisocyanate-induced occupational asthma, suggest-

ing that, in these subjects, diisocyanate exposure may

have caused increased methylation of the IFN-c gene,

leading to increased production of IFN-c and the devel-

opment of asthma.71 Interferon-c promoter methylation

status was found to be a sensitive and specific method for

identifying diisocyanate asthma workers.71

Other diseases are associated with decreased methylation

and increased expression of the IFN-c gene. Diastolic blood
pressure is negatively associated with methylation of the

IFN-c gene (as blood pressure increases, methylation

decreases), as shown by longitudinal measurements of

DNA methylation in elderly subjects.72 People with high

diastolic blood pressure have hypomethylation of the IFN-

c gene. The IFN-c promoter is also hypomethylated in T

cells and bile duct cells from patients with biliary atresia,

together with the expected increased gene expression.73,74

Similar promoter hypomethylation and increased gene

expression have been observed in gingival biopsy samples

of sites of chronic periodontitis.77 Reduced methylation

was also found in samples of inflamed dental pulp, when

compared with healthy dental pulp.78

Interferon-c antibodies

Antibodies to IFN-c may be found in a few apparently

normal individuals, 2–3% in the Netherlands, with

slightly higher rates in older adults.79 Most anti-IFN-c
antibodies are IgG class, but they may or may not be

functional. Production of functional anti-IFN-c antibod-

ies is more common in those of Asian descent, and is clo-

sely linked to certain HLA class II types.80 Over 100

individuals with neutralizing anti-IFN-c antibodies and

serious infection have been described, mostly in Asia, but

not exclusively. It is probably more common than has

been realized.81
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Interferon-c antibodies and disease

The most reported infections associated with anti-IFN-c
antibodies are disseminated or severe non-tuberculous

mycobacterial infections, Mycobacterium tuberculosis,

salmonellosis, varicella zoster reactivation, disseminated

Penicillium marneffei infection, histoplasmosis, cryptococ-

cosis, listeriosis and meliodosis,81–83 Unusual skin condi-

tions also appear to be common, notably Sweet syndrome

(neutrophilic dermatosis), but also erythema nodosum,

pustular psoriasis and exanthematous pustulosis.83 Ther-

apy with rituximab (anti-CD20) appears to be effective in

blocking anti-IFN-c antibody production.84

Assessment of IFN-c deficits

Interferon-c production is currently assessed using a

whole blood stimulation assay, in which whole blood is

stimulated with a variety of stimuli including zymosan,

lipopolysaccharide, b-glucan, bacillus Calmette–Gu�erin
and IL-12. The level of IFN-c is measured after stimula-

tion and this level of IFN-c production is compared with

the level of production by a control sample, so that

impaired responses can be identified. As well as being

used to investigate the inherent ability of an individual’s

cells to produce IFN-c, the IFN-c release assays have been

developed for use in the diagnosis of TB, as an alternative

to the tuberculin skin test.85 Two commercial IFN-c
release assays are available; the ELISA, QuantiFERON-TB

Gold Intube, and the ELISPOT, T-SPOT.TB. Both involve

measuring IFN-c release by T cells stimulated by

M. tuberculosis antigens, which are present in infected

individuals but not uninfected individuals or in the bacil-

lus Calmette–Gu�erin vaccine.85 T cells that respond to

these antigens should therefore only be present in infected

individuals, and so only cells from infected individuals

should release IFN-c upon stimulation. However, as has

been discussed, differences in expression, either constitu-

tively, or in response to stimulation, can be caused by

genetic and epigenetic variations within the IFN-c gene,

independent of the stimulus. This has not been rigorously

assessed for TB diagnostic assays as an explanation for

false negatives.

IFN-c and mycobacterial infection

Interferon-c is key in the immune response to M. tuber-

culosis. Interferon-c production following recognition of

this pathogen is important in macrophage activation and

phagocytosis and results in inhibition of growth and

death of the mycobacteria.5 Reduced IFN-c production,

and the resulting reduced Th1 response has been particu-

larly associated with TB, and levels of IFN-c and IL-12

increase during anti-TB treatment.86 In addition, adjuvant

therapy with IFN-c may be beneficial in TB patients.87

TB had been associated with mutations in the IFN-c gene

in many different ethnic groups.15,18,19,21,27,34,46 Reduced

IFN-c production and reduced Th1 responses have also

been observed in non-tuberculosis mycobacterial infec-

tions such as those caused by Mycobacterium malmoense

or Mycobacterium avium.88,89 Genetic associations with

the IFN-c gene have not yet been identified in these

groups; however, associations with the IFN-c receptor

have been described, as have associations with anti-IFN-c
antibodies.90

IFN-c and fungal infection

In addition to a role in bacterial infections, IFN-c may

also be important in defence against fungal infections.

Cryptococcosis is usually caused by Cryptococcus neofor-

mans, occasionally by Cryptococcus gattii, the latter nota-

bly in non-immunocompromised patients.91 Following

inhalation, the usual manifestation of disease is meningi-

tis, although pneumonia92 and other forms of dissemi-

nated cryptococcosis, notably skin and bone disease, also

occur. Patients who fail to mount a directed IFN-c
response in cryptococcal meningitis are much more likely

to die than those who do, irrespective of antifungal ther-

apy.93 Aspergillosis is caused by the fungus Aspergillus,

usually Aspergillus fumigatus.94 In the majority of individ-

uals, inhaled A. fumigatus spores are cleared without

causing disease, however, in immunocompromised indi-

viduals, A. fumigatus can cause an acute and severe dis-

ease called invasive aspergillosis (IA), and in overtly

immunocompetent individuals A. fumigatus can cause

chronic pulmonary aspergillosis (CPA).94

Invasive aspergillosis is a serious invasive fungal infec-

tion that occurs predominantly in the lung but also occa-

sionally in other sites such as the paranasal sinuses, or

postoperatively, and which can disseminate if untreated.95

It occurs in a wide variety of immunocompromised

patients, including those undergoing organ transplants,

critically ill patients, those receiving high-dose corticoste-

roid therapy, in liver failure and during neutropenia.

Unless diagnosed early, it is associated with extremely

high morbidity and mortality, although outcomes have

improved in recent years with earlier diagnosis and better

antifungal agents, notably voriconazole.95 Invasive asper-

gillosis is closely associated with profound neutropenia,

monocytopenia and thrombocytopenia, or a blunted

immune response (usually mediated by corticosteroid

therapy). In addition, genetic susceptibility also plays a

role and several mutations in donor or recipient following

haematopoietic stem cell transplantation have been shown

to affect susceptibility (e.g. ref. 96).

Chronic pulmonary aspergillosis is a serious and debili-

tating progressive lung condition that involves the forma-

tion of a cavity or cavities within the lung, with progressive

fibrosis and consequent reduction in lung function and
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quality of life.94,97 A fungal ball, or aspergilloma, may be

present.94 If untreated, CPA can be fatal and has a ≥ 50%

5-year mortality.98 Long-term treatment with expensive

antifungal drugs is required to prevent deterioration; how-

ever, even with therapy, many patients do not improve but

instead either deteriorate or remain stable, and morbidity

and relapse remain high.99 Unlike in IA, CPA patients have

overtly normal immune systems without deficient numbers

of immune cells, and the reasons behind development of

this disease are unclear. While patients almost invariably

have some previous lung disease, such as pulmonary TB or

chronic obstructive pulmonary disease, they do not gener-

ally have a clinical history of recurrent infection.100 In addi-

tion, the majority of patients with these underlying diseases

do not develop CPA. It is likely that an immunogenetic

deficiency is involved, and some genes have indeed been

implicated (e.g. ref. 101). However, these associations do

not explain all of the cases of CPA.

As with mycobacterium infection, Th1 responses and

macrophages are important in Aspergillus infection. Vari-

ous studies have suggested that Th1 responses (e.g. IFN-c,
tumour necrosis factor-a, IL-15) are beneficial during

infection with A. fumigatus, whereas uncontrolled Th2

responses (e.g. IL-4, IL-13) are detrimental.102,103 Recent

reports indicate a role for IFN-c in immune tolerance to

A. fumigatus, acting via indoleamine 2,3-deoxygenase and

culminating in inhibition of Th17 cell responses and con-

trol of inflammation and allergy in Aspergillus-related

infections.104 Interferon-c is therefore important in resis-

tance to CPA and IA. Production of IFN-c in response to

standard stimuli is impaired in IA105 as well as in

CPA.106,107 Both CPA and IA patients have been treated

with recombinant IFN-c with benefit;94,108 CPA patients

have stable or improved disease when IFN-c is given in

combination with itraconazole, and a replacement dose of

rIFN-c (50 lg subcutaneously three times per week at

night) can make a substantial difference to patients. In

addition to its use in aspergillosis, exogenous IFN-c ther-

apy has proved beneficial in other patients with a range

of invasive fungal infections (Ochroconis gallopava, Alter-

naria malorum, Pyrenochaeta romeroi, Davidiella tassiana

and Candida albicans) after kidney transplantation.108

Several cases of disseminated invasive fungal infections

that were refractory to conventional antifungal drug ther-

apy were rapidly cured with IFN-c therapy.108

Clinical trials of gIFN treatment in infection and
fungal diseases

Recombinant IFN-c was originally licensed for infection

prophylaxis in patients with chronic granulomatous dis-

ease following a randomized controlled trial (RCT) show-

ing a significant reduction of infections and severity of

infection in those receiving rIFN-c.109 A 12-month dou-

ble-blind, placebo-controlled RCT of rIFN-c was sugges-

tive of benefit in HIV-positive patients with low CD4 cell

counts, with reduced incidence of mucosal Candida, her-

pes simplex virus and cytomegalovirus infections and a

trend towards increased survival (28% compared with

18%).110 The advent of combination antiretroviral ther-

apy curtailed further evaluations. Also in AIDS, an RCT

of rIFN-c at 100 and 200 µg three times weekly added to

antifungal therapy showed important trends in improve-

ment in cryptococcal meningitis, with more rapid cere-

brospinal fluid sterilization (32–36% rIFN-c recipients

versus 13% recipients (P = 0�072) and reduction in cryp-

tococcal antigen (12- to 24-fold versus eightfold decrease,

respectively) at 2 weeks.111 At 10 weeks, improved com-

bined mycological and clinical success was seen in the

rIFN-c recipients (26% versus 8%; P = 0�078). Unfortu-
nately the study was under-powered. A follow-up study

comparing two and six doses of 100 lg of rIFN-c in

cryptococcal meningitis all treated with amphotericin B

and flucytosine, showed faster organism clearance in both

rIFN-c groups compared with those not receiving rIFN-

c.112 No differences in mortality were seen. In pulmonary

TB, an RCT comparing the addition of rIFN-c given by

nebulizer to anti-tuberculous therapy showed a significant

difference in the rate of clearance of M. tuberculosis from

the sputum smear at 4 weeks (P = 0�03) anti-tuberculous
therapy alone.113 Both nebulized and subcutaneous rIFN-

c significantly reduced fever, wheeze, and night sweats at

4 weeks. Some open studies of rIFN-c are suggestive of

benefit in invasive aspergillosis,108,114–116 but no RCTs

have been published. In contrast to these encouraging

data, other RCTs have been negative. A large RCT in pul-

monary fibrosis was stopped early with lack of benefit.117

In Chinese patients with chronic hepatitis B, rIFN-c
showed no benefit.118 Aerosolized rIFN-c was ineffective

in mild to moderate cystic fibrosis.119

IFN-c genetic and epigenetic variation and fungal
disease

As discussed, IFN-c appears to be important in the

immune response to fungi; in aspergillosis in particular,

Th1 (IFN-c-producing) responses appear beneficial in

CPA, while uncontrolled Th2 responses are detrimen-

tal,102,103 and impaired IFN-c responses are associated with

aspergillosis, including CPA.102,103,105,107 Immune cells

from aspergillosis patients have deficient IFN-c production,
and patients benefit from treatment with recombinant

IFN-c. The production of IFN-c that is measured by this

assay can be affected by genetic and epigenetic variations

within the IFN-c gene. It is likely that the deficient

responses observed in cells from CPA patients are a result

of genetic or epigenetic factors within the DNA encoding

the IFN-c gene.
Identification of IFN-c SNPs affecting expression, either

constitutively or in response to stimuli, may be useful as
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indicators for IFN-c treatment in aspergillosis patients or

those with other fungal disease. In addition, identification

of variations that are associated with aspergillosis or other

fungal diseases may be useful as genetic markers of sus-

ceptibility to these diseases and could help to identify at

risk individuals. Therefore, genetic studies of IFN-c and

its role in fungal diseases such as aspergillosis would be

invaluable.

In addition, although there is no evidence yet as to

whether the IFN-c is epigenetically altered in patients

with aspergillosis or other fungal diseases, it is likely that

epigenetic changes that reduce expression of IFN-c, such
as hypermethylation of the gene or promoter, may

increase susceptibility to this disease. Investigation and

identification of these would also be invaluable.

Conclusions

The IFN-c gene is subject to both genetic and epigenetic

variations, some of which have been associated with gene

expression and with disease. IFN-c therapy is given to

patients with profound defects in IFN-c and IL-12 pro-

duction. A high proportion of patients with CPA are

poor producers of IFN-c in response to multiple stimuli

and IFN-c therapy appears to be beneficial for patients

with IA and CPA. The investigation and management of

patients with possible or demonstrated IFN-c deficiency

in adulthood are poorly studied and could be greatly

enhanced with the integration of genetic data. Variation

in the IFN-c gene may be important in fungal disease,

including aspergillosis, particularly in CPA and IA, and

genetic and epigenetic studies investigating IFN-c in

aspergillosis would be useful tools to elucidate a possible

role for this variation in both susceptibility to aspergillo-

sis and in identification and stratification of patients who

would benefit from IFN-c therapy.
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