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Abstract: A minimal model of protein–protein binding affinity that takes into account only two
structural features of the complex, the size of its interface, and the amplitude of the conformation

change between the free and bound subunits, is tested on the 144 complexes of a structure-

affinity benchmark. It yields Kd values that are within two orders of magnitude of the experiment
for 67% of the complexes, within three orders for 88%, and fails on 12%, which display either large

conformation changes, or a very high or a low affinity. The minimal model lacks the specificity and

accuracy needed to make useful affinity predictions, but it should help in assessing the added
value of parameters used by more elaborate models, and set a baseline for evaluating their

performances.
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Introduction

Relating the binding affinity of two proteins to the

structure of their complex has been an active field of

research for many years.1–3 Current models of the

structure/affinity relationship may take into account

the physical chemical properties of the interface

between subunits, and attempt to reproduce the

energetics of their interaction, a very difficult task

when conformation changes accompany binding.

Alternatively, they may rely on empirical score func-

tions developed for protein–protein docking, or

derived by machine-learning procedures from sets of

data collected from the literature. Such models can

also incorporate biological information on the conser-

vation of the protein sequence or the effect of point

mutations. They have many variable parameters,

and their assessment has been done in different

ways on different test sets, making a comparison dif-

ficult.4–9 Moreover, the datasets used for training

and testing the models have often been small and of

poor quality, prompting Kastritis et al.10 to assemble

a validated Structure-Affinity Benchmark (SAB)

designed for this purpose.

Here, we present a model with only two fea-

tures: the size of the interface between subunits and

the amplitude of the conformation change between

the free proteins and the complex. When applied to

SAB, it yields acceptable affinity predictions for 126

of the 144 complexes in the SAB. The model fails on

eight complexes that display large conformation

changes, four enzyme-inhibitor complexes with pico-

molar affinity, and six other complexes that are

much less affine than predicted. It also fails to

explain how the specific interactions represented in
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the SAB can compete with the many contacts of no

biological relevance that result from random colli-

sions in the cell. Conversely, it correctly models the

affinity of antigen-antibody complexes and of

enzyme complexes with protein substrates or regula-

tory chains, and it reproduces the effect on affinity

of small and medium amplitude conformation

changes. Thus, the two-feature model sets a baseline

to assess the value of other parameters in prediction

schemes that can take into account the detailed

atomic nature of the interactions and the conforma-

tion changes, the physical chemistry of protein–pro-

tein interfaces, their conservation in evolution, and

the effect on affinity of pH and other environmental

factors.

The Model

The SAB, designed to develop and test structure-

based models of protein–protein binding affinities,10

associates equilibrium constants (Kd) measured in

solution, and the derived Gibbs free energies of dis-

sociation (DGd), to entries of the Protein Data Bank

that describe 144 protein–protein complexes and

their free components. The SAB also reports the con-

ditions under which Kd has been determined, and it

quotes two geometric quantities computed on the

atomic coordinates: DASA, the area of the protein

surface buried at the interface of the complex;

iRMSD, the root-mean-square displacement of the

Ca atoms of interface residues between the bound

and unbound structures. DASA measures the size of

the protein surfaces in contact, iRMSD, the ampli-

tude of the conformation change accompanying the

interaction.

A larger DASA implies that more protein atoms

become desolvated in the complex, and more nonco-

valent interactions are made across the interface.

This is expected to improve affinity, whereas, a

larger iRMSD implies more costly conformation

changes, and lesser affinity. This is confirmed in the

SAB: DGd exhibits a weak negative correlation with

iRMSD (R 5 20.26), and a positive correlation

(R 5 0.59) with DASA in complexes displaying small

changes, but these correlations vanish in complexes

that display large changes.10 The free energy cost of

conformation changes depends on details of both the

bound and the unbound atomic structures, yet small

changes may be amenable to a harmonic approxima-

tion similar to the one used in Gaussian networks.

Thus, one may write:

DGcalc5a1bDASA 1c iRMSDð Þ2

for iRMSD � dmax

(1)

The 144 entries of the SAB comprise 135 cog-

nate and nine noncognate complexes. We distribute

the cognate complexes into three categories depend-

ing on the amplitude of the conformation change: 75

small (iRMSD< 1.1 Å), 27 medium (1.1–1.5 Å), and

33 large (iRMSD>1.5 Å). The docking benchmark

from which the SAB was derived classifies its

entries in a similar way according to iRMSD: easy

(rigid body), medium difficulty, or difficult to dock.11

The values of a, b, and c cited in the legend of Fig-

ure 1 are issued from a least-square fit of data on

complexes of the small change category after remov-

ing six outliers discussed below. The values of DGcalc

obtained with those parameters are listed in Sup-

porting Information Table S1.

Table I reports statistics on the experimental

values of DGd and their fit by Eq. (1). Relative to the

standard deviation of DGd, the RMS discrepancy

DDGrms indicates that the two features of the model

account for about half of the variance of the 69 data

used to derive the coefficients. DGd and DGcalc are

significantly correlated (R 5 0.63 excluding outliers,

which yields a P-value below 1026), and the absolute

discrepancy |DDG| is less than 4.2 kcal mol21,

meaning that Kd is predicted to within a factor of

103, in which case we consider that Eq. (1) makes an

acceptable affinity prediction. These 69 complexes

yield points in between the dotted lines of Figure 1.

With the same coefficients, Eq. (1) also makes

acceptable affinity predictions for 23 of the 27 com-

plexes of the medium change category, but the corre-

lation is poor (R 5 0.38). Above iRMSD 5 1.5 Å, the

harmonic approximation breaks down, and DASA,

which is measured only on the complex, no longer

Figure 1. Comparing calculated and experimental binding

energies. DGd from the SAB10 is plotted against DGcalc,

derived from Eq. (1) with parameters: a 5 6.1 kcal mol21,

b 5 3.8 cal mol Å22, c 5 21.7 kcal mol Å22, dmax 5 1.5 Å.

The dashed lines parallel to the diagonal correspond to

DGcalc 5 DGd 6 4.2 kcal mol21. Labels: (o) small conformation

changes (iRMSD<1.1 Å); (D) medium changes (1.1–1.5 Å); (x)

large changes (>1.5 Å); (1) noncognate complexes.
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represents the area of the protein surface buried

upon association.12 As a result, Eq. (1) underesti-

mates DGd for most of the 33 complexes of the large

change category. Nevertheless, it returns acceptable

predictions for 25 of them if dmax is set to 1.5 Å,

which effectively limits to 3.8 kcal mol21 the cost of

the conformation change. That cost is negligible

(less than 0.1 kcal mol21) when iRMSD is below

0.25 Å, which represents errors of atomic coordi-

nates rather than an actual change.

Functional Classes, Outliers, and Noncognate

Complexes

Table I also reports statistics on the SAB complexes

distributed according to function. Class A comprises

17 antigen-antibody complexes. Equation (1) makes

acceptable affinity predictions for all, but the mean

DGd value is a better predictor, as the standard devi-

ation is less than DDGrms. Moreover, Eq. (1) underes-

timates DGd by an average of about 1 kcal mol21 in

class A, and changing the a parameter by that

amount makes the prediction more accurate.

Equation (1) also tends to underestimate DGd in

class EI (enzyme inhibitor), but then, DDG exceeds

4.2 kcal mol21 for eight complexes, which yield the

eight points above the dashed line in the top left

quadrant of Figure 1. Two of those outliers involve a

metal bond (1JIW, 4CPA). In four other, which dis-

play a very high (subpicomolar) affinity (1EMV,

1BRS, 1UUG, 2O3B), the inhibitor takes the place of

a DNA or RNA substrate, and it forms with the

enzyme strong electrostatic interactions more com-

mon in protein–nucleic acid than protein–protein

complexes. Another very high affinity outlier is the

trypsin-pancreatic inhibitor complex (2PTC), where

the charge carried by Lys15 of the inhibitor accounts

for a large fraction of the binding energy; in that

case, DGcalc is close to the value observed with the

Met15 mutant.13 Equation (1) also makes acceptable

predictions for the less affine noncognate counter-

parts (2WPT, 1AY7, 1CBW) of those outliers.

Class EX comprises 20 complexes of enzymes with

protein substrates or regulatory chains, which are much

less affine than inhibitors. Equation (1) makes accepta-

ble predictions for all but one that displays a large con-

formation change (1JMO). But here again, the standard

deviation of DGd is less than DDGrms, and thus, the

mean value in the class is a better predictor.

Class O is very diverse. Many of its 62 com-

plexes undergo large conformation changes, often

related to allosteric effects, and their affinity is com-

paratively low. Equation (1) makes acceptable affin-

ity predictions for 53, and overestimates the affinity

of the other 9, which yield the 9 points in the lower

right quadrant of Figure 1. Four display large con-

formation changes that may cost much more than

the 3.8 kcal mol21 maximum set in Eq. (1). The low

affinity of the others is not predicted by the model.

Equation (1) makes acceptable affinity predic-

tions for all the nine noncognate complexes of the

SAB. In two cases (2AQ3 and 2PCB), it correctly

predicts the loss in DGd relative to the cognate com-

plex, but the predicted loss is 3–7 kcal mol21 less

than reported in Table 2 of Kastritis et al.10 for the

other seven cognate/noncognate pairs.

Discussion

Modeling affinity
The minimal model represented by Eq. (1) takes into

account the size of the interface between the subu-

nits and the effect of conformation changes on affin-

ity, but it ignores altogether the chemical nature of

the protein surfaces and the physics of their

Table I. Fitting Experimental DGd Values

Category of complex

DGd

(kcal mol21) DGcalc fit to DGd

Number Mean s.d. Outliers
DDGrms

(kcal mol21)
Correl.
coeff. R

Conformation change (iRMSD)
Small (<1.1 Å) 75 11.4 3.1 6 2.6 0.55

Excluding outliers 69 11.3 2.9 – 2.1 0.63
Medium (1.1–1.5 Å) 27 10.6 2.8 4 3.5 0.38
Large (>1.5 Å) 33 10.7 2.6 8 3.6 0.16

Functional
A: Antigen–Antibody 17 12.4 1.7 0 1.9
EI: Enzyme-inhibitor 36 13.8 2.3 8 2.3*
EX: Other enzyme complexes 20 9.2 1.9 1 2.2*
O: Other complexes 62 9.7 2.4 9 2.0*
NC: Noncognate 9 8.8 2.4 0 2.4

All 144 10.9 2.9 18 3.0 0.32

DGd is from the SAB10, DGcalc, from Eq. (1) with the parameters cited in the legend of Figure 1; DDG is their difference;
s.d.: standard deviation of DGd; DDGrms: root-mean-square value of DDG. |DDG|>4.2 kcal mol21 defines outliers; (*)
excluding outliers.
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interactions, which a more elaborate model can rep-

resent in a variety of ways with additional parame-

ters. As a test, we broke DASA into a nonpolar

(carbon containing) and a polar (N/O-containing) com-

ponent. This adds only one parameter, but brings no

significant improvement to the fit, probably because

the two components are tightly correlated to DASA.

As the model stands, the overall quality of its predic-

tions shown in Table I is comparable to that of sev-

eral prediction schemes that have many more

adjustable parameters.4–9 It fails in three cases: (a)

large conformation changes; (b) enzyme-inhibitor

complexes much more affine than predicted; and (c)

“other” complexes less affine than predicted. Fitting

(a)-type outliers will require accurate estimates of the

free energy cost of conformation changes, still a major

endeavor. Electrostatic interactions, including those

that occur far from the interface,14 play a major role

in (b)-type outliers. Whereas empirical or residue-

level potentials seem unable to reproduce the very

high affinity of the enzyme-inhibitor complexes, they

should be amenable to computational methods that

rely on detailed atomic structures.15 This may also

apply to some of the (c)-type outliers, but the origin

of their low affinity is probably different in each.

Equation (1) predicts DGd to within 4.2 kcal

mol21, and Kd to within three orders of magnitude,

for 88% of the SAB complexes. In comparison, the

recent affinity prediction schemes of Moal et al.5 and

Vreven et al.6 achieve that accuracy on respectively

91 and 92%. This allows placing the complexes in

the right high/medium/low affinity class,10 but most

applications require a much better accuracy. To

reach one order of magnitude, the environment

must be modeled along with the proteins, because

Kd values measured by different methods or under

different conditions typically differ by a factor of 2–

10. The pH of most of the measurements reported in

the SAB is in the range 5.5–8.5. Changing it by two

units in that range can change Kd more than 10-

fold. Thus, modeling pH effects is essential, which in

turn implies making accurate pKa predictions for all

protein groups titrating in the range 4.5–9.5.

An accuracy of two orders of magnitude in Kd, or

|DDG| 5 2.8 kcal mol21, is a more realistic goal for

affinity prediction methods. Equation (1) reaches that

goal for 97 or 67%, of the 144 complexes in the SAB.

Moal et al.5 and Vreven et al.6 do significantly better

(about 80%), but taking the mean value of DGd in the

class remains the best choice for complexes of class A

and EX, as all but one antigen-antibody complexes,

and all but three enzyme complexes with protein sub-

strates or regulatory chains, have a Kd that differs by

factors less than 100 from the log-average of the class.

Modeling specificity
Modeling specificity can be as important as affinity.

In the SAB, specificity may be assessed on pairs of

cognate and noncognate complexes, similar in struc-

ture but different in affinity. The minimal model

does poorly, because Eq. (1) returns similar values

for the two members of a pair, and it underestimates

the affinity of the cognate member while correctly

predicting that of the noncognate. Other models

encounter the same problem in spite of having more

parameters.

An essential aspect of specificity is not repre-

sented in the SAB, and it has been ignored by most

modeling schemes. In a cell, biologically relevant

interactions compete with random pairs that form

all the time as molecules collide. The affinity of a

random pair should be modeled and found to be

much lower. In docking simulations, with only two

proteins present, the native pose typically competes

with 105 nonnative poses. Their binding energies are

distributed according to a random energy model,16

and the average value DGrandom has to be at least 7

kcal mol21 less than for the native pose to populate

the latter. In the much more diverse environment of

a cell, DGrandom should probably be negative (i.e.,

Krandom >1 M), for functional interactions with a

micromolar Kd to survive the competition. Instead,

Eq. (1) yields DGcalc values similar to the binding

energy of some of the SAB complexes if DASA is set

to 200 or 400 Å2, which random docking typically

achieves. This simple test, which the minimal model

fails to pass, ought to be applied to all affinity pre-

diction schemes.

Methods

Kd, DGd, DASA, and iRMSD values were taken from

Table S1 of Kastritis et al.10 The Kd of 1NSN, 1IQD,

and 1UUG, given as <X in Table S1, was arbitrarily

set to X/5. Other data in the text were obtained

from Table S8 of Moal et al.5 and Table S6 of Vreven

et al.6
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