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Abstract

Macrophages detect bacterial infection through pattern recogni-
tion receptors (PRRs) localized at the cell surface, in intracellular
vesicles or in the cytosol. Discrimination of viable and virulent
bacteria from non-virulent bacteria (dead or viable) is necessary
to appropriately scale the anti-bacterial immune response. Such
scaling of anti-bacterial immunity is necessary to control the
infection, but also to avoid immunopathology or bacterial persis-
tence. PRR-mediated detection of bacterial constituents in the
cytosol rather than at the cell surface along with cytosolic recog-
nition of secreted bacterial nucleic acids indicates viability and
virulence of infecting bacteria. The effector responses triggered
by activation of cytosolic PRRs, in particular the RIG-I-induced
simultaneous rapid type I IFN induction and inflammasome acti-
vation, are crucial for timely control of bacterial infection by
innate and adaptive immunity. The knowledge on the PRRs and
the effector responses relevant for control of infection with intra-
cellular bacteria will help to develop strategies to overcome
chronic infection.
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Introduction

The immune system has evolved to provide protection against

infectious microorganisms. Physical barriers in the skin, the gastro-

intestinal, and the respiratory tracts provide a first line of defense

to prevent invasion of bacteria that colonize body surfaces. Those

bacteria that breach these barriers are not only confronted with a

dense network of macrophages located within mucosal tissues in

the skin, but also with macrophages from the liver or spleen that

provide immune surveillance against circulating bacteria in the

blood stream. Phagocytic cell populations such as granulocytes,

monocytes, and tissue-resident macrophages are equipped with

germ-line encoded pattern recognition receptors (PRR) that detect

bacteria leading to the induction of innate immune responses

(Akira & Takeda, 2004; Akira et al, 2006; Gao et al, 2008). PRRs

recognize pathogen-associated molecular patterns (PAMPs) or

danger-associated molecular patterns (DAMPs), that is cell stress,

damage, or cell death associated with infection. Because of bacte-

rial immune evasion and existence of secretion systems in bacteria

that deliver virulence factors into the cytosol, infected cells require

a timely and coordinated activity of PRRs to combat bacterial

infection. The PRRs and the signaling pathways involved in this

aspect have been the matter of intense research efforts over the

last years.

Binding and phagocytosis of bacteria followed by induction of

inflammation are important for macrophage control of bacterial

dissemination in tissues or blood. Even before phagocytosis, some

bacteria such as Helicobacter pylori deliver degradation products of

cell wall peptidoglycan into the cytosol of epithelial cells and

thereby activate cytosolic PRR-induced signaling (Girardin et al,

2003a; Viala et al, 2004). PRRs are not exclusively expressed by

macrophages, but are also found on organ-resident non-immune

cell populations such as endothelial and epithelial cells, which

allow these cells to engage in immune surveillance and induction

of inflammation (Knolle et al, 1997; Viala et al, 2004; Irving et al,

2014). Phagocytic elimination of bacteria or bacterial debris is

mainly performed by macrophages and granulocytes, but also by

epithelial cells (Travassos et al, 2010; Irving et al, 2014).

While the rapid containment of bacterial infection and potent

induction of innate immune responses are relevant to control local

infection and prevent it from spreading further, it is equally impor-

tant to prevent immune pathology resulting from overshooting

immunity (Blander & Sander, 2012). Here, we review the current

knowledge on the key PRRs and signaling pathways that contrib-

ute to the scaling of immune responses against intracellular bacte-

rial infection. The activation of PRRs localized in different

subcellular compartments and their cross talk will be reviewed

with particular reference to their role in cytosolic recognition of

bacterial nucleic acids for generation of protective immunity. Since

a wealth of knowledge has been collected on the immune response

against Gram-positive intracellular Listeria monocytogenes, we will

mainly discuss the principles of anti-bacterial immunity against

this pathogen but also refer to other important pathogenic bacterial

species.
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Subcellular localization of PRRs

Closely interlinked networks of germ-line encoded PRRs exist to

facilitate recognition of bacteria localized within different subcellu-

lar compartments in phagocytic immune cells (Fig 1). Membrane-

anchored PRRs detecting PAMPs are located at the cell surface and

within endosomal/phagosomal compartments. Toll-like receptors

(TLRs) as well as C-type lectin receptors belong to this category of

PRRs that overlook both, the cell surface and the endosomal

compartments (Fig 1). Ligand binding and TLRs activation induce

signaling via the adapter molecules MyD88 and/or TRIF to trigger

the production of type I interferon (IFN) and inflammatory cytokines

through the transcription factors NF-jB and interferon response

factors (IRF) 3, 5, and 7 (Table 1 and Fig 1) (Blasius & Beutler,

2010; Kawai & Akira, 2010). The relative importance of type I IFN

for pathogen control or regulation of immune responses will be dealt

with later on in this review. Dectin receptors signal through the

adapter molecules Syk and CARD9 to induce expression of inflam-

matory cytokines via NF-jB (Taylor et al, 2007; Saijo et al, 2010)

(Table 1 and Fig 1). The sanctity of the cytosol is the result of most

sensitive detection of any signs of infection through PRRs. Although

the replication strategies of bacteria and viruses are fundamentally

different, cytosolic PRRs have evolved a surveillance network that

covers these demands. Two distinct classes of PRR families can be

distinguished, that is the NOD receptors (NOD1 and NOD2) detect-

ing structural elements of bacteria cell walls (Girardin et al, 2003a,b)

and the RNA-sensing RIG-I-like helicase receptors (RIG-I and

MDA5) (Table 1 and Fig 1). Upon ligand binding, cytosolic NOD

receptors signal through NF-jB for induction of pro-inflammatory

cytokines (Bertin et al, 1999; Ogura et al, 2001). Upon recognition

of non-self RNA in the cytosol, RIG-I and MDA5 signal via the

adapter molecule MAVS and TBK1 to activate interferon respon-

sive factor 3 (IRF3) and thereby production of type I IFN and

inflammatory cytokines. Recently, the nucleotidyl transferase

cGAS has been identified that generates the second messengers

cyclic-diadenylate monophosphate and cyclic-diguanylate mono-

phosphate (cGAMP) in response to recognition of foreign DNA to

trigger type I IFN induction via STING (Xiao & Fitzgerald, 2013).

Interestingly, STING also serves as a receptor recognizing cGAMP

directly released from cytosolic bacteria (Woodward et al, 2010).

The RNA polymerase III transcribes foreign DNA into RIG-I

ligands, namely 3p-RNA (Loo & Gale, 2011), which allows for

RIG-I-dependent sensing of these RNA polymerase intermediates

(Ablasser et al, 2009).

Besides induction of type I IFN and inflammatory cytokines, acti-

vation of cytosolic PRRs can lead to inflammasome activation that is

characterized by ASC-mediated proteolytic cleavage of pro-IL-1b
and pro-IL-18 to biologically active pro-inflammatory IL-1b and

IL-18. Inflammasomes are multicomponent protein complexes that

assemble as a platform upon recognition of non-self nucleic acids in

the cytosol or upon recognition of certain danger signals (Fig 2 and

Table 1) (Martinon & Tschopp, 2007; Latz et al, 2013). The

outcome of inflammasome activation is the cleavage and release of

the biologically active forms of IL-1b, IL-18, and IL-33. Also,

inflammasome-induced activation of caspase-1 catalyzes the proteo-

lytic activation of caspase-7, rather than caspase-3, in the cytosol,

triggering pyroptotic cell death and consequently local inflamma-

tion. This inflammasome-induced pyroptotic cell death contributes

to the elimination of invading pathogens (Miao et al, 2010; Latz

et al, 2013). While caspase-1 processing is required for the release

of IL-1b and IL-18, it is dispensable for pyroptosis, suggesting that

caspase-1 can also be activated in a non-proteolytic way to trigger

cell death (Zitvogel et al, 2012). Caspase-11 activation can lead to

inflammasome-independent generation of IL-1b by degradation of

TRPC1 (Py et al, 2014), a family member of TRP receptors that

serve as sensors for various physiological cell functions (Clapham,

2003). Activation of NOD-like receptors (NLRs), Aim2, and RIG-I all

trigger inflammasome activation upon sensing of bacterial flagellin,

DNA, and RNA, respectively (Fig 2). Cytosolic presence of cathep-

sin B or ATP leakage, that indicates vesicle damage induced

by phagocytosed bacteria, activates NLRP3 and NRLP1 inflamma-

somes (Duncan et al, 2009; Meixenberger et al, 2010; Ali et al, 2011).

Pathogenic bacteria induce inflammasome activation via several

pathways. Gram-positive bacteria like Listeria can trigger the NLRs-

induced inflammasome activation by secreting pore-forming

proteins leading to leakage of phagolysosomal constituents such as

cathepsins into the cytosol that are then recognized by NLRP3

(Meixenberger et al, 2010). Gram-negative bacteria such as

Salmonella (Mariathasan et al, 2004) or Shigella (Suzuki et al,

2007) use type III secretion systems for cytosolic delivery of flagellin

that is detected by NLRC4 (Franchi et al, 2009). Furthermore, the

DNA-recognizing PRR Aim2 is reported to sense DNA of several

intracellular bacteria, such as Listeria monocytogenes (Fernandes-

Alnemri et al, 2009) and Legionella pneumonia (Ge et al, 2012).

Similar to NLRP3, binding of non-self DNA to Aim2 will trigger the

supramolecular assembly of ASC-dimers and the subsequent release

of the pro-inflammatory cytokines IL-1b and IL-18 together with

Glossary

Aim2 (absent in melanoma 2) cytosolic DNA sensor
ASC (Apoptosis-associated speck-like protein containing a

caspase-recruitment domain) signaling adapter molecule for
canonical inflammasome activation

DAMP danger-associated molecular pattern
DC dendritic cell
IFNAR type I interferon receptor
IFN interferon
IRF3 interferon responsive factor 3
MAVS (mitochondrial antiviral signaling protein) cytosolic signaling

adapter molecule downstream of RIG-I or MDA5
MDA5 (melanoma differentiation associated antigen 5) cytosolic

RNA sensor
MyD88 (myeloid differentiation primary response gene 88) signaling

adapter molecule downstream of TLRs mediating NF-jB
activation

NLRP3 (NOD-like receptor family, pyrin domain containing 3)
inflammasome component

NOD (nucleotide-binding oligomerization domain) cytosolic
pattern recognition receptor

PAMP pathogen-associated molecular pattern
PRR pattern recognition receptor
RIG-I (retinoic acid inducible gene I) cytosolic RNA sensor
SecA2 auxiliary protein secretion system in bacteria
STING (stimulator of interferon genes) cytosolic DNA sensor and

signaling adapter molecule
TBK1 (tank binding kinase) signaling adapter molecule
TLR Toll-like receptor
TRIF (TIR-domain-containing adapter-inducing interferon-b)

signaling molecule downstream of TLR4 and TLR3
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induction of pyroptosis. Besides this, a non-canonical pathway of

inflammasome activation exists, where type III and type IV secre-

tion systems of Gram-negative bacteria like Legionella pneumophila

and Yersinia pseudotuberculosis induce caspase-11-dependent

release of IL-1b and cell death through the NLRP3/ASC inflamma-

some (Casson et al, 2013). Certain Gram-negative bacteria trigger

TRIF-mediated NLRP3 inflammasome activation that in turn activates

caspase-11 to synergize with the assembled NLRP3 inflammasome to

regulate caspase-1 activation, caspase-1-independent IL-1b release,

and cell death (Rathinam et al, 2012). More recently, it was shown

that particular serotypes of LPS from Escherichia coli or Salmonella

typhimurium, upon delivery into the cytosol of macrophages, can

activate caspase-11, release of IL-1b, and induce pyroptotic cell

death (Kayagaki et al, 2013). Thus, inflammasome activation in

response to bacterial infection is achieved via various PRRs.

Sensing the threat of bacterial infection to scale
anti-bacterial immunity

Myeloid cells of the immune system serve a dual function in early

containment and direct elimination of invading bacteria as well as

in the sensing and scaling the threat of bacterial infection to mount

appropriate immune responses against pathogenic bacteria. Detec-

tion of PAMPs such as bacterial cell wall constituents or CpG-rich

bacterial DNA by TLRs does not allow the macrophage to discrimi-

nate between bacterial debris and the presence of viable and viru-

lent bacteria. Breaching of plasma membranes or spillage of

proteolytic enzymes from damaged phagolysosomes, however, indi-

cates not only bacterial viability but also virulence. Nonpathogenic

bacteria typically do not enter the cytosol, and they do not deliver

virulence factors into the cytosol of host cells. Rapid and robust
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Figure 1. Recognition of PAMPs by pattern recognition receptors (PRRs).
Pattern recognition receptors are classified into three subgroups according to their localization in the cell. Toll-like receptors are located on plasma membranes at the
cell surface and also within endosomal compartments. Certain TLRs are involved in recognition of proteins, lipids, and lipoproteins such as TLR1, TLR2, TLR4-6, and TLR11,
while others detect the presence of nucleic acids, such as TLR3, TLR7, TLR8, and TLR9. Furthermore, C-type lectins constitute a separate family of membrane-anchored
PRRs such as Dectin-1 and Dectin-2 that contribute to recognition of complex carbohydrate structures. Together, these receptors recognize a wide range of pathogen-
associated molecular patterns and thus ensure that bacteria can be sensed in a synergistic fashion by different PRRs. Finally, sensing of pathogens within the cytosol is
mediated by the family of NOD receptors and NLRs that include RIG-like helicases and other RNA-sensing receptors.

ª 2014 The Authors The EMBO Journal Vol 33 | No 20 | 2014

Zeinab Abdullah & Percy A Knolle Scaling of immune responses The EMBO Journal

2285



induction of immunity is necessary to fight highly virulent bacteria,

whereas elimination of bacterial degradation products does not

require the same strength of response. Moreover, detecting the

threat of a bacterial infection occurs in the context of bacterial strat-

egies to interfere with the host’s immune response revealing a co-

evolutionary race and continuous ‘hide and seek’ interaction

between infecting bacteria and the host’s immune system. For scal-

ing, the necessary extent and duration of anti-bacterial immunity

myeloid cells use the complex information they receive from the

different PRRs in distinct subcellular compartments. While

membrane-anchored TLRs recognize bacterial cell wall constituents

and nucleic acids from degraded bacteria, only cytosolic PRRs recog-

nize bacterial nucleic acids released from viable bacteria (Sander

et al, 2011; Abdullah et al, 2012; Rathinam et al, 2012). Of note,

DNA- and RNA-sensing receptors recognize bacterial nucleic acids

independent of the particular bacterial species. This suggests that

detection of infection with pathogenic intracellular bacteria may

follow a ‘red button’ principle to initiate and scale the extent of anti-

bacterial defense that is based on cytosolic alarm signals rather than

the specific detection of particular pathogenic bacterial species.

Intracellular bacteria such as Mycobacterium tuberculosis, Liste-

ria monocytogenes, and Legionella pneumophila persist in host cells

by preventing phagosomal maturation, by resisting microbicidal

effector functions of the host cell or by escape from phagolysosomes

into the cytosol (Diacovich & Gorvel, 2010). Escape from the phago-

lysosomal compartment is clearly an indication of bacterial viru-

lence and is caused by virulence factors, for example listeriolysin

(LLO) in case of Listeria monocytogenes. However, bacteria have

evolved various immune escape mechanisms by interfering with

recognition through PRRs or modulating signaling downstream of

receptor activation. Certain bacteria impair MyD88-mediated signal-

ing downstream of TLRs and thereby compromise induction of

innate immune responses (Johannessen et al, 2013). Some bacterici-

dal mechanisms induced by the activation of the PRRs trigger induc-

tion of virulence factors by the intracellular pathogens Listeria,

Shigella, and Mycobacterium and therefore may enhance bacterial

pathogenicity (Arpaia & Barton, 2013).

Once in the cytosol, bacteria like Listeria monocytogenes, Shigella

flexneri, and Burkholderia pseudomallei can escape detection

through surface and phagosomal/endosomal PRRs by rapid migra-

tion and by infecting a neighboring cell, thus avoiding the extracel-

lular environment and detection by PRRs at the cell surface or

phagosomal compartments. Following LLO-mediated escape from

the phagosome, Listeria monocytogenes within the cytosol employs

ActA for uni-directional propelling via actin-polymerization, which

is required for continuous evasion from killing (Chakraborty et al,

1995; Skoble et al, 2000). Salmonella spp. employs other escape

mechanisms and down-regulates expression of flagellin and the

secretion system T3SS. Thus, Salmonella avoid detection of flagellin

by TLR5 at the cell membrane (Hersh et al, 1999; Andersen-Nissen

et al, 2005) and by NLRC4 within the cytosol (Perez-Lopez et al,

2013). Several other pathogenic bacteria also evade inflammasome

activation (Cunha & Zamboni, 2013). Since the inflammasome is

crucial to mount effective innate immune responses against

Table 1. Localization and ligand properties of PRRs

PRRs Subcellular localization Ligands recognized Signaling pathways/transcription factors

Toll-like receptors

TLR2 Cell surface/endosome Lipoteichoic acid MyD88, NF-jB

TLR3 Endosome Double-stranded RNA TRIF, NF-jB/IRF3

TLR4 Cell surface/endosome LPS TRIF/MyD88/Mal/NF-jB/IRF3

TLR5 Cell surface Flagellin MyD88, NF-jB

TLR7/8 Endosome Single-stranded RNA MyD88, NF-jB/IRF7

TLR9 Endosome Double-stranded DNA

C-type Lectins

Dectin-1 Cell surface b-glucan Syk, CARD9, NF-jB

Dectin-2 Cell surface a-mannans Syk, CARD9, NF-jB

NLR

NOD Cytosol Peptidoglycans NF-jB, MAPK

NLRP1 Cytosol Type III secretion system ASC, Caspase-1

NLRP3 Cytosol MDP ASC, Caspase-1

NLRC4 Cytosol mRNA/flagellin ASC, Caspase-1

RNA pol III Cytosol dsRNA MAVS, TBK1, IRF3

DAI Cytosol AT-rich B-DNA TBK1, IRF3, NF-jB

LRRFIP1 Cytosol dsRNA, dsDNA b-catenin, IRF3

IFI16/p204 Cytosol dsDNA STING, TBK1, IRF3

AIM2 Cytosol dsDNA ASC, Caspase-1

RIG-I Cytosol 3p-RNA MAVS, IRF3, IRF7, NF-jB, ASC, Caspase-1

MDA5 Cytosol Double-stranded RNA MAVS, IRF3, IRF7, NF-jB
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intracellular bacterial pathogens like Salmonella typhimurium, such

evasion of cytosolic immune sensing may impair protective immu-

nity. Furthermore, Mycobacterium tuberculosis prevents activation

of caspase-1 triggered by the administration of NLRP3 agonists and

by inactivating small GTPases (Mishra et al, 2013; Sun et al, 2013),

suggesting that bacteria actively repress detection by PRRs. Within

the gastrointestinal tract, distinction between pathogenic and

commensal bacteria is achieved through NLRC4/inflammasome-

driven production of IL-1b that promotes host intestinal defense

(Franchi et al, 2012). These findings strengthen the notions that

inflammasome activation is important for appropriate immune

responses against pathogenic bacteria and that cytosolic pattern

recognition is involved in distinction between pathogenic and

commensal bacteria.

Intracellular bacteria can also modify cellular functions. For

example, while still being in phagosomal compartments, Salmonella

inject pro-apoptotic molecules via their type III secretion system into

infected macrophages and thereby cause further dissemination of

bacterial infections by release of bacteria from dying macrophages.

Interestingly, human and mouse NLRC4 recognize bacterial type III

secretion needle protein that initiates rapid inflammasome activa-

tion upon development of bacterial virulence (Zhao et al, 2011;

Yang et al, 2013). Mycobacteria that persist in phagosomal compart-

ments in macrophages regulate cellular metabolism to their

advantage to support intracellular survival such as induction of

cholesterol accumulation (Mattos et al, 2014) and regulation of

autophagy. Pharmacologic re-activation of autophagy forms the

basis for effective anti-mycobacterial drug action (Kim et al, 2012).

Furthermore, disruption of glycolipid synthesis results in an

increase in the release of the pro-inflammatory cytokines from

infected cells and infection with M. tuberculosis overproducing

glycolipids inhibited the release of these pro-inflammatory media-

tors (Reed et al, 2004). Therefore, differences in mycobacterial lipid

metabolism may modify the host‘s immune response.

Intracellular Gram-positive bacteria like Listeria employ another

strategy and confound the host’s transcriptional response by the

secretion of small RNAs. Upon infection of the host cell, Listeria

shows dramatic changes in its gene expression including generation
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Figure 2. Inflammasome activation in response to bacterial infection.
Inflammasome activation is achieved by different PRRs and through sensing of cell stress or presence of particular bacterial products. Detection of small size nucleic acids
secreted from Listeria triggers by AIM2 and RIG-I leads to inflammasome activation. Pathogenic Escherichia coli and Listeria monocytogenes are sensed via NLRP3 that
detects bacterial mRNA and membrane damage—cathepsin B—in the cytosol of infected cells. NLRP1b detects the lethal toxin (LT) of the Bacillus anthracis that reaches the
cytosol of the host cell through the bacterial toxin protective antigen (PA). Furthermore, intracellular Salmonella typhimurium, Shigella flexneri, and Legionella pneumophila
are recognized through NLRC4 inflammasome that detects the monomeric flagellin that is secreted through bacterial type III and IV secretion systems into the cytosol.
Inflammasome-mediated caspase-1 activation leads to the release of IL-1b and IL-18 as well as to pyroptotic cell death that both serve to restrict further pathogen expansion.
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of non-coding RNAs (Toledo-Arana et al, 2009). However, only few

details are so far known how RNA or DNA secreted by cytosolic

bacteria may affect anti-bacterial immune response (Caldelari et al,

2013). In support of this reasoning, Listeria lacking the secA2 secre-

tion system, that is required for secretion of bacterial proteins and

nucleic acids into the cytosol (Lenz & Portnoy, 2002), are more

rapidly eliminated by macrophages (Lenz et al, 2003; Muraille et al,

2007; Abdullah et al, 2012).

Detection of secreted nucleic acids through PRRs such as RIG-I

and cGAS/STING likely represents the Achilles heel of bacteria that

have reached the cytosol (Abdullah et al, 2012). Since it is likely

that substantial amounts of bacterial nucleic acids are required to

influence the host cell transcriptome, the sensitive and rapid detec-

tion of those nucleic acids by cytosolic RIG-I and cGAS/STING may

be particularly important to prevent deterioration of cellular defense

function during cytosolic bacterial infection. Thus, cytosolic

immune sensing of secreted nucleic acids provides a mean to differ-

entiate between dead bacteria and bacterial debris and thereby

allows macrophages to rapidly initiate appropriate defense mecha-

nisms before bacterial escape mechanisms take action.

For virulent bacteria that do not gain excess to the cytosolic

compartment, other mechanisms operate to achieve a commensu-

rate response to infection. It was recently found that low concentra-

tions of LPS drive a TLR4-dependent pro-inflammatory response

that is characterized by release of cytokines and alerts the host to

the presence of bacterial infection (Kawai & Akira, 2010). Higher

quantities of LPS, however, can reach the cytosol and trigger inflam-

masome activation, IL-1b production, and pyroptotic cell death

(Kayagaki et al, 2013). This distinct response pattern, which

depends on the concentration of LPS rather than detection of quali-

tatively different molecular patterns, adds further complexity to

shape the response and magnitude of innate immune responses

against bacteria.

Scaling up anti-bacterial immunity and immune sensing

Pro-inflammatory mediators released from macrophages as a conse-

quence of PRR activation initiate a local inflammatory response and

through induction of chemokines recruit further immune cells to the

site of infection. Various immune cell populations such as neutroph-

ils, inflammatory monocytes, natural killer (NK) cells, and dendritic

cells (DCs) are involved in local defense against bacterial infection.

Early after infection, neutrophils migrate toward the site of infec-

tion, attracted by IL-6 and IL-8 and chemokines that are secreted by

infected cells. Neutrophils amplify this inflammatory response by

secreting further inflammation-inducing mediators and chemokines

for the recruitment of inflammatory monocytes and DCs. Such

recruitment of immune cell populations serves the purpose to

rapidly contain and eliminate invading bacteria at the site of initial

infection and to allow for antigen sampling by DCs and monocytes/

macrophages leading to induction of sterile clearance and protective

immune memory (Schnare et al, 2001; Iwasaki & Medzhitov, 2010).

Macrophages located within liver sinusoids are most prominent

in removing bacteria circulating in the blood through a concerted

action involving granulocytes trapping bacteria in NETs and plate-

lets enhancing macrophage binding and clearance of bacteria (Lee

et al, 2010; Wong et al, 2013). Macrophage activation by PRRs

further orchestrates a complex anti-bacterial immune response. The

triggering of surface-bound TLRs by live bacteria or bacterial degra-

dation products leads to expression of cytokines such as TNF, IL-12,

and IL-18 that in turn cause local NK-cell activation and IFN-c
production. This stimulates bactericidal activity in macrophages to

eliminate phagocytosed bacteria by increasing phagolysosomal

fusion. Macrophages and granulocytes produce ROS early after

uptake of bacteria, which prevents bacterial escape into the cytosol.

The killing of ingested bacteria through cytokine-mediated enhance-

ment of bactericidal activity in phagocytosing cells such as macro-

phages and granulocytes constitutes a positive feed-forward loop to

gain rapid control over infecting bacteria (Lee et al, 2010; Wong

et al, 2013).

If bacteria are not readily eliminated by these measures, a further

layer of immune defense is activated. Damage to the phagosome

causes leakage of cathepsins into the cytosol triggering NLRP3 acti-

vation. Direct cytosolic recognition of bacterial constituents such as

flagellin by NLRC4, anthrax subunit proteins by NLRP1b, or bacte-

rial nucleic acids by RIG-I or AIM2 leads either to production of type

I IFN or to inflammasome activation (Fig 3). Caspase activation

further augments bacterial killing within the phagolysosome. Acidifi-

cation of phagosomes containing Gram-positive bacteria is regulated

by the NLRP3 inflammasome and caspase-1. Active caspase-1 accu-

mulates on phagosomes and acts locally to control the pH by modu-

lating buffering by the NADPH oxidase NOX2 (Sokolovska et al,

2013). Gene expression induced by IFN-c upregulates phagosomal

defense mechanisms that limit the bacterial escape from phago-

somes (Myers et al, 2003; Lindgren et al, 2004). Inflammasome acti-

vation contributes to elimination of intracellular bacteria and at the

same time further enhances recruitment of immune cells and induc-

tion of sterile clearance as well as protective antigen-specific immu-

nity. These positive feedback loops initiated at the different

subcellular locations by different PRRs converge on cytosolic

immune sensing and inflammasome activation to reinforce anti-

bacterial immunity and facilitate rapid control of bacterial spread.

During infection, the capacity for detection of bacterial infection

by PRRs is increased by several mechanisms. The initial expression

of TNF, type I IFNs, or IFN-c leads to augmented transcription of

genes coding for PRRs, thus increasing the expression levels of those

receptors and also of pro-IL-1b or pro-IL-18 (Coers et al, 2007;

Henry et al, 2007; Mancuso et al, 2007). In particular, the enhanced

interferon-mediated expression of guanylate binding proteins (GBP)

facilitates improved cytosolic sensing of LPS (Kim et al, 2011; Pilla

et al, 2014). Furthermore, interferon-induced GBPs mediate inflam-

masome assembly and thereby promote the development of effector

functions downstream of inflammasome activation (Shenoy et al,

2012). Two other important mechanisms further amplify detection

of microbial DNA in the cytosol. First, RNA polymerase III detects

double-stranded DNA and transcribes it into RNA-ligands, thereby

allowing their detection by RIG-I (Ablasser et al, 2009). Second,

DNA recognition by the nucleotidyl transferase cGAS leads to gener-

ation of the second messengers cyclic GMP-AMP that are recognized

by STING leading to downstream IRF3 activation and enhanced IFN

induction (Xiao & Fitzgerald, 2013). These amplifying mechanisms

enhance nucleic acid sensing and ensure that even small concentra-

tions of microbial nucleic acids detected within the cytosol are suffi-

cient to initiate a robust and protective anti-bacterial immune

response.
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Dynamics of anti-bacterial immunity adapted to the
threat of infecting bacteria

Detection of intracellular bacterial infection occurs in the context of

bacterial replication and bacteria-mediated repression of PRR activa-

tion and therefore requires rapid yet sensitive and specific detection

via PRRs. If intracellular bacteria have evaded phagolysosomal

destruction and escaped into the cytosol, the detection of those

invading bacteria needs to occur rapidly. Cytosolic sensing of bacte-

rial nucleic acids has been found to be a key event in detection of

intracellular viable bacteria (Sander et al, 2011; Abdullah et al,

2012). Since nucleic acids derived from dead bacteria do not trigger

cytosolic immune sensing (Abdullah et al, 2012), the active release

of bacterial nucleic acids in the cytosol during infection with Gram-

positive or Gram-negative intracellular bacteria has led to the term

‘vita-PAMP’ that indicates both, viability and virulence of invading

intracellular bacteria (Sander et al, 2011).

Activation of most cytosolic PRRs leads either to type I IFN

production or to inflammasome activation. RIG-I does not show this

functional dichotomy but rather has the ambivalent function to elicit

at the same time both type I IFN production and inflammasome acti-

vation (Poeck et al, 2010; Pothlichet et al, 2013) (Fig 3). Even in

the presence of bacterial escape at the cell surface or phagolysoso-

mal compartments, this concomitant induction of type I IFN and

inflammasome activation serves to increase detection in neighboring

cells by the mechanisms described above. At the same time, it will

contain intracellular infection through inflammasome-mediated

pyroptosis that also leads to chemokine-dependent recruitment of

further immune cells (Miao et al, 2010). A similar ambivalent

response pattern has been observed during infection with

RIG-I
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Figure 3. Prominent role of RIG-I in orchestrating immunity against viable and virulent intracellular Listeria.
Schematic representation of the different PRRs and amplification mechanisms that operate in detection of intracellular infection with viable and virulent Listeria
monocytogenes. Active secretion of small size nucleic acids through SecA2 from cytosolic Listeria is detected by DNA-sensing Aim2 as well as RNA-sensing RIG-I. RIG-I signaling
is unique since it leads to concomitant activation of type I IFN induction through MAVS and inflammasome activation through ASC. This ensures that independent of
cell surface or endosomal PRR activation in case of bacterial escape by direct cell-to-cell infection, the levels of cytosolic PRRs are increased, and through NF-jB activation,
the expression of the pro-forms of IL-1b and IL-18 is augmented. The combination of type I IFN induction and inflammasome activation is important for rapid generation of
protective anti-bacterial immunity.
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pathogenic Gram-negative bacteria, where activation of TRIF signal-

ing stimulates both, type IFN induction and non-canonical inflam-

masome activation via caspase-11 (Rathinam et al, 2012). However,

caspase-11 activation in the absence of caspase-1, that is lack of

proteolytic cleavage of pro-IL-1b and pro-IL-18, is not sufficient to

control infection and is even detrimental to the outcome of

Salmonella infection (Broz et al, 2012). Thus, the simultaneous

induction of type I IFN and inflammasome activation leading to the

release of IL-1b and IL-18 appears to provide an advantage for

immune protection against intracellular bacteria. Along this line,

lack of type I IFN signaling in infected cells leads to reduced

immunity against Gram-negative intracellular bacteria (Rathinam

et al, 2012). For infection with intracellular Gram-positive bacteria,

the situation is similar. Clearance of infection with Francisella

tularensis is impaired in the absence of type I IFN signaling (Fernandes-

Alnemri et al, 2010), and type I interferon receptor (IFNAR) signaling

is required for inflammasome activation during Listeria infection

(Henry et al, 2007). Furthermore, there is an unequivocal role for

type I IFN in recruitment of immune cells to the site of infection

with Listeria (Jia et al, 2009).

Beyond the beneficial effect of type I IFN in innate immune

responses against infection with intracellular bacteria, it plays also

an important role in the induction of protective specific immunity.

Animals devoid of lymphocytes and lacking adaptive immunity

succumb to Listeria at day 10 after infection (Ladel et al, 1994).

While the different immune cell populations contributing to Listeria-

specific immunity have been well characterized (Pamer, 2004), little

is known about the molecular mechanisms contributing to induction

of protective bacteria-specific immunity. Inflammasome activation

through release of IL-1b and IL-18 leads to stimulation and genera-

tion of T helper 17 cells or T helper 1 cells, respectively (Dostert

et al, 2013), that are instrumental for infection control. Further-

more, inflammasome signals amplify innate bactericidal capacities

of T helper 1 cells (O’Donnell et al, 2014). These reports revealed a

direct activity of inflammasome-induced signals to amplify the anti-

bacterial activity of T cells.

Although inflammasome activation and induction of innate

immune responses are instrumental in the functional maturation of

antigen-presenting cells, we do not know the exact contribution of

inflammasome activation to the immediate anti-bacterial CD8 T-cell

response. Cross-priming is a critical event in the induction of protec-

tive CD8 T-cell immunity against intracellular infection (Kurts et al,

2010) and against Listeria infection in particular (Jung et al, 2002).

Type I IFN has been shown to increase cross-priming of CD8 T cells

by antigen-presenting DCs (Le Bon et al, 2003). IL-1R-signaling in

DCs can replace activation of PRRs promoting CD8 T-cell immunity

(Pang et al, 2013). Consequently, in the absence of IFNAR-

signaling, a loss of memory CD8 T-cell formation has been observed

(Xiao et al, 2009). Importantly, a reduction in cytosolic detection of

Listeria mutants lacking the secretory protein SecA2 leads to

reduced protection through CD8 T cells upon re-infection with wild-

type Listeria (Muraille et al, 2007; Rahmoun et al, 2011). Further-

more, IL-18 generated during inflammasome activation regulates

non-cognate effector function by memory CD8 T cells, thus resulting

in a broad enhancement of protective immunity (Kastenmuller et al,

2012; Kupz et al, 2012). Together with the recognized role of

inflammasome activation during vaccination (Eisenbarth & Flavell,

2009), these results indicate an essential role of inflammasome

activation in protective T-cell immunity beyond the relevance for

innate immunity.

Notwithstanding this role of inflammasome activation in anti-

bacterial defense, inflammasome-mediated induction of pyroptotic

cell death and the ensuing inflammatory reaction can cause immu-

nopathology in infected tissues (Cohen & Prince, 2013). While

strong inflammatory responses during acute infection help to

control local bacterial infection, longer lasting infection through the

amplification loops discussed above can promote deleterious inflam-

mation and tissue damage. Well-known immune regulatory media-

tors such as IL-10 or nitric oxide are released from activated

immune cells and limit immunopathology (Bogdan, 2001; Saraiva &

O’Garra, 2010; Nairz et al, 2013; Teixeira-Coelho et al, 2014).

However, type I IFN beyond its beneficial effect during the initial

phase of infection has further effects (Decker et al, 2005). Impor-

tantly, type I IFN can control inflammasome activation and subse-

quently release of IL-1b and IL-18 (Guarda et al, 2011). Further

regulatory functions of type I IFN include augmented IL-10 expres-

sion and enhanced sensitivity of T cells or macrophages to undergo

apoptosis (Guarda et al, 2011; Lee et al, 2012; Robinson et al,

2012).

This indicates that type I IFN acts differently during two distinct

phases of infection: during acute infection, type I IFN enhances

bacterial detection by PRRs and amplifies innate immune responses.

During protracted or chronic infection associated with continuous

and high-level expression, type I IFN rather regulates inflammasome

activation. Since type I IFN is induced upon infection with various

bacteria such as Listeria monocytogenes (Woodward et al, 2010;

Abdullah et al, 2012), Salmonella typhimurium or group B strepto-

cocci (Parker et al, 2011), Francisella (Henry et al, 2007), and Myco-

bacteria (Stanley et al, 2007) it is possible that type I IFN may affect

bacterial clearance via these regulatory properties. Indeed, there is

evidence that Listeria infection is more rapidly cleared in the

absence of signaling through the INFAR (Archer et al, 2014).

Furthermore, chronic mycobacterial infection in humans is associ-

ated with high local IFN levels in infected tissues that impair protec-

tive immunity (Stanley et al, 2007; Teles et al, 2013). It is unclear,

however, whether timing of exposure to, local levels of type I IFN,

or the combination of both determine the induction or regulation of

innate and protective immunity.

Concluding remarks

Taken together, multiple PRRs in different cellular compartments

cooperate to create a dense network of surveillance in order to

achieve most sensitive detection of infection with intracellular

bacteria and to rapidly mount commensurate protective immunity.

Distinction of dead from viable and virulent intracellular bacteria

results from immune sensing of PAMPs and in particular recognition

of functional properties of viable and pathogenic bacteria, that is

secreted bacterial nucleic acids. This extends the existing concepts

that PRRs distinguish foreign from self, and dangerous from harm-

less supporting that PRRs closely cooperate to generate decisive

information concerning viability and virulence of intracellular bacte-

ria that allows a commensurate immune response to infection. The

combination of type I IFN expression and inflammasome activation

early after infection fosters development of potent innate immune
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responses and protective T-cell immunity that are required to

rapidly contain infection with pathogenic intracellular bacteria.

However, type I IFN also regulates innate and adaptive immune

responses which suggests that induction and control of anti-

bacterial immune responses are continuously balanced right from

the beginning of infection and that the timing of type I IFN induction

and its concentration within the microenvironment are key factors

determining infection control or persistence. Moreover, the mecha-

nistic principles governing successful immunity against bacterial

infection may be employed to develop novel immune therapies

aiming at defeating persistent infection with intracellular bacteria

without causing severe tissue damage by excessive immunity.
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