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Abstract

“Cognitive control” describes endogenous guidance of behavior in situations where routine 

stimulus-response associations are suboptimal for achieving a desired goal. The computational and 

neural mechanisms underlying this capacity remain poorly understood. We examine recent 

advances stemming from the application of a Bayesian learner perspective that provides optimal 

prediction for control processes. In reviewing the application of Bayesian models to cognitive 

control, we note that an important limitation in current models is a lack of a plausible mechanism 

for the flexible adjustment of control over conflict levels changing at varying temporal scales. We 

then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-

driven learning mechanism that modulates dynamically the relative dependence on recent and 

remote experiences in its prediction of future control demand. We conclude that the emergent 

Bayesian perspective on computational mechanisms of cognitive control holds considerable 

promise, especially if future studies can identify neural substrates of the variables encoded by 

these models, and determine the nature (Bayesian or otherwise) of their neural implementation.
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1. Cognitive control as statistical prediction

“Cognitive control” describes the ability to guide one’s behavior in line with internal goals. 

A key characteristic of cognitive control is thought to be flexibility: control processes must 

be capable of dynamically adapting (both qualitatively and quantitatively) to ongoing 

changes in the environment. How this type of contextual regulation of control occurs (in the 

absence of an all-knowing homunculus) is a key question in current cognitive psychology 
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and neuroscience research. In the present paper, we review recent attempts of modeling the 

“control of control”, with a particular focus on the increasingly popular idea that prediction 

using Bayesian algorithms, which behave similar to reinforcement learning algorithms with 

varying learning rates (see below), may furnish a potent means for flexibly adapting control 

settings to contextual changes in the environment. In section 1, we review two influential 

(non-Bayesian) models of cognitive control and highlight some limitations in their ability to 

adapt control to changing circumstances, specifically with respect to integrating contextual 

information across different time scales. We then suggest that Bayesian methods can achieve 

time-varying, self-adaptive integration of control-relevant contextual information. In section 

2, we review recent efforts to use Bayesian models to simulate various aspects of cognitive 

control. In section 3, we outline a novel Bayesian model of conflict-control and demonstrate 

how it can account for various key behavioral phenomena. In Section 4, possible directions 

for future research regarding the application of Bayesian models to cognitive control are 

discussed.

1.1 Cognitive control as ‘guided’ information processing

In interacting with our environment, we transform sensory input into internal representations 

and select cognitive or motor actions based on these representations and our current goals. 

Given the fact that there is an enormous amount of sensory information and many possible 

actions available in contrast to only a few desired responses, appropriate action selection is a 

difficult task. To simplify this task, stimuli and actions that are frequently paired become 

mnemonically associated (e.g., via Hebbian learning) into stimulus-response (S-R) 

ensembles (or pathways) or more complex and extended action schemas (Norman and 

Shallice, 1986) that facilitate prompt reaction. Because much sensory information is 

processed in different pathways in parallel but only few actions can (or should) be taken 

simultaneously, stimulus representations and S-R pathways are believed to compete for 

being selected to drive behavior (Desimone and Duncan, 1995; Miller and Cohen, 2001; 

Norman and Shallice, 1986). The results of this competition are largely driven by the 

strength of associative pathways: stronger (i.e., more frequently activated) pathways are 

more likely to win the competition than weaker or novel ones. Once selected (and executed), 

the strength of a particular pathway may be reinforced or reduced depending on the 

assessment of how well the selected actions have fulfilled the organism’s intended goals 

(Balleine and Dickinson, 1998).

This competition mechanism (or “contention scheduling”, see Norman & Shallice, 1986) 

can generate appropriate behavior in many situations, but strong, stereotyped pathways can 

also result in suboptimal and even hazardous actions in some situations. For example, a US 

citizen’s habitual driving on the right side of the road may have serious consequences when 

performed in the UK. In this case, a set of weaker or even novel associations (e.g., driving 

on the left side of the road) must be biased to win the competition in order to achieve the 

organism’s goals. This “top-down” biasing of information processing to favor goal-directed 

stimuli and actions is the essence of cognitive control (e.g., Norman & Shallice, 1986; 

Botvinick et al., 2001; Miller & Cohen, 2001). In present-day neuroanatomical models, 

cognitive control is closely tied to the prefrontal cortex (PFC), which is proposed to 

harbortemporary representations of current goals, goal-relevant stimuli and strategies 
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(Badre, 2008; Botvinick et al., 2001; Braver and Barch, 2002; Duncan, 2001; Fuster, 2008; 

Koechlin et al., 2003; Miller and Cohen, 2001; Norman and Shallice, 1986). To implement 

control, representations of goals, context and related methods (like rules) are thought to be 

actively maintained in the PFC, which sends biasing signals to posterior brain regions to 

guide the information flowing through the desired pathways and reach the selection of 

appropriate actions (e.g., Miller & Cohen, 2001).

In the laboratory, cognitive control is traditionally tested in interference (or “conflict”) tasks 

such as the Stroop task (MacLeod, 1991), which entail conditions that require subjects to 

overcome a stronger habitual response in favor of a weaker (but correct) response. Consider, 

for instance, a variant of the Stroop task we employ in the empirical section of this paper 

(section 3). This task requires a subject to respond to the gender of a face image, while 

ignoring a word label (either “male” or “female”) that is overlaid on the image and which 

can be either congruent (e.g., “male” overlaid on a male face) or incongruent (e.g., “female” 

overlaid on a male face) with the face image (Egner et al., 2008). In order to arrive at the 

correct response during an incongruent trial, the subject has to overcome the highly 

automatic processing of the word-meaning in favor of categorizing the face’s gender. 

Correct response selection on incongruent trials therefore requires the application of 

cognitive control in the PFC, strengthening the information flowing through the task-

relevant processing pathway to win out over the task-irrelevant (though more habitual) one 

(Botvinick et al., 2001; Braver and Barch, 2002; Cohen et al., 1990). Accordingly, many 

neuroimaging studies of these types of tasks have documented higher activation in the PFC 

associated with higher conflict and control levels (Barch et al., 2001; Botvinick et al., 2004; 

Ridderinkhof et al., 2004), and modulated activity in brain regions related to processing task 

relevant- and irrelevant stimuli (Egner and Hirsch, 2005; King et al., 2010; Liu et al., 2004; 

Wittfoth et al., 2006).

One crucial question regarding this account, however, is how cognitive control itself is 

controlled. For example, when does cognitive control engage to bias competition of 

pathways? How does it change strength when more or less control is needed? And how is 

control withdrawn? In this review, we argue (as have others before us, see Botvinick et al., 

2001) that the regulation of cognitive control relies on the prediction of processing demands 

(e.g., anticipated conflict or congruency levels), which is derived from previous experience. 

In the following, we first review two influential models: the conflict monitoring model 

(Botvinick et al., 2001) and the dual mechanisms of control model (Braver, 2012). Both 

models adjust the level of cognitive control based on previous experience. Yet, as we 

describe below in detail, neither model can explain how the brain flexibly incorporates and 

combines information across different time scales (short-term and long-term) to predict 

conflict. We argue that this flexibility can be modeled using a Bayesian approach. In section 

2, we review previous work using Bayesian models to account for various aspects of 

cognitive control. In section 3, we outline a new Bayesian model of conflict-control and 

demonstrate how it can account for various key behavioral phenomena of cognitive control. 

In Section 4, directions for future research regarding the application of Bayesian models to 

cognitive control are discussed.
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1.2 The conflict monitoring model

The conflict monitoring model (Botvinick et al., 2001) treats the intervention of cognitive 

control as a reactive processing adjustment following the detection of conflict. This 

adjustment is achieved by incorporation of two systems: a conflict monitoring system that 

estimates the levels of conflict and sends signals to a control system, which in turn delivers 

biasing signals to information processing pathways. It is not entirely clear in the model 

whether control is originally recruited for dealing with conflict in the ongoing trial or for 

subsequent trials only (for discussion, see Egner, Ely, & Grinband, 2010), but the effects of 

conflict-driven control that are seen to support the model are typically measured by 

observing performance on the subsequent trial(s).

The specific mechanisms of the conflict monitoring system are made explicit in a neural 

network implementation (Botvinick et al., 2001), in which RT was simulated as the time-

point when the Hopfield energy (Hopfield, 1982) of one output node (out of two or more) 

reached a pre-defined threshold. This neural network implementation successfully simulated 

various landmark behavioral effects found in interference tasks. For example, the 

congruency sequence (or conflict adaptation) effect - a smaller interference effect (measured 

by subtracting mean RT of congruent trials from mean RT of incongruent or neutral trials) 

following an incongruent trial than after a congruent trial (Gratton et al., 1992), and the 

proportion congruency effect, which describes the pattern that the larger the proportion of 

congruent trials is in a block, the higher the average interference effect is in that block 

(Logan and Zbrodoff, 1979; Tzelgov et al., 1992), have both been simulated successfully by 

the conflict-monitoring model using a reinforcement learning algorithm that updates the 

prediction of congruency by incorporating (in) congruency at the current trial via a fixed 

learning rate α. Specifically, the prediction for the forthcoming trial is a linear combination 

of the (in) congruency at the current trial and the prediction concerning the current trial, with 

the rates of α and (1 − α), respectively. The model further proposes that the conflict 

monitoring system is housed in the anterior cingulate cortex (ACC) and the control system 

in the lateral PFC. These propositions have been supported by neuroimaging findings 

showing elevated activation in the ACC under conditions where conflict is high and control 

is assumed to be low (Barch et al., 2001; Botvinick et al., 1999; Carter et al., 1998; Kerns et 

al., 2004; MacDonald et al., 2000; MacLeod and MacDonald, 2000) and enhanced activation 

in lateral PFC under conditions where conflict is low and control is assumed to be high 

(Egner and Hirsch, 2005; Kerns et al., 2004; MacDonald et al., 2000), as well as increased 

functional connectivity between the lateral PFC and regions supporting task-relevant 

stimulus information in the posterior brain (Egner and Hirsch, 2005).

Although the conflict monitoring model is able to simulate the phenomena of conflict 

adaptation and proportion congruency effects (Botvinick et al (2001), simulation 2A and 2B) 

separately, a closer look at the simulation results suggests the model is not able to replicate 

these two effects using the same set of parameters. Specifically, in the simulation of conflict 

adaptation (simulation 2A), the best model has a learning rate of 0.5; while the learning rate 

is dramatically reduced to 0.05 when simulating the decreasing interference effect as the 

proportion of incongruent trials increases in the simulation of proportion congruency effects 

(simulation 2B). The 0.5 learning rate in simulating conflict adaptation effects essentially 
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represents a phasic or transient mechanism relying more on recent experience, while the 

0.05 learning rate reflects a more tonic or sustained mechanism incorporating temporally 

more remote or extended information that allows for the proportion of incongruent trials to 

be learnt. The fact that the conflict-monitoring model cannot simulate both of these effects 

simultaneously is problematic, given that they are supposed to reflect the same basic 

phenomenon (conflict-driven control) and that conflict adaptation and proportion 

congruency effects do in fact co-occur in a single task-setting (e.g., Torres-Quesada et al., 

2013), a finding which the conflict-monitoring model is clearly unable to capture.

1.3 The dual mechanisms of control model

The more recent dual-mechanisms of control model may have the potential to overcome this 

problem, as it specifically accommodates control effects that operate over different times 

scales, by incorporating both a “reactive” and a “proactive” control mechanism (Braver, 

2012; Braver et al., 2007; De Pisapia and Braver, 2006). The key difference between these 

two mechanisms lies in their time scales and their relation to stimulus onsets. Specifically, 

the reactive mechanism accounts for transient changes of cognitive control after a stimulus 

has been encountered (e.g., following conflict), whereas the proactive mechanism monitors 

long-term changes of conflict density and applies changes to cognitive control before the 

onsets of incoming stimuli. Although operating on different time scales, these two 

mechanisms cooperate to modulate cognitive control. To test the feasibility of this model, 

(De Pisapia and Braver, 2006) conducted a color-naming Stroop fMRI study, which 

included three types of blocks with varying proportions of incongruent trials. The authors 

found that in ACC and left dlPFC the conflict-related (i.e. incongruent – congruent, at trial 

level) activity was highest when most trials were congruent (and proactive control 

presumably low), suggesting a reactive, short-term/phasic type of control being applied; 

whereas in the right dlPFC, the sustained, block-wise activation was the highest when most 

trials were incongruent, suggesting the wielding of a proactive, long-term/tonic type of 

control. The authors furthermore found that a model in which both ACC and the dlPFC units 

had a reactive and a proactive component could simulate both the phasic and tonic activation 

patterns found in the fMRI data. This dual mechanisms of control model represents a novel 

approach to understanding cognitive control, but there is presently little empirical evidence 

to support the idea of two conflict monitoring units working on different time scales in the 

ACC. It is also unclear whether this model can simulate both long-term (e.g. proportion 

congruency) and short-term (e.g. conflict adaptation) regulation of control simultaneously, 

and it would be more parsimonious if both types of control were integrated into a single 

mechanism. In the following, we aim to sketch out how such integration can be achieved.

1.4 Cognitive control as statistical inference

In the computer simulations of both conflict-monitoring and dual-mechanism models, short-

term information (e.g. congruency at the current trial) and long-term information (e.g. 

congruency at earlier trials) were integrated using a fixed weight. Other computational 

cognitive control models using reinforcement learning (Blais et al., 2007) and Hebbian 

learning (Verguts and Notebaert, 2008, 2009) have also used fixed parameters in their 

simulations of various behavioral phenomena of conflict-control. Although these 

simulations matched empirical data well, the use of a fixed weight for information 
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integration elicits two important, yet unanswered questions: (1) how is the weight 

determined? And (2) (How) does the weight change when the (experimental) environment 

changes? To answer these questions, we argue that the weight should be self-adapting based 

on how reliable the short-term and long-term information is. The idea of a self-adapting 

learning rate is not a new concept: in classical conditioning, there have been models that use 

the novelty of stimuli to affect learning rate (Pearce and Hall, 1980; Rescorla and Wagner, 

1972; Schmajuk et al., 1996). In these models, novelty guides changes in learning rate, 

which in turn updates the association between conditioned and unconditioned stimuli. Since 

there are no conditioned and unconditioned stimuli in typical interference tasks, these 

models cannot be directly applied to simulating cognitive control processes. However, 

Bayesian models provide a natural solution of dynamically updating predictions based on 

integrating prior, temporally remote (long-term information) with recent observations (short-

term information). Accordingly, several recent studies have employed Bayesian methods to 

model aspects of cognitive control (Ide et al., 2013; Mozer et al., 2002; Shenoy et al., 2010; 

Shenoy and Yu, 2011; White et al., 2012; Yu et al., 2009), which are reviewed in the next 

section.

2. Modeling cognitive control using Bayesian models

2.1 Overview of Bayesian methods

Bayes’ theorem can be written as follows:

(Eq 1)

Where X,Y are random variables (e.g. sensory input, internal states, motor output, etc). 

Unlike conventional variables, the value of a random variable can vary due to randomness. 

Thus, a random variable is often represented in the probabilistic distribution of its possible 

values. This equation means that the conditional probability of Y given X could be calculated 

using the probabilities of X,Y, and the conditional probability of X given Y. This equation is 

especially useful when P(Y|X) (posterior probability) is difficult to estimate but P(X|Y) is 

relatively easy to obtain. For example, when X is an observation and Y is an internal state 

which cannot be observed directly, one can infer the state of Y based on X and P(Y|X) using 

the Bayes’ theorem. Thus, Bayes’ theorem can be used to infer, for instance, the 

distributions of conflict-control, based on the congruency observed. The estimated internal 

states can then be used to predict congruency in forthcoming trials. Bayesian methods have 

been widely applied in cognitive neuroscience studies (e.g., (Bach and Dolan, 2012; Vilares 

and Kording, 2011)), and a comprehensive review of studies using Bayesian methods is 

beyond the scope of this article. Instead, we focus on Bayesian models that employed a 

graphical representation, because it provides a natural representation of dependence on 

previous information.

A graphical representation of a Bayesian model (Koller and Friedman, 2009; Pearl, 1988) 

consists of a set of nodes and a set of edges connecting pairs of nodes. A node represents a 

variable in a Bayesian model, such as conflict, or observed congruency. In addition, a node 
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is associated with the probability distributions of the variable represented. An edge 

represents a relation (reflecting conditional independencies) between two nodes and can be 

either directed or undirected. For example, a directed edge from node A to node B means 

that the distribution of B depends on A. The edge is also associated with a distribution on 

which the estimation of parameters and Bayesian inference is based. This distribution 

encodes interactions between the two variables connected. Specifically, a directed edge from 

node A to node B is associated with a conditional probability distribution p(B|A), which 

encodes how variable A influences variable B.

For example, the temporal dependency of conflict between trials can be formally represented 

using a Bayesian model (Fig. 1, see Yu & Cohen (2009) for a similar model). In this model 

fi, and oi denote predicted conflict level and observed congruency at trial i, respectively. fi is 

quantified as the probability that the forthcoming trial is incongruent, ranging from 0 to 1. oi 

is a binary variable in which 0 and 1 encode a congruent and an incongruent trial, 

respectively. The temporal dependency is represented by edges from the states at the current 

trial to the states at the next trial. An edge from predicted conflict level to observation is 

added to estimate fi using Bayesian inference.

This Bayesian model does not only allow dependency between variables to be incorporated, 

but also significantly reduces the amount of computation needed to infer the states of these 

variables. Based on the structure of the graphical representation and the Markov property 

which states that each variable’s future value is conditionally independent of the past, given 

its present value, the joint distribution in this model of cognitive control can be factorized 

as:

(Eq 2)

The conditional probability distribution on the left side contains many variables. Without 

any prior knowledge of the model structure, it is intractable to calculate, or even store this 

distribution. However, the Markov condition decomposes this distribution into a product of 

three much simpler distributions, each of which is easy to store and compute. Specifically, 

the Markov condition shows that the prediction (states at trial i + 1) based on all previous 

information is equivalent to the prediction based only on the previous trial. In other words, 

relevant historical information is integrated into the states of the most recent trial. Thus, 

storage and computation involving older trials are not necessary.

In sum, the graphical representation incorporates dependency between model variables; and 

its structure greatly reduces the computational and storage burden of estimating posterior 

probabilities. Recently, Bayesian models with graphical representation have demonstrated 

great potential in modeling cognitive functions using behavioral data (Mozer et al., 2002; 

Reynolds and Mozer, 2009a; Shenoy et al., 2010; Shenoy and Yu, 2011; Tenenbaum et al., 

2006; Tenenbaum and Xu, 2000; Vossel et al., 2013; Yu et al., 2009) and brain imaging data 

(Behrens et al., 2007; den Ouden et al., 2010; Ide et al., 2013). In the following, we review 

recent studies using Bayesian models with graphical representation to model various aspects 

of cognitive control, including speed-accuracy trade-off (section 2.2), conflict effects in the 
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Eriksen flanker task (section 2.3), and response inhibition (section 2.4). The Bayesian 

models reviewed below all attempted to account for decisions/behavior using within-trial 

and/or inter-trial simulations. In the within-trial simulations, those models accumulated 

evidence from independent sources via Bayesian integration. The decision/behavior best 

supported by the evidence was then selected by the models. In the between-trial simulations, 

predictions of stimuli were based on trial-history information integrated via Bayes’ rule. The 

predictions were then used as the initial evidence for within-trial simulations.

2.2 Bayesian modeling of speed-accuracy trade-off

Some recent studies demonstrate the feasibility of using generative Bayesian models to 

simulate both within-trial dynamics and across-trial sequential effects in cognitive control. 

One such study applied a Bayesian model to explaining the dynamics of the speed-accuracy 

tradeoff and its dependency on trial-history from two speeded discrimination tasks (Mozer et 

al., 2002). Subjects responded to a target letter by pressing one button and responded to 

other letters by either pressing a second button (discrimination task) or doing nothing 

(go/no-go task). The Bayesian model used in this study operates at both within- and across-

trial levels. At the within-trial level, the posterior distribution at a given time point encoded 

the probability of making one response vs. the other. This posterior distribution of responses 

depended on the prior distribution of responses and the sensory input. At the beginning of 

each trial, the posterior distribution is the same as the prior distribution. This posterior 

distribution of responses is then subject to (Bayesian) updating after each time point to favor 

the response suggested by visual input. Because this updating was performed at every time 

point, the influence of visual input accumulated with time, guiding the posterior distribution 

of response to gradually shift from the prior distribution to a distribution which is biased 

toward the correct response to the visual stimulus. Therefore, the effect of cognitive control 

is reflected by the change of the posterior distribution based on accumulation of sensory 

input. The simulated RT was the time that optimized the cost of sensory input accumulation 

against the probability of an incorrect response. The simulated accuracy was estimated from 

the posterior distribution at the simulated RT. For both the discrimination task and the 

go/no-go task, within-trial simulation successfully replicated accuracy and RT patterns from 

empirical data under different target to non-target ratios. Based on these simulations, the 

authors argued that speed-accuracy trade-off is optimal in these tasks in that it minimizes a 

cost that combines time pressure and the certainty of perception. At the across-trial level, the 

initial prior was also updated after each trial using a similar rule as used in within-trial 

simulation to account for sequential effects of response priming. The across-trial simulation 

successfully captured complex RT and accuracy patterns when trials were grouped based on 

the trial history, up to 4 trials preceding the current trial. In this study, then, a Bayesian 

model was used to simulate perceptual decision-making as an integration of prior 

information and visual input, which could naturally be modeled using the prior distribution 

and the likelihood distribution, respectively.

2.3 Bayesian modeling of the Eriksen flanker effect

To investigate different mechanisms that may account for generating conflict in the Eriksen 

flanker task (Eriksen & Eriksen, 1974), a study by Yu and colleagues (Yu et al., 2009) 

applied two rival Bayesian models to behavioral data from a “deadline version” of the 
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flanker task (Gratton et al., 1988; Servan-Schreiber et al., 1998). Here, subjects were 

pressured to make fast responses (in order to beat an experimenter-imposed deadline) to a 

target (center) letter (either “S” or “H”) that is flanked by distractors (either “S” or “H”). 

Thus a trial could be either congruent (e.g. “SSSSS” or “HHHHH”) or incongruent (e.g. 

“HHSHH” or “SSHSS”). Bayesian models were used to simulate two different potential 

sources of conflict, namely “compatibility bias” (a prior assuming that more than half of the 

trials were congruent) and “spatial uncertainty” (where perception of one letter was 

interfered with by nearby letters). Both models adopted the same hierarchical design with 3 

levels: The highest level encoded the (in) congruency of a trial; below the congruency level 

was the stimulus level, in which there were 3 nodes, each representing a letter; at the bottom 

was a level of 3 nodes, each encoding activity of a group of neurons whose receptive fields 

were centered on a particular letter. The difference between the two models lay in how prior 

knowledge was applied: in the compatibility bias model, the prior assumed there were more 

congruent trials than incongruent trials, and each node at the level of neuronal activity was 

only influenced by the letter it represented and random noise. This model simulated a 

situation in which the conflict monitoring process was biased to an expectation of low 

conflict and receptive fields of neuron groups were narrow. By contrast, the prior of the 

spatial uncertainty model assumed a 50/50 distribution of congruent and incongruent trials, 

but here a neuron’s activity was influenced by not only the letter its receptive field centered 

on, but also the neighboring letter(s). This model simulated a situation in which neurons 

have large receptive fields and the interference is caused by the ambiguous neuronal signals 

containing information of different letters.

Within-trial and between-trial simulations were then conducted using both models. To 

simulate within-trial dynamics, the simulation was divided into multiple time steps. The two 

models operated as neural decoders: they estimated visual input and congruency based on 

simulated neuronal activity. Thus, the key part of the simulation is the joint posterior 

distribution of letter and congruency conditioned on neuronal activity, which started with the 

prior distribution of congruency and visual input, and was then updated at every time step 

based on Bayes’ rule. A simulated response was made when the marginal posterior 

distribution of one letter exceeded a pre-defined threshold. Both models successfully 

replicated RT distributions acquired from empirical studies using deadline Eriksen flanker 

tasks. The two models were also extended to allow for across-trial updates of the prior 

distribution of congruency. The extended models were able to simulate conflict adaptation 

and proportion congruency effects in Eriksen flanker tasks (Yu et al., 2009).

In another study, a Bayesian spotlight diffusion model was proposed to account for various 

aspects of the Eriksen flanker task (White et al., 2012). Specifically, a spotlight diffusion 

model (White et al., 2011) was used to simulate attentional mechanisms, and Bayesian 

belief-updating was employed to account for the information processing mechanisms 

involved in task performance (i.e., how evidence for response selection was accumulated 

within a trial). A spotlight was used to simulate the locus of attention, within which all 

information was selected as evidence for the decision-making process. At the beginning of a 

trial, the spotlight covered both the center target and the flankers, such that the overall 

evidence was driven predominantly by the flanker stimuli. The spotlight then gradually 

narrowed to only cover the central letter, resulting in the evidence being biased toward the 
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target information. At each time point, beliefs were updated to incorporate new evidence 

about what the correct response was, using Bayesian evidence integration. Accordingly, the 

model predicts that responses are biased to the flankers at the beginning of a trial and then 

gradually shift to be dominated by target information. By fitting the model to empirical data, 

it was shown that this Bayesian spotlight diffusion approach could successfully account for 

the relationship between RT and accuracy in the Eriksen flanker task (White et al, 2012).

2.4 Bayesian modeling of response inhibition

Bayesian models have also been employed in investigating inhibitory control (Ide et al., 

2013; Shenoy et al., 2010; Shenoy and Yu, 2011). In these studies, subjects performed a 

stop-signal task, in which a habitual response based on a (frequent) go signal needed to be 

suppressed when a (rare) stop signal was presented at varying intervals after the go signal. 

Bayesian models were used to provide a rational account (i.e. behavior guided by optimizing 

a cost function) for various behavioral patterns observed in the stop-signal task. Here, one 

Bayesian model was used to simulate beliefs about the appropriate action to take, and a 

second Bayesian model was used to simulate beliefs about perceiving a stop signal. Within 

each trial, both beliefs started with the (true) prior probability of go/stop trials in the task, 

and were then updated based on visual input using Bayes’ rule at every time step. For each 

time step, a cost function was calculated based on the beliefs and possible actions available. 

An action (i.e., button-press vs. withholding response) was selected by minimizing the cost 

function. This within-trial Bayesian model successfully simulated the pattern of increased 

error rates as the interval between the onset of the go signal and the onset of the stop-signal 

increased. It could also simulate the commonly observed faster responses in error stop trials 

compared to successful go trials (Shenoy et al., 2010; Shenoy and Yu, 2011). A third 

Bayesian model was employed for simulating between-trial effects, predicting the likelihood 

of encountering a stop-signal in the forthcoming trial. This prediction was a linear 

combination of the prior probability of encountering a stop-trial and the posterior probability 

of encountering a stop-trial based on trial history. These two probabilities were integrated 

via fixed weights. The prediction significantly correlated with RTs, where high probability 

of encountering a stop signal predicts slower responses, suggesting more inhibitory control 

being exerted (Ide et al., 2013). Additionally, this model successfully simulated post-stop-

trial response slowing, and increased RTs and error rates when the proportion of stop-trials 

increased (Shenoy et al., 2010; Shenoy and Yu, 2011). Based on these Bayesian predictions, 

fMRI data recorded during the stop-signal task (Ide et al., 2013) further revealed that the 

dorsal ACC encodes prediction error (presence/absence of stop signal - prediction).

2.5 Towards modeling the flexibility of cognitive control

Although the models reviewed above were successful in simulating various effects of 

cognitive control, the fixed parameters controlling learning used in these simulations raise 

several concerns. First, it is unclear whether the way in which these parameters were 

determined in the models reflects the mechanisms of parameter-selection in the brain. This 

is especially unlikely (or impossible) in cases where optimal parameters were fit from data: 

here, a model determines the parameters after acquiring all data, in contrast to the brain 

having to determine the parameters on the fly. Second, even with a model that could 

potentially provide on-the-fly simulation (e.g. the model in Fig. 1), the lack of a mechanism 
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for online adjustment of cognitive control based on adaptively integrated information from 

various time scales (e.g., long-term and short-term history) would result in sub-optimal 

performance in a non-stationary environment, because without such a mechanism, the 

parameters that determine the level of cognitive control (e.g. the learning rate) have to stay 

constant throughout the experiment. Given the high flexibility required of cognitive control, 

it is unclear that those fixed parameters are globally optimal across various experimental 

configurations. In fact, it has been shown that fixed learning rates are suboptimal in non-

stationary environments (Behrens et al., 2007; den Ouden et al., 2010; Vessel et al., 2013). 

In the next section, we therefore propose a Bayesian model that resolves these two concerns. 

This model simulates the on-the-fly selection of parameters in the brain by making estimates 

only based on previous trial information. It also models the flexibility of cognitive control 

by incorporating a component that accounts for changes in the experimental environment. 

By applying this model to empirical data, we demonstrate that it can simulate various key 

phenomena of cognitive control in a Stroop task.

3. Modeling the flexibility of cognitive control using Bayesian methods

3.1 A Bayesian model of flexible conflict-control

Here, we propose a Bayesian model that can account for the flexibility of cognitive control 

over conflict in a non-stationary environment. The modeling done relies on the ability to 

perform statistical inference, taking the perspective that the regulation of cognitive control 

should be considered as a process of predicting the optimal amount of cognitive control 

required in a given context. To achieve this contextual flexibility, the model estimates future 

conflict from previous experience and, importantly, it does so via a weighed integration of 

longer-term and short-term estimations of conflict distributions, with the integration weights 

being adjusted on the basis of the (belief about) volatility of the environment. For instance, 

in a stable environment (e.g. when most trials are congruent/incongruent), the weights are 

biased to historically remote/long-term information because an occasional oddball trial (e.g., 

an incongruent stimulus in a largely congruent trial history context) is unlikely to reflect a 

true change in the environmental statistics. When the environment is fast-changing (e.g. 

when the proportion of congruent trials varies frequently over time), however, the weights 

are biased to more recent information. This is because older information is likely to be 

outdated, and an unexpected trial type may indicate a true change of conflict likelihood in 

the environment. In order to assess the stability of the environment, we extend the model in 

Fig. 1 by adding a volatility variable (denoted by v), the belief of which in turn determines 

the weights of integration (Fig. 2). The structure of this model is identical to the model of 

Behrens et al. (2007). The mathematical formulation of the model is described in details in 

the appendix. This model is also an example of a hierarchical model, in which the 

information flows in one direction, that is, there are no reciprocal edges from nodes at lower 

levels to nodes at higher levels. Hierarchical Bayesian models have been widely used in 

modeling cognitive functions such as categorization (Tenenbaum and Xu, 2000; Xu and 

Tenenbaum, 2007) and visual cognition (Lee and Mumford, 2003; Summerfield et al., 

2011). This model yields a probability distribution over the predicted conflict level variable. 

In the implementation of this model, we approximate predicted conflict level using the 

probability of encountering an incongruent trial. In other words, the predicted conflict level 
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is higher if the next trial is deemed more likely to be incongruent. Both variables are then 

used to determine the amount of control needed, which is reflected in sequential effects such 

as conflict adaptation and longer-term effects like proportion congruency. Another way to 

understand the relation between volatility and predicted conflict level can be drawn from Yu 

and Dayan (2005): predicted conflict level encodes the probability (distribution) that the 

forthcoming trial is incongruent. The variance of this distribution (i.e. change of probability) 

is determined by the volatility. Compared to previous studies that model flexible control 

(e.g., Reynolds and Mozer (2009b); Yu and Cohen (2009)), the proposed Bayesian model 

integrates information sampled from multiple temporal scales, and does not assume any 

specific structure of the environment (e.g., eight types of blocks in Reynolds and Mozer 

(2009a), or a fixed rate of change in the environment (Yu & Cohen 2009)). The present 

model also differs from another Bayesian model that integrates information from sources of 

different temporal scales (Kording et al., 2007) in that our model infers the weights of 

integrating those sources, whereas the model of Kording, Tenenbaum, and Shadmehr (2007) 

assumes a constant integration across those sources and infers the state of each source. By 

applying this model to empirical datasets, we demonstrate that it can account for classic 

short-term and long-term effects of conflict-control (sec. 3.2), and more importantly, it 

successfully simulates the flexibility of conflict-control (sec. 3.3).

3.2 Simulating the short-term and long-term trial history effects of conflict-control

In this section, we first confirm that short-term and long-term trial history effects occur 

simultaneously in a single empirical dataset (e.g., Torres-Quesada et al., 2013). Then we 

demonstrate that both effects can be simulated simultaneously using our Bayesian model. 

Importantly, no post-hoc optimization of parameters was necessary in the simulation.

Subjects—Fifty-six healthy volunteers (mean age = 26.1, 30 females) gave informed 

consent in accordance with institutional guidelines. All subjects were native or highly 

proficient English speakers and had normal or corrected-to-normal vision.

Stimuli and procedure—Stimulus delivery and behavioral data collection were carried 

out using Presentation software (http://www.neurobs.com/). Stimuli were presented on a 19 

inch LCD screen with a refresh rate of 60 Hz. Stimuli consisted of a collection of 24 black 

and white photographs of male and female faces (12 each) of neutral expression that were 

overlaid with red gender word labels (“male” and “female”), which could be printed in 

lower or upper case lettering. On each trial, one face-word compound stimulus (subtending 

approximately 3° of horizontal and 4° of vertical visual angle) was presented against a gray 

background in the center of the screen. Stimuli were presented for 500 ms, followed by a 

jittered inter-stimulus interval ranging from 2 to 3 s in uniformly distributed steps of 500 ms, 

during which a fixation cross remained on screen. Subjects performed a speeded button 

response that categorized the gender of the face stimulus with either index finger (for 

example, left-hand response to male faces, right-hand response to female faces, 

counterbalanced across subjects), while trying to ignore the task-irrelevant gender labels and 

stimulus locations. Face stimuli never repeated across adjacent trials, and the lettering 

alternated between lower- and upper-case across trial. A practice run was conducted before 

the main task to ensure subjects comprehended the task requirements.
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Experimental design—This task consisted of 7 runs of 4 blocks each. Each block 

contained 41 trials with pseudo-randomized congruency. Across all blocks, the proportion of 

congruent trials followed the order of approximately (deviated by 1 trial, or ~2.4%) 15%, 

35%, 65%, 85%, 75%, 50% and 25%, repeated for 4 times over the 7 runs. Within each 

block, the proportion congruency remained constant. The starting proportion congruency 

and the order of the sequence were counter-balanced across subjects. To model both the 

conflict adaptation and proportion congruency effects, we analyzed response time (RT) data 

using a 7 (proportion congruency) × 2 (previous congruency) × 2 (current congruency) 

factorial design.

Data analysis—For the behavioral data, the mean RT was computed in each subject for 

each of the experimental cells, excluding incorrect and post-error trials, as well as RT values 

that deviated >2 standard deviations from an individual subject’s grand mean. The trimmed 

RT values were then averaged across subjects and entered into repeated measures 3-way 

analyses of variance (ANOVAs) with the factors described above. For the simulation data, 

the trial sequences observed by the subjects were fed to the model to produce trial-by-trial 

estimates of volatility and predicted conflict level. Then, for each experimental cell, the 

mean volatility and predicted conflict level were computed, excluding trials that were 

excluded in empirical data analysis. Finally, to link model predictions to the empirical data, 

a general linear model (GLM) was constructed using group means of the parameter 

estimates (28 conditions), which were then fit to the group mean of RTs. Specifically, this 

GLM contained 6 regressors (i.e. free parameters), namely the volatility, the predicted 

conflict level, and the grand mean, separately for congruent and incongruent trials. Note that 

this fitting procedure is not geared at finding the optimal parameters for our model. Rather, 

the purpose of this fitting was similar to within-trial simulation, or in other words, to 

quantify how predictions made prior to a trial influence the information processing during 

that trial, as reflected in the RTs.

Results and discussion—The subjects performed the task with high accuracy (mean = 

92.9 %). The 3-way ANOVA on empirical RTs showed a significant effect of current 

congruency (F1,55 = 57.07, P< 0.001), due to longer RTs in incongruent trials (592 ± 11 ms) 

than in congruent trials (569 ± 10 ms). An interaction between proportion congruency and 

current congruency was also found (the proportion congruent effect, F1,55 = 2.73, P< 0.03), 

driven by a decrease in interference effects as the proportion of incongruent trials increased 

(Fig. 3A). There was also an interaction between previous and current trial congruency (the 

conflict adaptation effect, F1,55 = 5.03, P< 0.03), driven by a larger interference effect (26 ± 

3 ms) in post-congruent trials than in post-congruent trials (16 ± 3 ms; Fig. 3B). Thus, the 

behavioral results replicated a large literature on the proportion congruency (for review, see 

Bugg & Crump, 2012) and the conflict adaptation effect (for review, see Egner, 2007), as 

well as previous findings of these two effects occurring simultaneously in the same data set 

(Torres-Quesada et al., 2013). As can be seen in Figure 3C, both effects were successfully 

simulated using our Bayesian model. Specifically, the model predicted an interference effect 

(congruent trials: 569 ms; incongruent trials: 592 ms), a decreased interference effect as the 

proportion of incongruent trials increased (Fig. 3C), and a higher interference effect in post-

congruent trials (27 ms) than in post-incongruent trials (18 ms). These simulation results 
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suggest that our Bayesian model is able to simultaneously account for both long-term and 

short-term effects of cognitive control. These fits were achieved using a single control 

mechanism with a flexible learning rate rather than the dual mechanism structure of De 

Piasapia & Braver (2006) or the separate fits with different learning rates as applied by 

Botvinick and colleagues (2001). Moreover, our data fits were derived from on-the-fly 

simulations and not based post-hoc setting of learning rate parameters.

3.3 Simulating the flexibility of conflict-control

To further demonstrate the model’s ability to simulate the flexibility of cognitive control, we 

conducted a second experiment, in which we created two environments with different 

dependence on short-term and long-term information. We show that our model can 

successfully simulate the behavioral patterns observed in the empirical data.

Subjects—Forty-six healthy volunteers (mean age = 19.9, 33 females) gave informed 

consent in accordance with institutional guidelines. All subjects were native or highly 

proficient English speakers and had normal or corrected-to-normal vision.

Stimuli and procedure—The same stimuli and basic task procedure was used as the one 

described above in section 3.2.

Experimental design—This task consisted of 4 runs of 9 blocks each. Each block 

contained 20 trials with pseudo-randomized congruency. The first block had 50% congruent 

trials and served as a “reset” (or “burn-in”) block to bring the predictions to the same 

baseline at the beginning of each run. To create experimental environments that differ in 

their dependence on long-term and short-term trial history, a run could be either volatile (the 

proportion congruency alternated between 20% and 80% every block) or stable (the 

proportion congruency remained either 20% or 80% for all 8 post-reset blocks). Subjects 

were given no indication that a new block was beginning. The order of volatile and stable 

runs was counter-balanced across subjects. This manipulation resulted in a 2 (volatile/stable) 

× 2 (proportion congruency) × 2 (current trial congruency) factorial design.

Data analysis—We applied the same analyses as described in section 3.2. Note that trials 

in reset blocks were also given to the model, so as to also generate a reset of trial-by-trial 

estimates of volatility and predicted conflict level in the model at the beginning of each run. 

However, reset block trials were excluded from further analyses.

Results and discussion—Participants performed the task with high accuracy (mean = 

92.8%) in this task. The 3-way ANOVA on empirical RTs again revealed a significant effect 

of current trial congruency (F1,45 = 49.3, P < 0.001), due to longer RTs in incongruent trials 

(549 ± 13 ms) than in congruent trials (522 ± 11 ms). The proportion congruency effect was 

also found, reflected in a significant interaction between proportion congruency and current 

trial congruency (F1,45 = 10.5, P = 0.002). This effect was driven by a larger interference 

effect in 80% congruency blocks (33 ± 5 ms) than in 20% congruency blocks (22 ± 4 ms). 

Importantly, we also observed a significant main effect of volatility (F1,45 = 4.5, P = 0.04), 

due to longer RTs in volatile runs (540 ± 12 ms) than in stable runs (531 ± 12 ms). Note that 

Jiang et al. Page 14

Neurosci Biobehav Rev. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



this main effect was not driven by “outliers” in experimental cells, because no interactions 

involving volatility and any of the other factors were found. Furthermore, a trend for longer 

RTs in volatile compared to stable environments can be observed in all 4 current trial 

congruency × proportion congruency conditions (Fig. 4A). This main effect of volatility 

may reflect a cost of frequently adjusting the strategy of cognitive control (e.g. adjusting the 

dependence on long-term vs. short-term information) in volatile runs.

This pattern of RTs was again successfully simulated using our model (Fig. 4B): firstly, the 

model recapitulated the main effect of current congruency (congruent trials: 522 ms; 

incongruent trials: 549 ms); secondly, it simulated the proportion congruency effect 

(inference effect in high proportion congruency blocks: 33 ms; inference effect in low 

proportion congruency blocks: 22 ms); and lastly (and most importantly), it predicted longer 

RTs in volatile runs (540 ms) than in stable runs (531 ms). We contend that this “volatility 

cost” performance pattern can in fact only be accounted for by using a model that estimates 

the volatility of the environment. Consider a model with no information about volatility (e.g. 

having a fixed learning rate): in such a model, each trial’s contribution to the prediction of 

predicted conflict level is a constant. Furthermore, the trial’s contribution to the prediction 

of all forthcoming trials is also a nearly constant, because its influence decays continuously 

with a constant discounting rate after each trial, and approaches zero in a relatively short 

period of time (except for extremely low learning rates, which are unrealistic given the 

commonly observed short-term effects of cognitive control). As a consequence, using a 

fixed learning rate, two sequences of trials with the same proportion congruency and number 

of trials will produce the same sum of conflict-level estimates across all trials, regardless of 

the volatility of those sequences. Indeed, even as shown in our model, estimates of predicted 

conflict level displayed an interaction between volatility and proportion congruency (Fig. 

4C). Thus, it is impossible to account for the pattern of slower RTs in volatile compared to 

stable runs in the empirical dataset when using only predicted conflict level estimates; they 

would have to be combined with estimates of volatility (Fig. 4D) to simulate the empirical 

data pattern. To further illustrate this point, we performed an additional analysis to simulate 

the results in this experiment using a reinforcement learning algorithm. Specifically, we 

created 3 learners with different learning rates: 0.05 (high dependence on long-term 

information), 0.5 (balanced dependence on long-term and short-term information) and 0.95 

(high dependence on short-term information). The learning was conducted using the 

following equation:

(Eq 3)

Where fi+1 is the predicted conflict level at trial i+1, α is the learning rate, and oi is the 

observed congruency. If any of these learners were able to account for the behavioral pattern 

observed in experiment 2, there should be a significant difference in fi+1 between the 2 

volatility levels, because fi+1 is the only output of these learners. However, in none of the 3 

learners did we observe such significant a difference (all Ps > 0.2). Thus, in the absence of a 

(volatility-modulated) flexible learning rate, the model is unable to account for the 

behavioral patterns obtained across different task settings.
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An alternative explanation to the main effect of volatility is that, similar to the proportion 

congruency effect where trials with better predicted (in) congruency were associated with 

faster RTs, less frequent alternation of the underlying proportion congruency in stable runs 

was associated with better predicted (in) congruency, and thus faster RTs, compared to 

volatile runs. Hence, a reinforcement learning model with fixed individual learning rate (and 

without an explicit variable encoding volatility), paired with a linear mapping from 

prediction error of the reinforcement learning model to RT (Jones et al., 2013) could in 

principle also account for the main effect of volatility1. In this type of model, both the main 

effect of volatility and the proportion congruency effect only depend on a single underlying 

variable, the learning rate. It follows that there should be a correlation between these two 

effects across subjects with varying learning rates. In fact, using a reinforcement learning 

algorithm and 100 randomly generated trial sequences, we found an almost perfectly linear 

negative correlation (r = −0.99) between these two effects across a wide range of learning 

rates (from 0.05 to 0.95, step size = 0.01). However, our empirical data produced no support 

for this model, as we observed no correlation between effects of volatility and proportion 

congruency effects (correlation r = −0.07, p = 0.62), thus suggesting that an account that 

ascribes the effects of volatility and proportion congruency to a single underlying variable 

cannot be accurate. By contrast, the Bayesian model, which incorporates volatility as an 

explicit additional variable, can account for both the group level RT pattern as well and the 

uncorrelated main effect of volatility and proportion congruency effect across subjects, 

because the two effects are here attributed primarily to two distinct factors (the proportion 

congruency effect is attributable primarily to prediction error, and the main effect of 

volatility is attributable primarily to volatility).

Note that the predicted conflict levels display the inverse pattern of empirical RTs, e.g., for 

incongruent trials higher estimated (or predicted) conflict levels are predictive of faster RTs. 

This pattern essentially corresponds to the classic, intuitive explanation of the empirical 

proportion congruency effect, namely, that control is higher in conditions where conflict is 

frequently encountered (e.g., Carter et al., 1998).

A few additional points should be noted in the interpretation of these data. First, both 

conflict adaptation and proportion congruency effects have at times been argued to 

exclusively reflect associative processes related to the particular stimulus and response 

features of the task (e.g., Mayr et al., 2003; Hommel et al., 2004; Schmidt and Besner, 

2008). By contrast, the present results show that both of these effects can be faithfully 

captured by a model that does not consider specific stimulus or response features at all – it 

only learns about the incidence of congruent and incongruent stimuli. This documents that, 

at least in principle, learning of specific physical stimulus and response properties is not a 

necessary precondition for producing these effects. Second, while this main effect of 

volatility can be quantitatively accounted for by our Bayesian model (the manipulation of 

volatility was captured by the volatility variable, as can be seen in Fig. 4C), the model 

architecture itself does not necessitate such an effect. In other words, the model could 

1We would like to thank Mike Mozer for pointing out this possibility.
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equally well fit behavioral data in the absence of a main effect of volatility (unpublished 

observations).

Nevertheless, this does of course not mean that the empirical data themselves were not 

potentially subject to such lower-level learning effects. We consider it unlikely that such 

processes contributed in a substantial manner to the present results, however, for the 

following reasons. First, in order to prevent trial-by-trial priming effects at the level of 

physical stimulus features (Hommel et al., 2004; Mayr et al., 2003), face stimuli in the 

present experiments never repeated across successive trials, and the lettering of the distracter 

labels alternated between lower- and upper-case across trials. Second, in order to minimize 

the possibility that proportion congruency effects in our protocol would be mediated by 

subjects associating specific face stimuli with a particular response (e.g., the gender-

congruent response in high proportion congruency blocks), we included a large number (24) 

of unique facial identities (cf. (Bugg and Hutchison, 2013)). Nonetheless, this leaves the 

possibility that subjects may use the contingency between the distracter (in our case, the 

gender word) and the response to guide their action selection (Bugg, 2012; Bugg and 

Chanani, 2011; Schmidt and Besner, 2008). For example, in an environment of high 

proportion congruency, the gender word is highly predictive of the correct response. 

However, note that in volatile runs, this contingency changes every 10 occurrences for each 

word (on average), leading to a less predictive word-response association than in stable runs, 

where the contingency remains unchanged. Therefore, if distracter-response contingency 

were a major contributing factor to the proportion congruency effect in our data, this effect 

should be modulated by the contingency’s predictive power (i.e., volatility), resulting in a 3-

way interaction between volatility, proportion congruency and current-trial congruency. 

However, we did not observe such an interaction (F1,45 = 2.9, n.s.). More specifically, the 

contingency account predicts that contingency with higher predictive power (i.e., the stable 

runs) should evoke larger proportion congruency effects than low-contingency conditions 

(i.e., the volatile runs). However, numerically, the opposite is true for our data (volatile runs: 

proportion congruency effect = 16 ± 5 ms; stable runs: proportion congruency effect = 4 ± 4 

ms; t45 = 1.7, n.s.). Thus, contingency learning seems highly unlikely to have contributed to 

the empirical proportion congruency effects that our model simulated.

In sum, we showed that a Bayesian model that learns to predict control demand using a 

flexible, volatility-driven learning rate, can account for simultaneously occurring conflict 

adaptation, proportion congruency, and volatility effects, without the need for multiple 

controllers or post-hoc fit-derived learning rate parameters. We conclude that this model 

represents a promising new application of a Bayesian approach to exploring computational 

mechanisms of cognitive control, in particular with respect to simulating the flexibility that 

is required of control processes wielded in a changing environment.

4. Future directions and concluding remarks

4.1 How “Bayesian” is cognitive control?

One important avenue for future work in this context is to evaluate to what extent (or in 

what sense) cognitive control might actually be Bayesian in nature. According to Bowers & 

Davis (2012), there are three levels at which one can use Bayesian methods in modeling 

Jiang et al. Page 17

Neurosci Biobehav Rev. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cognitive processes: as computational tools, for generating “optimal” benchmarks for 

cognitive processes, and for modeling the actual neural computations carried out by the 

brain. The Bayesian models reviewed in this paper, along with our own model, all operate at 

the second level: these Bayesian models were treated as “optimal observers”, and produced 

optimal predictions, which in turn were used to account for behavior (and sometimes, 

neuroimaging data). A crucial next step then is to examine more widely whether it is 

possible to find neural substrates for the variables expressed in these Bayesian models, such 

as the brain regions/systems that store information concerning the prediction of conflict 

level and volatility. Although to our knowledge no prior study has investigated this topic in 

the context of cognitive control, related work may be able to nevertheless shed some light on 

this question by indicating whether the kinds of variables involved in the work reviewed 

above are likely to be encoded in the brain, and what particular brain regions might be 

candidates for mediating these kinds of computations.

Statistically speaking, the prediction of conflict level supplies a probability (also, ‘expected 

value’, if a fixed maximum amount of control is assumed). In the literature on risky 

decision-making, evidence of neural representations of reward probability and expected 

reward (for reviews, see Platt & Huettel 2008; and Rushworth & Behrens 2008) has been 

found in the midbrain (Fiorillo et al., 2003, 2005), the ventral striatum (Knutson et al., 2005; 

Preuschoff et al., 2006), the ACC (Amiez et al., 2006), and the medial (Knutson et al., 2005; 

Matsumoto et al., 2003; McClure et al., 2004; Volz et al., 2003, 2004) and lateral PFC 

(Matsumoto et al., 2003).

Compared to probability and expected value, fewer studies have examined the neural 

substrates of volatility. Using a gambling task that manipulated the frequency of altering the 

underlying probability distribution of winning options, Behrens et al., (2007) found that 

volatility predicted in a Bayesian model correlated with activity in the dorsal ACC when 

subjects observed the outcome of the gamble. The ACC activation observed in Behrens et 

al., (2007) was also accounted for using another model that separately encoded positive and 

negative prediction error (the difference between expected outcome and actual outcome) to 

model ACC activity (Silvetti et al., 2011). This model furthermore successfully simulated 

ACC activation patterns in another independent fMRI dataset that manipulated volatility 

(Silvetti et al., 2013), suggesting that the ACC may indeed be a prime candidate for 

encoding this type of information on environmental variability also in the context of steering 

cognitive control. Another computational model of the medial PFC captured the signal 

variations evoked by changes in volatility through simulated negative surprise signals (the 

absence of a predicted outcome) (Alexander and Brown, 2011). However, these studies also 

suggest that the ACC’s response to expected uncertainty could be higher than its response to 

unexpected uncertainty. Thus, future study designs should attempt to de-confound the 

manipulation of volatility from the expectancy of uncertainty.

Volatility can also be considered as second-order uncertainty (e.g. the deviation of 

probability, see (Yu and Dayan, 2005)), and thus it may also be computed in brain regions 

that have been found to encode second-order statistics, such as deviation. Deviation of 

reward from its mean has been found to be encoded in posterior cingulate cortex neurons 

(McCoy and Platt, 2005). Another study has shown that in the primate anterodorsal septum, 
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neural firing rates display an “inverted-U” shape as a function of the probability of reward, 

peaking at 50% (Monosov and Hikosaka, 2013). Given that the standard deviation of reward 

increases starting from 0 reward probability, then peaks at 50%, and finally drops until the 

probability of reward reaches 100%, this inverted-U pattern of neural firing may also 

represent potential neural substrates of deviation and/or volatility. A similar neural firing 

pattern was also found in the midbrain (Fiorillo et al., 2003) and the ventral striatum 

(Preuschoff et al., 2006) in monkeys. Volatility is also associated with confidence (or 

uncertainty). For example, in a stable environment, prediction of conflict is usually of more 

confident because the expectation is less likely to be violated. Previous studies have shown 

that confidence of decision is encoded in the lateral intra parietal cortex (Kiani and Shadlen, 

2009) as well as the ventral medial and rostrolateral prefrontal cortices (De Martino et al., 

2013). Finally, high volatility also arguably makes decision-making more ambiguous; hence 

neural substrates of ambiguity, as found in orbital frontal cortex (Hsu et al., 2005) and the 

lateral PFC (Huettel et al., 2006) may also contribute to encoding volatility.

To what degree the putative computation of volatility and the consequent titration of 

predicted conflict and recruitment of control processes outlined in our own model map onto 

these anatomical territories remains an interesting topic for a future neuroimaging study. 

Moreover, apart from testing the neural representations of the variables’ distributions in a 

Bayesian model, another direction of future research is to examine whether the brain 

implements cognitive control in a Bayesian fashion as far as neural computations are 

concerned. To test this hypothesis, one would need to identify the neural processes of 

information integration, for example, how posterior distributions are calculated based on 

prior and likelihood.

4.2 Conclusion

The flexibility of cognitive control enables the brain to adaptively adjust the degree of top-

down biasing in a dynamically changing environment. This adjustment can be cast as a 

prediction of control demand, which can be optimally achieved via Bayesian belief 

propagation. Using Bayesian models, previous studies have successfully modeled various 

phenomena of cognitive control. Yet, those models usually depend on specific (and post-

hoc) selection of parameters to achieve optimal performance. This approach is not only 

unlikely to mimic the true mechanism of parameter selection in the brain, but is also likely 

incapable of accounting for the flexible adjustments in control strategies when the 

environment changes. To solve this problem, we propose a Bayesian model that takes into 

account the environment’s volatility, which in turn adjusts the model’s dependence on short-

term and long-term information to produce a prediction of control demands (i.e., predicted 

conflict level of the forthcoming trial). Our model, along with other Bayesian models, 

exhibits great potential for improving our understanding of cognitive control processes in a 

principled, formal framework. A prime target for future work is to identify possible neural 

substrates of the key variables and processes implied by these models, and further to 

determine the specific neural implementation (whether Bayesian or not) of cognitive control.
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Appendix

The generative model is shown as follows (see below for definition of distribution 

parameters):

(Eq A1)

This Bayesian model simulates a trial sequence of an experiment on a trial-by-trial basis. 

Within each trial, the simulation takes the form of a predict-update algorithm that is used in 

Kalman filters (Masreliez & Martin, 1977). In other words, the simulation of each trial i + 1 

contains two steps. The first step makes prediction of the states of vi+1fi+1 and oi+1 before 

the stimulus is presented. These predictions were used to account for the behavioral patterns 

observed in the empirical studies reported above. The second step updates/filters the belief 

of the states of vi+1 and fi+1 given the observed congruency oi+1. These two steps were 

repeated for each trial to generate trial-by-trial estimates.

In the first step, the model initially predicts a joint distribution based on the model’s 

previous states and 2 transition distributions:

(Eq 

A2)

Where σv constrains how v can change over time. Specifically, p(vi+1|vi,σv)~N(vi, σv). In 

other words, the transition distribution p(vi+1|vi,σv) is a Gaussian distribution with the mean 

of vi and the standard deviation of σv. This transition distribution assumes that v is most 

likely to remain in its previous states, although it can also possibly drift to another state. σv 

determines how likely it is for vi to shift to a new state. Because in experiment 2 the 
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volatility altered between conditions, we set σv as a variable and used the Bayesian model to 

infer its state. This transition distribution determines how the estimate of vi is used to predict 

its future state, which is in turn employed to compute the predicted conflict level, as 

described below.

p(fi+1|fi,vi+1) describes how f can change over time. p(fi+1|fi,vi+1)~Beta(α,β). This 

distribution is a beta distribution, with parameters α and β taking the following form:

(Eq A3)

There are two main reasons for using a beta distribution: first, we defined the predicted 

conflict level as the probability of encountering an incongruent stimulus in the upcoming 

trial, so the possible value of fi+1 should be limited to a range of 0 to 1, which is also the 

range of values that a beta distribution is defined on. Second, and more importantly, with the 

current set-up, the probability density function of p(fi+1|fi,vi+1) takes the following form:

(Eq A4)

Which can be interpreted as the likelihood function of observing α − 1 incongruent trials and 

β − 1 congruent trials with the underlying proportion in congruency fi. Thus, a larger p(fi+1|

fi,vi+1) suggests the prediction of conflict is better supported by temporally more-extended 

trial-history information. Following this interpretation, according to the equations A3 and 

A4, vi+1 controls the length of the trial sequences of this likelihood function. A larger vi+1 

suggests a longer trial sequence to take into account, which in turn indicates more 

dependence on long-term information, or a more stable condition. In other words, a larger 

vi+1 leads to a narrower spread of p(fi+1|fi,vi+1), which constrains fi+1 from drifting far from 

its previous state. Another interpretation of p(fi+1|fi,vi+1) can be linked to the learning rate 

used in many reinforcement learning models: a narrower spread of p(fi+1|fi,vi+1) results in 

smaller difference between fi and fi−1 that resembles the effect of a smaller learning rate, 

compared to a wider spread of p(fi+1|fi,vi+1) determined by a smaller vi+1. However, it is 

counterintuitive to have a larger volatility value when the environment is more stable. Thus 

when reporting volatility, we use a linear transform to make more volatile task settings 

correspond to larger volatility estimates while preserving the quantitative patterns of our 

results (see below). Furthermore, fi is the mode of p(fi+1|fi,vi+1), indicating that the predicted 

conflict level is most likely to reflect its previous state. Thus, ∫∫ p(vi+1|vi,σv)p(fi+1|

fi,vi+1)dvidfi can be viewed as defining how the prediction is made by incorporating various 

learning rates. The third term in the integral, p(σv,vi,fi|o1, …, oi−1) is the belief in the 

previous trial and also represents the weights p(σv,vi+1,fi+1|o1, …, oi) in making the 

prediction (Eq. A1). After the joint distribution p(σv,vi+1,fi+1|o1, …, oi) is calculated, the 

estimates of volatility and conflict are computed as the mean of their corresponding 

marginalized distributions. The observed congruency oi+1 was then predicted to have a 

Bernoulli distribution with a probability of E(fi+1) of in congruency, where E(fi+1) denotes 

the mathematical expectation of fi+1.
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In the first step, we adopted a numeric implementation for this Bayesian model to avoid the 

complexity of developing an analytical implementation: the range of each of the variables of 

σv, v and f was divided into multiple segments with equal length. For example, fi was 

represented using an array ranging from 0 to 1 and with a step size of 0.02 (that is, 51 cells). 

The value of each cell represented the probabilistic density at that point. Similarly, the joint 

probabilistic distribution was represented by a 3D array with 3 dimensions of σv,vi+1 and 

fi+1. p(fi+1|fi,vi+1) was represented using a 3D array with 3 dimensions of fi+1, fi and vi+1. 

And p(vi+1|vi,σv) was represented using a 3D array with 3 dimensions of vi+1, vi and σv. All 

the aforementioned calculations were performed on these arrays. Specifically, step 1 took 

the form of:

(Eq 

A5)

After the first step, p(σv,vi+1,fi+1|o1, …, oi) was divided by its sum across σv,vi+1 and fi+1 so 

that the cells in p(σv,vi+1,fi+1|o1, …, oi) summed to 1. The marginalization was done by 

collapsing the other dimensions. The mean was approximated using a weighed sum, Σxp(x).

In the second step (i.e. after the congruency of trial i + 1 is observed), the belief of variables 

is updated using the observed congruency in the following manner:

(Eq A6)

Where

(Eq A7)

is the prediction error between the predicted conflict level and the true congruency.

After feeding the trial sequences experienced by each participant to the Bayesian model, we 

obtained estimates of volatility and predicted conflict level for each trial (i.e. the estimates 

from step 1). Then the trial-wise estimates were grouped based on experimental conditions 

to compute condition-specific means, which were further averaged across participants to 

produce group-level means of volatility and predicted conflict level for each experimental 

condition. These group-level means of parameter estimates were then employed to simulate 

group-level mean RTs using a linear model. For condition j, the linear model states:

(Eq A8)

Where vj and fj are the group mean of volatility and predicted conflict level for condition j, 

respectively. Cj = 0 if condition j is congruent; and Cj = 1 if condition is incongruent. After 

obtaining the coefficients for the linear model (i.e. the betas) using linear regression across 

all conditions, we calculated the condition-specific simulated RTs using the coefficients:
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(Eq A9)

Where  is the simulated RT for condition j.

As mentioned before, our definition of v would result in a counterintuitive representation of 

having a lower v in a more volatile setting. Thus, to avoid confusion, we transformed the 

condition-specific volatility estimates before presenting them:

(Eq A10)

Where max(v) and min(v) are the maximum and minimum group-level mean of volatility 

estimates across all conditions, respectively. After this transform, more volatile conditions 

have higher ṽjs. Note that because all vjs were transformed using the same constants, this 

transform had no effect on s and hence our simulation results.
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Highlights

We review Bayesian graphical models of cognitive control processes

We highlight lack of mechanisms for time-varying adjustment of control

We present a Bayesian control model with volatility-driven learning

This model provides flexible, context-sensitive prediction of control demand

Bayesian modeling of cognitive control is a promising new research avenue
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Figure 1. 
A basic Bayesian model of conflict-control. The model entails 2 variables, conflict (f) and 

observation (o, shown in grey indicating this variable is observable) for each trial. The 

directed edges indicate the information flow.
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Figure 2. 
The graphical representation of the Bayesian model of flexible conflict-control. The model 

uses 3 variables, volatility (v), conflict (f), and observation (o, shown in grey indicating this 

variable is observable) for each trial. The directed edges indicate the information flow.
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Figure 3. 
Empirical and simulated effects of congruency, proportion congruency, and conflict 

adaptation. (A) Empirical proportion congruency effect, with RT plotted as a function 

current trial congruency and the block-wise proportion of incongruent trials. (B) Empirical 

conflict adaptation effect, with RT plotted as a function of current and previous trial 

congruency. (C) Simulated proportion congruency effect, plotted in the same way as in (A). 

(D) Simulated conflict adaptation effect, plotted in the same way as in (B). Pre C/Pre I = 

Preceded by a congruent/incongruent trial; Current C/Current I = current trial is congruent/

incongruent.
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Figure 4. 
Empirical and simulated effects of congruency, proportion congruency in an environment of 

changing volatility. All quantities are plotted as a function of volatility, proportion 

congruency and congruency at the current trial. (A) Empirical reaction times and their 

standard errors. (B) Simulated reaction time. (C) Estimated predicted conflict level from the 

Bayesian model. (D). Estimated volatility from the Bayesian model in arbitrary units. C/I in 

20%/80% C = congruent/incongruent trials in a block of 20%/80% congruent trials.
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