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Abstract

Abnormalities in the enzymatic activity of catechol-O-methyltransferase (COMT) contribute to 

chronic pain conditions, such as temporomandibular disorders (TMD). Thus, we sought to 

determine the effects of polymorphisms in COMT and functionally-related pain genes in the 

COMT pathway (estrogen receptor 1: ESR1, guanosine-5-triphosphate cyclohydrolase 1: GCH1, 

methylenetetrahydrofolate reductase: MTHFR) on COMT enzymatic activity, musculoskeletal 

pain, and pain-related intermediate phenotypes among TMD cases and healthy controls. Results 

demonstrate that the COMT rs4680 (val158met) polymorphism is most strongly associated with 

outcome measures, such that individuals with the minor A allele (met) exhibit reduced COMT 

activity, increased TMD risk, and increased musculoskeletal pain. Epistatic interactions were 

observed between the COMT rs4680 polymorphism and polymorphisms in GCH1 and ESR1. 

Among individuals with the COMT met allele, those with two copies of the GCH1 rs10483639 

minor G allele exhibit normalized COMT activity and increased mechanical pain thresholds. 

Among individuals with the COMT val allele, those with two copies of the ESR1 rs3020377 minor 

A allele exhibit reduced COMT activity, increased bodily pain, and poorer self-reported health. 

These data reveal that the GCH1 minor G allele confers a protective advantage among met 

carriers, while the ESR1 minor A allele is disadvantageous among val carriers. Furthermore, these 

data suggest that the ability to predict the downstream effects of genetic variation on COMT 

activity is critically important to understanding the molecular basis of chronic pain conditions.
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Introduction

Catechol-O-methyltransferase (COMT) is a ubiquitously expressed enzyme that regulates 

the bioavailability of catecholamines, playing a key role in maintaining basic physiologic 

functions such as sympathetic tone, mood, and inflammation, that influence pain. Through 

alternative promoters and translation initiation sites, the COMT gene yields two distinct 

proteins: soluble COMT (S-COMT) and membrane-bound COMT (MB-COMT) [42,62]. 

The COMT gene locus is rich with single nucleotide polymorphisms (SNPs), several of 

which have been associated with chronic pain and pain-related phenotypes.

Most COMT genetic association studies have focused on the common rs4680 SNP. The 

rs4680 A allele has been associated with increased susceptibility to post-surgical pain 

[1,24,32], fibromyalgia [3,15,29,44], and arthritis [65]. Additionally, rs4680 has been 

associated with clinically relevant intermediate phenotypes such as experimental pain [72], 

anxiety [23], depression, and attention [67]. The A allele produces a nonsynonymous change 

from valine to methionine at codon 158 (val158met), resulting in a less thermostable enzyme 

with reduced activity [41]. Studies have consistently shown that the met allele codes for a 

25–40% reduction in enzyme activity measured in human red blood cells [53,59,69] and 

tissues [7] as well as in lysates from transfected cells [41,46,56]. Thus, the val158met allele 

represents a major source of individual variation in COMT activity.

More recently, investigators have identified additional polymorphisms in the COMT gene 

locus that, while not independently associated with pain, interact with the val158met allele. 

Haplotypes consisting of one SNP in the S-COMT promoter (rs6269 G/A) and two SNPs in 

the coding region (rs4633 C/T and rs4818 C/G) together with rs4680 G/A have been 

associated with clinical and experimental pain. Specifically, the ATCA and ACCG 

haplotypes have been associated with susceptibility to post-surgical pain [26], fibromyalgia 

[66], and temporomandibular disorders (TMD) [19] as well as experimental pain sensitivity 

[19] and treatment response [60]. In vitro studies have shown that the ACCG haplotype 

codes for an 80% reduction in enzymatic activity due to formation of a stable mRNA 

secondary structure that is more resistant to translation [46]. Thus, SNPs in distinct COMT 

gene loci can act alone or in concert to influence enzyme activity and pain.

Emerging evidence suggests that the size and direction of COMT polymorphic effects can be 

modified by epistatic interactions with genes in convergent molecular pathways. For 

example, the effects of the met allele on disease risk have been shown to be augmented by a 

low activity variant of the methylenetetrahydrofolate reductase (MTHFR) gene, which 

regulates the bioavailability of S-adenosyl-L-homocysteine (SAH; a strong, noncompetitive 

inhibitor of COMT) [45]. Thus, we hypothesize that polymorphisms in MTHFR and 

functionally-related genes implicated in pain, including estrogen receptor 1 (ESR1; which 

regulates COMT gene expression [35,70]) and guanosine-5-triphosphate cyclohydrolase 1 
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(GCH1; a rate-limiting enzyme for a cofactor for catecholamine synthesis [47]), interact 

with polymorphisms in COMT to influence COMT enzymatic activity and pain.

In order to test this hypothesis, the present study characterized the relationship between 

SNPs located in genes of the COMT pathway (COMT, MTHFR, ESR1, and GCH1), COMT 

enzymatic activity, musculoskeletal pain, and related intermediate phenotypes.

Materials and Methods

Subjects

Subjects were 398 white females aged 18–60 years enrolled in a case-control study of TMD. 

These subjects were recruited between 2005–2009 in Chapel Hill, NC, using advertisements 

placed in local newspapers and flyers posted in and around the UNC Health Center, 

including tertiary care clinics that provide treatment for people with chronic orofacial pain. 

All subjects signed written informed consent for experimental protocols and for genotyping 

and biomarker analysis, and gave a blood sample. A detailed overview of recruitment 

protocols including case definition and exclusion criteria has been described previously [57]. 

Briefly, cases (n=200) had to report facial pain for at least five days during the previous two 

weeks and be diagnosed with TMD arthralgia or myalgia following the Research Diagnostic 

Criteria (RDC) for TMD [21]. Digital palpation of muscle and joint cranial sites was 

performed using a force of 0.45 kg. Controls (n=198) had no self-reported history of 

orofacial pain within the preceding six months and no diagnosis for TMD either prior to or 

during the study examination. Enrolment was limited to females due to the higher 

prevalence of TMD in women than men [10], and to whites to avoid problems of population 

stratification in assessing genetic associations.

Assessment of Bodily Pain and Experimental Pain

At the time of the clinical examination, all study subjects were evaluated for the presence of 

bodily pain. Three pounds of digital palpation pressure were applied bilaterally for 2 

seconds to each of the following predefined locations modeled after ACR's 1990 criteria for 

fibromyalgia tender points examination [71]: occiput, trapezius, supraspinatus, lower 

cervical, second rib, lateral epicondyle, knee, gluteal, and greater trochanter. At each 

location, a response of pain to palpation was recorded.

Following the clinical examination, study subjects completed a battery of quantitative 

sensory testing (QST) assessments. First, thermal pain was assessed by applying a thermode 

to the forearm that increased in temperature at a rate of 0.5°C/sec. Thermal pain threshold 

was defined as the temperature at which pain was first reported, while tolerance was defined 

as the highest temperature that could be tolerated (with an upper limit of 50°C). Second, 

central sensitization was assessed using repeated thermal stimuli of 50°C applied to the right 

hand.[49] Pain was rated on a 0–100 numerical rating scale (NRS) after each of 10 pulses, of 

0.5 sec duration repeated once every three seconds. Plots of each subject's pattern of 

response at each temperature were used to derive two summary measures of temporal 

"windup" (highest NRS response minus lowest NRS response and slope of a linear 

regression line fitted for the first five NRS responses) and two summary measures of 
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thermal sensitivity (first NRS and sum of all NRS responses). Third, pressure pain 

thresholds in response to a hand-held pressure algometer [34] were assessed bilaterally at 

two extracranial sites: trapezius muscles and the lateral epicondyle. Pressure threshold at 

each site was recorded as the algometer loading (kg) at which pain was first detected. 

Descriptive characteristics of bodily pain and experimental pain phenotypes measured in 

TMD cases and controls enrolled in this study have been published previously [11,12,57].

Assessment of Self-reported Pain, Health, and Psychological Mood

Subjects completed several questionnaires to assess the severity of their pain and pain-

related traits. Pain intensity and unpleasantness was measured by the Gracely Pain Scale, 

which asks subjects to report their lowest, average, and maximal pain on a scale of 0 to 100 

[28]. Self-ratings of physical and mental health were measured by the Short Form 12 version 

2 (SF-12v2), which asks questions in six domains: global health rating, physical functioning, 

physical roles, emotional functioning, emotional roles, and pain interference. Published 

scoring algorithms [68] were used to compute scores for each domain, ranging from 0 to 

100, with higher values signifying better function and health. Stress was measured by the 

Perceived Stress Scale (PSS), which contains 10 questions about frequency of daily stressors 

on a five-point scale ranging from “never” to “very often” [16]. Responses were summed for 

an overall score. Additional domains of stress were measured by the Symptoms Checklist- 

90 Revised (SCL-90-R), which consists of 90 items that describe a feeling or thought, 

scored on a 5 point scale ranging from “not at all distressed” to “extremely distressed” [17]. 

It provides ratings of psychological distress in nine symptom areas: somatization, obsessive-

compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid 

ideation, and psychoticism. Psychological mood was measured by the Profile of Mood 

States- Bi-Polar (POMS), which consists of 72 questions used to compute six subscales of 

mood-related states (e.g., elated-depressed and energetic-tired) [39]. Descriptive 

characteristics of self-reported pain, health, and psychological mood phenotypes measured 

in TMD cases and controls enrolled in this study have been published previously [11,12,57].

Genotyping

DNA extracted from whole blood donated by study subjects was genotyped by Beckman-

Coulter Genomics (Morrisville, NC) using the Algynomics Pain Research Panel v.1.0 

(http://algynomics.com/pain-research-panel.html). This platform is a dedicated array for the 

targeted assessment of genes involved in acute and chronic pain conditions, utilizing the 

Affymetrix MegAllele platform. The panel genotypes 3295 SNPs in 358 candidate genes 

whose protein products are linked to biological pathways that influence pain transmission, 

inflammatory response, or psychological state. Genotyping calls were checked for quality 

using utilities implemented in PLINK version 1.07. [50] All 398 samples exhibited 

Caucasian ancestry and an overall genotype call rate < 95%. All SNPs used for this study 

exhibited a call rate >95%, minor allele frequency > 1% in either case or control groups, and 

agreement across repeated samples >98%. The potential for population stratification to 

influence association statistics was assessed by calculating the lambda statistic [18]; no 

evidence was found for inflation of test statistics (λ < 1.0).
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This analysis was limited to four genes directly or indirectly involved in regulating COMT 

activity: COMT, ESR1, GCH1, and MTHFR. Within the COMT gene locus, 9 SNPs passed 

quality filters (Supplemental Table 1: table of COMT activity associations). The rs4633 SNP 

also passed quality filters but was in very strong (r2=1.0) LD with rs4680 and so was not 

included in further analysis. Within the ESR1, GCH1, and MTHFR loci, 27, 10, and 7 SNPs, 

respectively, passed quality filters. For the complete list of ESR1, GCH1, and MTHFR 

SNPs, please refer to Supplemental Table 4.

COMT Activity Assay

S-COMT activity was measured in red blood cells (RBCs) following the method of Schultz 

et al. [55] with some modifications [64]. RBCs were hemolyzed in four volumes of 1 mM 

sodium phosphate buffer (instead of water), enzyme incubation was performed in pH 7.4 

(instead of 7.8) for 60 min, using 500 µM of 3,4-dihydroxy benzoic acid (DHBAc; instead 

of 400 µM) as a substrate, and the samples were filtered with 0.45 µM pore size membranes 

using syringe before HPLC. In principle, vanillic acid generated from the DHBAc substrate 

was quantified with a HPLC system. It consisted of a sample autoinjector (Shimadzu, 

Prominence SIL-20AC, Kyoto, Japan), a pump (Jasco pu- 2080, Tokyo, Japan), an RP-18 

column (3 µm, 4.6 × 100 mm; Waters Spherisorb, Milford, MA, USA) with precolumn, 

column heater (Croco-Cil, Bordeaux, France), a coulometric detector (ESA model 

Coulochem III detector and a model 5011A cell; ESA Inc., Chelmsford, MA, USA; E1 

detector potential was −0 V and that of E2 analytical detector +0.5 V) and Azur 5.0 software 

(Datalys, France). The mobile phase consisted of 0.1 M Na2HPO4 (pH 3.3), 0.15 mM 

EDTA and 25% methanol; the flow-rate was 1.0 ml/min. The protein levels of the samples 

were analyzed using the Bradford assay [8]. COMT activity was expressed as pmol of 

vanillic acid formed per mg of protein in one minute.

This RBC-COMT assay has been validated with human samples containing either normal or 

low COMT levels. Intra-assay coefficient of variation (CV%) was typically <5% and in 

inter-assay <15%. Assay was highly linear for vanillic acid (r = 0.9996–0.9998) and 

precision CV% for vanillic acid was 0.3% at 2 µM and 4.8% at 0.2 µM.

Statistical Analysis

Genetic association analyses were performed using PLINK and JMP, Version 7 (SAS 

Institute Inc., Cary, NC) software packages. Haplotype phasing was performed in PLINK, 

using COMT SNPs rs6269 and rs4633 to construct haplotypes Low Pain Sensitivity (LPS), 

Average Pain Sensitivity (APS), and High Pain Sensitivity (HPS), as described previously.

[19] The phasing algorithm succeeded in phasing all haplotypes and diplotypes with no 

ambiguity. Association tests were conducted by logistic (for binary case-status variables) or 

linear (for quantitative variables) regression, to test the null hypothesis that outcome 

measures were equal between genotype groups. Regression models included age as a 

covariate for variables that were associated with age in a univariate analysis.

Primary analyses were conducted to explore the relationship between COMT, ESR1, GCH1, 

and MTHFR genotype with COMT activity and case status. We first assessed the effects of 

all genotyped COMT polymorphisms and haplotypes of COMT on erythrocyte COMT 
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activity, using a codominant model. For subsequent analyses of COMT genetic effects and 

epistasis, we used the SNP rs4680 (val158met), which results in high activity (valine) and 

low activity (methionine) variants of COMT. To follow the usual convention regarding 

variant effect direction, statistical analyses on this SNP considered the val allele as the 

referent and the met allele as the variant, although in this sample the met allele was actually 

more frequent. We also analyzed SNPs in three COMT pathway genes, MTHFR, ESR1, and 

GCH1, using univariate tests of association. For these SNPs, we screened codominant 

genetic models and compared our results with previous reports in the literature showing 

evidence for alternate models of inheritance. We then constructed 2-way interaction models 

between rs4680 and SNPs within MTHFR, ESR1, and GCH1 to identify SNPs in these genes 

that modulate the effects of val158met on COMT activity and TMD risk, and selected the 

SNP in each gene with the strongest evidence for interaction. For clarity of presentation, we 

modeled interaction effects by testing genotype differences in pathway gene SNPs within 

carriers of either val (for ESR1) or met (for GCH1).

Secondary analyses were also conducted to explore the relationship between COMT 

pathway genotypes and intermediate phenotypes relevant to TMD. We tested the effects of 

SNPs in COMT, ESR1, GCH1, and MTHFR on intermediate variables of pain sensitivity and 

psychological distress. Finally, exploratory analyses were conducted to test for epistatic 

effects of val158met and selected SNPs in ESR1 and GCH1 on COMT activity and TMD 

risk. We constructed a 3-way interaction model that contained three main effect terms for 

val158met, rs3020377 (dominant), and GCH1 (recessive); three 2-way interaction terms for 

each pairwise combination of the three loci; and one 3-way interaction term.

For analyses of genetic association, we set the threshold for significance at an uncorrected p-

value of p<0.05. Although this does not account for the number of tests performed, the 

purpose of the study was to characterize the interactive effects of multiple genes on an array 

of nociceptive and affective phenotypes in order to detect consistent patterns among 

genotype groups. The analyses were designed to reproduce previous significant findings and 

extend them by investigating more complex epistatic interactions in a broad set of outcome 

measures. However, given the increased risk of false positives, novel results should be 

considered exploratory until confirmed in independent cohorts.

Results

Primary analyses were focused on exploring the relationship between COMT, ESR1, GCH1, 

and MTHFR genotype with COMT activity and case status. Secondary analyses were 

focused on exploring the relationship between these COMT pathway genotypes and 

intermediate phenotypes (e.g., pain and mood) relevant to TMD.

Effect of COMT genotype on COMT activity

COMT activity level was strongly associated (p<0.001) with almost all of the COMT SNPs, 

including rs4680 val158met, (Supplementary Table 1) as shown previously 

[7,41,46,53,56,59,69]. Each additional copy of the met allele resulted in a 0.31 pmol/min/mg 

protein decrease in measured COMT activity (Fig. 1A). Haplotype analysis likewise showed 

that the subjects homozygous for the APS haplotype (which contains met at rs4680) had the 
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lowest COMT activity, while subjects with two copies of LPS or HPS (which contain val at 

rs4680) had the highest activity (Supplementary Fig. 1).

The independent effects of the individual SNPs are confounded by linkage disequilibrium 

with val158met, the SNP with the largest effect on COMT activity (Fig. 1B), so each SNP 

was tested in a regression model that included terms for a main effect of rs4680 and an 

interaction between rs4680 and the respective SNP. After adjustment for val158met, most of 

the SNPs failed to show an independent effect on COMT (Fig. 1C and Supplementary Table 

1), although the direction of effect of several SNPs that appeared to increase COMT activity 

showed a smaller effect in the opposite direction. For the representative SNP rs737865, the 

presence of one or two copies of the minor G allele decreased COMT activity across all 

genotypes of val158met (Fig. 1D), with an overall effect of −0.07 pmol/min/mg protein per 

copy of the G allele (p < 0.001). No COMT SNPs showed a significant interaction with 

val158met.

Effect of val158met on pain phenotypes

In addition to COMT activity, we tested association between rs4680 and the primary 

outcome measure of TMD case status (Supplementary Table 2). The SNP was associated 

with TMD after adjustment for age, with the val allele being protective (OR = 0.72, p = 

0.032). We also examined the effects of this SNP on a battery of QST and psychosocial 

profile measures, as a secondary descriptive analysis. Of these intermediate variables, only 

tests of sensitivity to mechanical pressure were significantly associated, including pressure 

point thresholds taken at temporalis (age-adjusted beta = −0.13, p = 0.027), masseter (age-

adjusted beta = −0.14, p = 0.026), TMJ (beta = −0.13, p = 0.037) and lateral epicondyle 

(beta = −0.24, p = 0.007) sites.

Effect of ESR1, GCH1, and MTHFR genotype on COMT activity

Three genes contained in the genotyping panel in addition to COMT were selected for 

analysis due to their known involvement in COMT regulation and pain: ESR1, GCH1, and 

MTHFR. We examined 43 SNPs from these genes for genotype effects on COMT enzymatic 

activity (Supplementary Table 3). Three SNPs from the ESR1 gene were associated with 

COMT activity, including rs3020377 (beta = −0.05, p = 0.04), rs726281 (beta = −0.06, p = 

0.02) and rs3020407 (beta = −0.06, p = 0.02) (Fig. 2). These SNPs are correlated due to 

moderate LD between them (Supplementary Fig. 2), and likely represent a single effect.

2-way interactions on COMT activity: COMT × ESR1/GCH1/MTHFR

The val158met polymorphism exerts the greatest regulatory effect on COMT enzymatic 

activity, but the magnitude of this effect may be modified by other genes in convergent 

pathways. In order to identify variants that modulate the effect of val158met on COMT 

activity, 2-way interaction models were constructed between this SNP and the SNPs in the 

selected COMT pathway genes (Supplementary Table 3). In MTHFR, two SNPs showed 

interaction (p<0.01): rs2274976, an arg594gln non-synonymous change, and rs2066470, a 

pro39pro synonymous variant. There was no significant interaction with rs1801133 

(p=0.48), which has been previously shown to interact with val158met to influence 

schizophrenia risk [45]. Two SNPs in ESR1 exceeded the p<0.05 threshold for the 
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interaction, including rs6912184 (p=0.049) and rs1884052 (p=0.035). The SNPs associated 

with COMT activity in the previous main effect analysis did not show interaction with 

val158met. However, further analysis of the SNP rs3020377 using a dominant model showed 

that carriers of the minor G allele had significantly lower levels of COMT activity in val 

carriers (p=0.0021), but no difference in met carriers. In GCH1, rs10483639 was the most 

strongly associated (p=0.003) in a locus of three neighboring SNPs (including rs752688, 

rs4411417, rs8007201) in the same haploblock (Supplementary Fig. 1b).

We selected one SNP from each of the three genes to carry forward to analysis of pain and 

pain-related intermediate phenotypes. In this selection step, in deciding between SNPs 

showing strong association test p-values, we prioritized SNPs with existing evidence for 

biological relevance to COMT activity and nociceptive pathways. For MTHFR, none of the 

associated SNPs were previously shown to interact with COMT; rs2066470 was chosen 

because it was the SNP with the highest MAF among those with strong interaction test p-

values, in order to maximize power to see effects in subjects carrying the minor allele. The 

ESR1 SNP rs3020377 was selected due to a strong effect on COMT activity in the high-

activity val group alone, as well as a previous report that this SNP interacts with val158met 

to influence endocrine-dependent mood disorders [33]. For GCH1, rs10483639 was selected 

as it showed a strong interaction with val158met, and because it is a marker of a risk 

haplotype identified previously [43]. This haplotype was reported to have a recessive 

inheritance, so for consistency with these findings we used this model for subsequent 

association tests with rs10483639.

Effect of ESR1 genotype on COMT activity and pain phenotypes among COMT (val) 
carriers

The significant difference between ESR1 rs3020377 genotypes within val carriers suggests 

that variation in the estrogen receptor gene modulates COMT enzymatic activity in subjects 

with a genetic predisposition toward high activity due to the rs4680 val allele, but does not 

affect COMT activity in subjects with overall low activity (Fig. 3A). We investigated this 

interaction model in the panel of pain-related phenotypes. We observed similar interactions, 

with effects in carriers of the val allele, in several clinical measures of pain. Relative to val 

carriers with no copies of the rs3020377 minor G allele, subjects with 1 or 2 copies of the G 

allele reported higher scores on the SF12 physical functioning subscale (p = 0.017, Fig. 3B), 

as well as higher pain intensity (p = 0.018, Fig. 3C) and a trend toward higher pain 

unpleasantness ratings (p = 0.07, Fig 3D) using the Gracely Scale. The number of body sites 

with pain upon palpation was also higher in val carriers with 1 or 2 copies of the G allele, 

although this trend was nonsignificant (p=0.08, Fig. 3E).

Effect of GCH1 genotype on COMT activity and pain phenotypes among COMT (met) 
carriers

In contrast with the ESR1 modulatory effect observed in val carriers, modulatory effects of 

the GCH1 SNP were observed within carriers of the rs4680 met allele. Subjects with 0 or 1 

copy of the minor C allele of rs10483639 had significantly lower levels of COMT activity (p 

= 0.0030) than homozygous carriers of the C allele (Fig. 4A). These subjects also had a 

reduced threshold for algometer pressure pain across all tested sites, although only the 
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association with the temporalis site was significant (p = 0.031, Fig. 4B). However, subjects 

that were homozygous for C were more likely to score negatively on measures of mood and 

affect, including the depression (p = 0.025, Fig. 4C) and hostility (p = 0.017, Fig. 4D) 

subscales of the SCL90, the elated-depressed (p = 0.016, Fig. 4E) and energetic (p = 0.025, 

Fig. 4F) axes of the POMS, and the distress domain on the PSS (p = 0.038, Fig. 4G). These 

subjects also reported a decreased ability to function in daily life due to emotional problems 

on the SF12 (p = 0.049, Fig. 4H).

Effect of MTHFR genotype on COMT activity and pain phenotypes among COMT (val/met) 
carriers

Interaction tests were also performed between the MTHFR SNP rs2066470 and val158met as 

with the ESR1 and GCH1 SNPs, with strong effects observed in met carriers between 

rs2066470 genotypes on multiple clinical, affective, and molecular phenotypes. However, 

despite selecting this SNP due to its relatively greater MAF within the gene locus, there 

were still not enough subjects to make statistical comparisons between genotype groups 

(data not shown).

Three gene interaction on COMT activity and TMD risk

Finally, we constructed 3-way genetic interaction models to evaluate the main effects and 

interactions of COMT val158met, ESR1 rs3020377 (using a dominant model), and GCH1 

rs10483639 (recessive) on COMT enzymatic activity and TMD risk. We did not include 

MTHFR in further tests of epistasis due to low frequency of the minor allele of the selected 

SNP. Significant effects were observed on COMT activity (Fig. 5A) for the main effects of 

the COMT (p < 0.001) and ESR1 (p=0.013) SNPs, and the interaction term for COMT × 

GCH1 (p = 0.029); a trend for an association for COMT × ESR1 approached significance (p 

= 0.058). The 3-way interaction term was not significant (p = 0.75). For the TMD variable 

(Fig. 5B), a pattern was observed of coinciding higher COMT activity and lower TMD risk 

due to variation in GCH1, in the met carriers only. In val carriers, there was an apparent 

relationship between ESR1 and GCH1 on COMT activity, such that the GCH1 major allele 

increased COMT activity in ESR1 major allele homozygotes only, although the GCH1 

minor allele coincided with decreased TMD frequency in both ESR1 groups. However, none 

of the main effect or interaction terms were significantly associated with TMD, so these 

preliminary findings require further investigation in larger cohorts to confirm.

Discussion

COMT plays a critical role in the development and maintenance of pain. Understanding how 

variability at the genetic level maps onto variability at the functional level of this enzyme, 

will provide insight into the molecular mechanisms that drive maladaptive pain conditions, 

such as TMD. Here, we identify SNPs in COMT and ESR1 that are independently associated 

with COMT enzymatic activity. Consistent with our hypothesis, we also identify interactions 

between SNPs in COMT and those in functionally-related genes that influence COMT 

enzymatic activity and pain.
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Polymorphisms in COMT and ESR1 Genes are Independently Associated with COMT 
Enzymatic Activity

Our results demonstrate that the major source of individual variation in COMT activity is 

driven by the val158met allele. The number of met alleles was dose-dependently associated 

with COMT activity, such that individuals with one allele exhibited a 27% reduction and 

those with two alleles exhibited a 55% reduction. These results are consistent with those 

from other studies, demonstrating that the met allele codes for a more thermolabile COMT 

enzyme [7,41,46,53,56,59,69].

Of the remaining 8 COMT SNPs genotyped, only the rs737865 A/G allele independently 

accounted for additional variation in COMT activity. After adjusting for the effects of val/

met, a modest association between rs737865 and COMT activity was revealed, such that 

individuals with two copies of the G allele exhibited a 18.4% reduction. The rs737865 SNP 

is positioned in intron 1 of MB-COMT and, while direct evidence for potential functional 

effects of rs737865 is lacking, the G allele has been associated with decreased COMT 

expression in human brain [9]. Additionally, a clinical study of pain following motor vehicle 

collision demonstrated that a haplotype containing the rs737865 G allele was predictive of 

higher pain interference.

Common COMT haplotypes were also tested for association with COMT activity. While 

previous studies by our group showed that cells expressing the ACCG COMT haplotype 

(constructed from rs6269, rs4633, rs4618, and rs4680) exhibited an 80% reduction in 

COMT activity, here we found no link between COMT haplotype and circulating COMT 

activity. This discrepancy between in vitro and in vivo effects of ACCG haplotype on 

COMT activity is likely due to methodological differences in the two studies. The initial in 

vitro studies established a clear link between ACCG and COMT activity in isolated cell 

lines overexpressing the construct [46]. However, subsequent in vitro studies found that the 

extent by which the ACCG haplotype down-regulated COMT expression was cell line-

dependent [63]. COMT activity as determined in the present in vivo study reflects 

cumulative regulation by a chorus of genetic variants expressed in red blood cells.

Finally, we evaluated SNPs in genes whose products regulate the expression or activity of 

COMT. Of the 43 SNPs in MTHFR, ESR1, and GCH1, we identified 3 SNPs in intron 4 of 

ESR1 that were associated with COMT enzymatic activity. These included the rs3020377 

A/G allele, the rs726281 A/G allele, and the rs3020407 A/G allele. Individuals with one or 

two copies of the rs3020377 minor G allele exhibited an 8% reduction in COMT activity. 

Individuals with the rs726281 or rs3020407 minor G allele exhibited a dose-dependent 

decrease in COMT activity, such that those with one copy had an 8% reduction and those 

with two copies had a 12% reduction. As all three ESR1 SNPs are in close proximity and 

moderate LD, their effects are unlikely to be independent. ESR1 can bind to estrogen 

response elements (EREs) in the promoter region of COMT to downregulate its transcription 

[35,70]. Thus, we speculate that rs3020377 G, rs726281 G, rs3020407 G, or another SNP in 

high linkage with those tested codes for increased levels of ESR1, resulting in the 

subsequent downregulation of COMT.
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Polymorphisms in Genes of the COMT Pathway Interact to Influence COMT Enzymatic 
Activity, Musculoskeletal Pain, and Mood

While several distinct alleles in COMT and ESR1 were independently associated with 

COMT activity, the interaction analyses were focused on val158met because it accounted for 

the greatest degree of individual variation. Our results demonstrate that the net size and 

direction of val/met effects are modified by epistatic interactions with SNPs in convergent 

molecular pathways. We identified a significant interaction between the COMT val158met 

allele and the ESR1 rs3020377 A/G allele. Among individuals with the COMT val allele, 

those with two copies of the ESR1 minor G allele exhibited reduced COMT activity, 

increased bodily pain, and poorer self-reported health. While this is the first study to 

demonstrate an interaction between COMT val and ESR1 rs3020377 with respect to COMT 

activity and pain, our findings are in line with a previous report showing that rs3020377 

interacts with val/val (but not val/met or met/met) to influence risk of premenstrual 

dysphoric disorder [33].

We also identified a significant interaction between the COMT val158met allele and the 

rs10483639 G/C allele, located in the 3’UTR of GCH1. GCH1 is the rate limiting enzyme 

for the synthesis of tetrahydrobiopterin (BH4), which is a cofactor necessary for the 

synthesis of catecholamines and nitric oxide- molecules critical for pain [14,22,52,54]. 

Among individuals with the COMT met allele, those with two copies of the GCH1 minor C 

allele exhibited normalized COMT activity and increased mechanical pain thresholds. The 

pain-protective effects of the C allele are in line with previous findings that a haplotype 

containing rs10483639 C is associated with reduced pain following back surgery and 

reduced analgesic requirements following oral surgery [38,40,61]. The GCH1 haplotype 

produces functional biologic effects, coding for reduced GCH1 gene expression and reduced 

BH4 bioavailability [2]. Reduced BH4, in turn, reduces levels of catecholamines and NO to 

alleviate pain.

In agreement with previous studies [45], we identified a statistical 2-way interaction 

between MTHFR SNPs and val158met on COMT activity. However, there were too few 

subjects carrying the rs2274976 or rs2066470 minor alleles to characterize their effects 

stratified by rs4680 genotype. Although the present cohort was underpowered to investigate 

the interaction on TMD risk and other intermediate phenotypes, it would be valuable to 

explore this finding in a larger study.

Finally, we developed a three gene model that takes into account the sum of COMT 

val158met, GCH1 rs10483639 G/C, and ESR1 rs3020377 A/G allelic effects on COMT 

activity and TMD risk. This model illustrates 1) the protective role of GCH1 rs10483639 C 

on COMT activity and TMD risk among met carriers, 2) the deleterious role of ESR1 

rs3020377 G on COMT activity and TMD risk among val carriers with only 0 or 1 copy of 

the GCH1 rs10483639 C allele, and 3) the correlation between COMT activity patterns and 

TMD risk, such that individuals with lower COMT activity are at greater risk for TMD.

It is important to note that the influence of COMT, GCH1, and ESR1 polymorphisms on 

COMT enzymatic activity is likely modified by environmental events that produce physical 

and emotional stress, inflammation, and/or injury [27,30,51]. An example of gene-
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environment interaction was illustrated by Slade and colleagues, who found that among 

individuals with ATCA or ACCG COMT haplotypes, TMD incidence was 23% for those 

with a history of orthodontic treatment and 0% for those with no history of orthodontic 

treatment [58]. In addition, the influence of genetic polymorphism on COMT activity is 

likely modified by sex. It is well-established that males and females differ with respect to 

COMT activity levels, with males exhibiting higher levels in brain [13] and peripheral 

tissues [7], as well as COMT-dependent nociception [5] and behavioral traits [31]. Further, a 

growing number of studies demonstrate sex-dependent differences in the role of ESR1 SNPs 

[6,25,37] and COMT val/met [4,20,36,48] in disease susceptibility. As the present study 

enrolled only females, we were unable to explore interactions between sex, genotype, and 

COMT activity. Thus, future studies should also account for the effects of sex and 

nongenetic factors on COMT activity and related phenotypes.

Conclusion

In conclusion, polymorphisms located in distinct gene loci can act alone or in concert to 

influence the expression and activity of corresponding pain-relevant molecules such as 

COMT. The COMT val158met allele accounts for the greatest amount of individual variation 

in COMT activity, yet its effects are modified by SNPs in functionally-related ESR1 and 

GCH1 genes. Among individuals with the COMT val allele, those with two copies of the 

ESR1 rs3020377 minor G allele exhibit reduced COMT activity, increased bodily pain, and 

poorer self-reported health. Among individuals with the COMT met allele, those with two 

copies of the GCH1 rs10483639 minor C allele exhibit normalized COMT activity and 

increased mechanical pain thresholds. Thus, the ESR1 minor G allele is deleterious among 

val carriers, while the GCH1 minor C allele confers a protective advantage among met 

carriers. This finding is further confirmed in the three gene model, which also illustrates the 

parallels between low COMT activity and increased TMD risk. Ultimately, measuring 

functional levels of COMT will provide information representing the sum of molecular 

regulatory events affected by genetic polymorphisms as well as environmental events.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. COMT genotype effects COMT activity
A. COMT val158met genotype effects COMT activity, such that individuals with 1 or 2 

copies of the met allele exhibit reduced activity. Data represent mean ± s.e.m. ***p < 

0.0001. B. Linkage disequilibrium plot of the genotyped SNPs in the COMT gene locus. The 

gene diagram indicates the location of each SNP with respect to exons (boxes) and introns of 

the gene. The color of each box in the LD plot depicts the strength of LD between aligned 

SNPs according to D’ (darker red indicates stronger LD), and the number in the box is the 

corresponding r2 value. C. COMT activity levels of each genotype are shown for all COMT 
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SNPs tested. Symbols and lines are colored green if the respective minor allele is associated 

with increased COMT activity, and red with decreased COMT activity; the rs4680 val158met 

is shown in black. In the top panel genotype effects of each SNP are unadjusted; in the 

bottom panel each SNP effect is adjusted for val158met genotype. D. COMT activity level of 

each genotype of rs737865, stratified by val158met genotype, shows that the minor G allele 

of this SNP is associated with decreased COMT activity after the confounding effect of 

val158met is removed.
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Fig. 2. ESR1 SNP effects on COMT activity
All three ESR1 SNPs showed significant (p<0.05) association with COMT activity using a 

codominant model, although the dominant model provides a better fit for the data for 

rs3020377. Data represent mean ± s.e.m.
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Fig. 3. COMT × ESR1 effects on COMT activity and pain phenotypes
For genotypes of the ESR1 SNP rs3020377, all carriers of the minor G allele were combined 

(dominant test) and stratified by carriers of COMT alleles val and met. Significance level 

shown is that of the test of the G allele carriers against the reference of the major allele 

homozygote group, within val carriers only. Among val carriers, the ESR1 rs3020377 SNP 

produced effects on A. COMT enzymatic activity, B. physical functioning subscale of the 

SF12 questionnaire, C. pain intensity rating using the Gracely scale of the SPSR, D. pain 

unpleasantness rating using the Gracely Pain Scale of the SPSR, and E. count of the number 

of bodily sites painful upon palpation by clinical examiner. For each phenotype, rs3020377 

modulates the effect of the val allele, but not the met allele, of COMT. The G allele of 

rs3020377 decreased COMT activity and physical functioning, and increased nociceptive 

phenotypes of pain intensity, unpleasantness, and distribution across body sites. Data are 

quantitative trait means ± s.e.m. † p < 0.1 * p< 0.05 ** p<0.01.
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Fig. 4. COMT × GCH1 effects on COMT activity and pain phenotypes
The GCH1 SNP rs10483639 showed a recessive mode of inheritance, and was stratified by 

carriers of the COMT alleles val and met. Significance level shown is that of the test of the C 

allele homozygotes against the reference of the major allele carriers, within met carriers 

only. Among met carriers, the GCH1 rs10483639 SNP produced effects on A. COMT 

enzymatic activity, B. algometer pressure at which pain is detected, measured at the 

temporalis muscle, C. depression subscale of the SCL90 questionnaire, D. hostility subscale 

of the SCL90, E. elated-depressed axis of the POMS, F. energetic-tired axis of the POMS. 

G. distress subscale of the PSS, and H. dysfunction in daily activities due to emotional 

factors, measured by the SF12 questionnaire. Carrying two copies of the rs10483639 C 

allele raised COMT activity in met carriers to the level of val carriers, but had no effect in 

the high-activity val carriers. The C allele was associated with higher algometer threshold in 

both val and met carriers, but was associated with more negative psychological 

characteristics in met carriers only. Data are quantitative trait means ± s.e.m. * p< 0.05.
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Fig. 5. Three-way interaction between COMT, ESR1, and GCH1 SNPs on COMT activity and 
TMD risk
A. COMT enzyme activity (means ± s.e.m.) and B. TMD frequency is plotted for each 

genotype. The GCH1 rs10483639 C allele increases COMT activity and reduces TMD risk 

among met carriers, while the ESR1 rs3020377 G allele decreases COMT activity and 

increases TMD risk among val carriers with only 0 or 1 copy of the GCH1 rs10483639 C 

allele.
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Table 1

COMT pathway SNP effects on S-COMT enzymatic activity

Val Met

Beta (S.E.M.) P Beta (S.E.M.) P

rs2066470 (MTHFR) −0.020 (0.03) 0.56 0.080 (0.03) 0.010

rs3020377 dom (ESR1) 0.048 (0.02) 0.0021 0.002 (0.01) 0.87

rs10483639 rec (GCH1) 0.026 (0.03) 0.39 −0.10 (0.03) 0.0030

Selected SNPs showed differential effects on S-COMT activity, based on val158met carrier status. The MTHFR (rs2066470) and GCH1 
(rs10483639) SNPs were associated with S-COMT activity only in the low activity met carriers; the ESR1 (rs3020377) SNP was associated only in 
the high activity val carriers. Data represent the beta coefficient and s.e.m. of the SNP genotype term of a univariate regression model of S-COMT 
activity.
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