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ABSTRACT

Motivation: Off-target interactions of a popular immunosuppressant

Cyclosporine A (CSA) with several proteins besides its molecular

target, cyclophilin A, are implicated in the activation of signaling path-

ways that lead to numerous side effects of this drug.

Results: Using structural human proteome and a novel algorithm for

inverse ligand binding prediction, ILbind, we determined a compre-

hensive set of 100+ putative partners of CSA. We empirically show

that predictive quality of ILbind is better compared with other available

predictors for this compound. We linked the putative target proteins,

which include many new partners of CSA, with cellular functions, ca-

nonical pathways and toxicities that are typical for patients who take

this drug. We used complementary approaches (molecular docking,

molecular dynamics, surface plasmon resonance binding analysis and

enzymatic assays) to validate and characterize three novel CSA tar-

gets: calpain 2, caspase 3 and p38 MAP kinase 14. The three targets

are involved in the apoptotic pathways, are interconnected and are

implicated in nephrotoxicity.
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1 INTRODUCTION

First identified in 1972, Cyclosporine A (CSA) was purified from

the fungus Tolypocladium inflatum (Agathos et al., 1987). This
drug is primarily used an immunosuppressant to prevent rejection
in solid organ transplants (Tedesco and Haragsim, 2012). The

mechanism of action of CSA involves binding to its therapeutic
target cyclophilin A and forming a complex with calcineurin
(Tedesco and Haragsim, 2012). Cyclophilin A is a peptidylproly-

lisomerase located in the cytoplasm that is inhibited by binding of
CSA (Takahashi et al., 1989). Peptidylprolylisomerases are
involved in the isomerization of proline peptide bonds in oligo-

peptides and allow accelerated folding of a protein. Calcineurin
is a calcium/calmodulin-dependent serine/threonine protein

phosphatase that is specifically involved in the dephosphorylation

of transcription factors involved in signaling events, including nu-

clear factor of activated T cells (NFAT). The binding of CSA to

cyclophilin and calcineurin prevents the dephosphorylation of

NFAT, thwarting transit to the nucleus. NFAT is critical for ini-

tiation of promoters that stimulate the production and activation

of T cells; consequently, the immune response is shut down

(Tedesco and Haragsim, 2012). CSA is also used to treat several

disease states, including heart failure, psoriasis and rheumatoid

arthritis. Unfortunately, use of CSA is associated with severe side

effects, including nephrotoxicity, fibrosis, hepatotoxicity and car-

diotoxicity, and theirmechanistic details remain unclear (Rezzani,

2004; Tedesco and Haragsim, 2012). CSA was shown to interact

with many proteins other than its molecular target, cyclophilin A.

These off-target interactions could be involved in the activation of

signaling pathways that lead to the undesirable symptoms, and

their knowledge could be exploited in other disease states. As a

few examples, CSA-induced nephrotoxicity involves renal tubular

dysfunction that is thought to result from a blockade of the mito-

chondria permeability transition pore component cyclophilin D

(Devalaraja-Narashimha et al., 2009). CSA also causes endoplas-

mic reticulum (ER) stress by inhibiting the ER-localized cyclophi-

lin B (Lee et al., 2012) and indirectly activates other proteins, such

as TGF-� that is involved in fibrosis (Wolf, 2006).
Motivated by the ubiquity of the protein–CSA interactions, we

used inverse ligand binding predictions (Xie et al., 2011) to com-

prehensively determine putative partners of CSA. This prediction

uses structures of a few protein–ligand (drug) complexes, in our

case, the available CSA–cyclophilin complexes, to predict other

targets of CSA on the structural human proteome scale. The

predictions were generated with the ILbind method that was re-

cently shown to accurately find distant targets (targets that have

structurally different folds compared with the proteins that are

known to interact with the given compound) for a diverse set of

430 small organic ligands (Hu et al., 2012). Similar inverse ligand

binding-based approaches that used older predictors were used

to find novel targets for other compounds, such as Comtan

(Kinnings et al., 2009), Cholesteryl Ester Transfer Protein

(CETP) inhibitors (Xie et al., 2009) and Raloxifene (Sui et al.,

2012). We empirically show that predictive performance of

ILbind is better when compared with other available predictors.

We assessed selected top-ranked putative partners of CSA in the

*To whom correspondence should be addressed.
yThe authors wish it be known that, in their opinion, the first three au-
thors should be regarded as Joint First Authors.

� The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3561

mailto:lkurgan@ece.ualberta.ca
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu581/-/DC1
.
-
,
s
-
utilized 
-
,
-
to 
over 
utilized 
, 


context of their involvement in the toxicity-related pathways, and

we focused on several targets that are potentially associated with

nephrotoxicity. We modeled their interactions with CSA using

docking and then verified their binding and changes in the cor-

responding enzymatic activity using in vitro assays.

2 METHODS

The datasets, methods related to computational modeling, experimental

analysis and evaluation protocols are described in the Supplementary

Material. Briefly, we collected structures of protein–CSA complexes

and used them to predict other protein targets of CSA in the structural

human proteome using ILbind. The top-ranked targets were analyzed

with Ingenuity platform, and their association with CSA was investigated

based on manual scanning of relevant publications. Three targets that are

involved in apoptotic pathways with links to nephrotoxicity were further

analyzed using docking and molecular dynamics (MD) simulations, and

were validated experimentally with surface plasmon resonance (SPR) and

enzymatic assays.

3 RESULTS

3.1 Empirical evaluation of predictions

Predictions generated by ILbind were empirically compared

against predictions from other relevant approaches: SMAP

(Xie and Bourne, 2008) and FINDSITE (Brylinski and

Skolnick, 2008). Native targets of CSA were collected from mul-

tiple sources, including Protein Data Bank (PDB) (Berman et al.,

2000), BindingDB (Liu et al., 2007) and DrugBank (Knox et al.,

2011). Details of the assessment are explained in the

Supplementary Materials. First, we selected the best performing

(based on the AUtpr100 value) output of SMAP and FINDSITE,

which are raw score and identity score, respectively, to assess

their predictions. Using ILbind, we identified 38% of the

native targets of CSA in the top 0.3% of its predictions. The

last column in Table 1 shows that ILbind found all native targets

in the top 65% (66% when clustering proteins at 80%) of its

predictions, compared with the top 72% (73%) and 92% (96%)

of the predictions from SMAP and FINDSITE, respectively.

Table 1 also reveals that ILbind obtains higher predictive per-

formance (based on the area under the TPR curve, AUtpr, for

10, 20 and 100% of the top scoring predictions) compared with

the other two predictors. The corresponding absolute

improvements compared with the second best method are
modest at� 1% (relative improvements are 100%� (0.44 – 0.43)/
0.43=2.3, 2.1 and 1.2% for AUtpr10, AUtpr20 and AUtpr100,

respectively) and statistically significant, except for the AUtpr100
measure.
We also performed a more detailed assessment of predictions

for the top 100 predicted targets from each method. We ex-
panded the annotation of the CSA targets collected from PDB,

BindingDB and DrugBank (direct targets) with the targets found
in articles from PUBMED (indirect targets). The indirect targets
were identified by PUBMED search using names of the drug and

a given putative target protein and assuming that the target inter-
acts with CSA if there is at least one article that links them

together using a meaningful association derived by reading the
full article; the results for ILbind are given in Supplementary
Table S1. Moreover, we included predictions performed using

molecular docking with AUTODOCK 4 (Osterberg et al.,
2002), motivated by popularity of this method (Sousa et al.,

2006). Because docking is computationally expensive, we limited
the scope to the top 100 targets predicted by ILbind, SMAP or
FINDSITE. Docking for each of these targets was repeated 40

times; we used the four representative CSA conformation col-
lected from the template targets (PDBid 3pmp_B, 2rmc_A,

1ikf_H and 2oju_A) to accommodate for flexibility of this
drug, and we run each conformation 10 times to accommodate
for the randomization related to the use of a genetic algorithm in

AUTODOCK 4. The lowest docking energy over 40 runs was
used to score predictions from docking. We used the top 100

targets with lowest energies from the docking-based results to
perform assessment and then compared these results with the
top 100 targets generated by ILbind, SMAP and FINDSITE;

each set of the top 100 targets was clustered at 80% identity,
and we assessed the results for the corresponding clusters. The
TPRs of ILbind, AUTODOCK, SMAP and FINDSITE are

0.54� 0.07, 0.45� 0.05, 0.43� 0.04 and 0.35� 0.06, respectively.
This means that 54% (32 of 59) of the clusters in the top 100

targets predicted by ILbind are known to bind CSA; this rate is
significantly higher (based on the t-test) than the TPRs of the
other four methods (P50.01).

3.2 Analysis of targets predicted with ILbind

We analyzed the putative CSA–protein interactions provided

by ILbind and investigated whether these interactions could be

Table 1. Benchmark results for ILbind, SMAP and FINDSITE for the prediction of CSA binding in the structural human proteome

Dataset Predictor AUtpr10 AUtpr20 AUtpr100 % proteome where

all targets found

Clustered at 90% similarity ILbind 0.44�0.09** 0.48� 0.07** 0.78� 0.04** 65� 9**

SMAP 0.43�0.09* 0.47� 0.08* 0.77� 0.04** 72� 9*

FINDSITE 0.40�0.10* 0.42� 0.10* 0.66� 0.07* 92� 6*

Clustered at 80% similarity ILbind 0.39�0.08** 0.43� 0.07** 0.76� 0.04** 66� 5**

SMAP 0.38�0.08* 0.41� 0.07* 0.75� 0.03** 73� 9*

FINDSITE 0.37�0.08* 0.39� 0.08* 0.66� 0.07* 96� 3*

Note. We report mean�SD and significance of differences between a given method and ILbind.

*P-value50.05; **P-value� 0.05 (see Supplementary Material for details).
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responsible for the side effects experienced by patients taking

CSA. We focused on the top 199 high-scoring targets generated

by ILbind; these targets and their annotations are available in

Supplementary Table S1. They were annotated as supported by

direct evidence of binding to CSA (based on PDB, BindingDB

and DrugBank) or indirect evidence (based on search in

PUBMED); otherwise they were annotated as having no prior

evidence of binding to CSA.

Supplementary Figure S5A shows the cumulative number of

putative targets in each of these three types of annotations and

their ILbind scores. The direct evidence exists for cyclophilins

and ILbind generated high scores for the corresponding top 42

cyclophilins and cyclophilin-like folds. We found 48 targets with

indirect evidence and another 109 targets that were annotated as

not being supported by evidence. The ILbind scores for these

targets were relatively high, 40.65, which was indicative of a

high likelihood of interaction. Supplementary Figure S5B,

which shows scores over the entire structural human proteome,

reveals that below the 0.65 cutoff, the ILbind scores plateau and

would be less useful to discriminate the off-targets from non-

binding targets. Overall, the results show that our top putative

targets include both confirmatory and new results.
After removing similar proteins among the 199 targets, e.g. we

had multiple targets that included cyclophilin A domain, we per-

formed IPA analysis with Ingenuity release November 1 2012 for

111 targets of the 144 unique targets; the remaining 33 targets

were not recognized by Ingenuity. The results are summarized in

Table 2. The top canonical pathways are IL-17 signaling, acute

phase response signaling and dendritic cell maturation, all critical

for immune system activation, corresponding with the CSA’s

intended purpose. The top associated molecular and cellular

function is cell death and survival with 64 of the con-

sidered 111 targets being involved. We also found a wide range

of significantly associated toxicities, including hepatotoxicity,

cardiotoxicity and nephrotoxicity, each supported by over a

dozen of our putative CSA targets that are identified in

Supplementary Table S1. Supplementary Figure S6 provides a

detailed overview of the various types of heart, liver and kidney

toxicities and their association with the putative targets that we

identified. Each of the corresponding 14 toxicity types was con-

nected with at least seven targets and is associated with targets

that were categorized as having indirect and no prior evidence. In

short, we found that our putative targets of CSA are associated

with relevant pathways and cellular function and with several

types of toxicities that are observed in patients who take

this drug.

3.3 Analysis of interactions of CSA with CAPN2, CASP3

and MAPK14

We selected three putative targets that were identified by ILbind,

calpain 2 (CAPN2), caspase 3 (CASP3) and p38 mitogen-acti-

vated protein kinase 14 (MAPK14), to further characterize and

experimentally validate their interactions with CSA. This selec-

tion was motivated by our focus on targets that participate in the

apoptotic response seen with the CSA treatment (de Arriba et al.,

2013; Eckstein et al., 2005; Sato et al., 2011) and because enzym-

atic assays to monitor their binding and activity were readily

available. Our analysis shows that CAPN2, CASP3 and

MAPK14 are involved in renal, cardiac and liver necrosis

(Supplementary Fig. S6). These targets can be also linked to

each other via the apoptotic pathway (Supplementary Fig. S7).

CAPN2 was identified to be involved in the regulation of the

apoptotic CASP3 by cleaving and reducing CASP3 activity and

potentially playing a protective role (Bizat et al., 2003). As apop-

tosis progresses, CASP3 becomes involved in degrading an en-

dogenous calpain inhibitor, calpastatin, leading to CAPN2-

dependent plasma membrane disruption and necrosis (Neumar

et al., 2003). Furthermore, direct linkage between CASP3 and

MAPK14 was found in human and rat cells (Alvarado-

Kristensson et al., 2004; McLaughlin et al., 2001). We hypothe-

sized that binding of CSA to these novel targets may trigger

apoptosis and account for the severity of some side effects of

this compound.

3.3.1 Molecular docking We performed MD simulations to

model flexibility of the drug molecule and the three target pro-

teins and docking with AUTODOCK 4 to provide putative

Table 2. Top scoring pathways, molecular and cellular functions and

toxicities generated by Ingenuity for the considered putative CSA targets

Top pathways, functions or toxicities P-values Number of

targets

Top canonical pathways

IL-17 Signaling 8.51e-10 9

Acute phase response signaling 9.31e-10 12

Dendritic cell maturation 1.48e-09 12

Top molecular and cellular functions

Cell death and survival 3.91e-14 64

Cellular function and maintenance 7.76e-14 53

Cell morphology 5.04e-11 50

Cellular movement 1.55e-10 42

Lipid metabolism 4.47e-10 45

Top toxicity functions

Hepatotoxicity

Liver necrosis/cell death 5.12e-10 15

Liver proliferation 7.24e-08 12

Liver inflammation 2.10e-06 8

Liver damage 6.43e-06 9

Liver hepatitis 2.36e-05 8

Cardiotoxicity

Cardiac necrosis/cell death 3.02e-08 13

Heart failure 2.81e-05 9

Cardiac hypertrophy 8.03e-05 13

Cardiac proliferation 1.16e-04 5

Cardiac damage 6.90e-04 4

Nephrotoxicity

Kidney failure 3.65e-08 12

Renal inflammation 3.66e-08 13

Renal nephritis 3.66e-08 13

Renal necrosis/Cell death 3.06e-06 14

Renal fibrosis 2.38e-04 4

Note. P-values are calculated using the right-tailed Fisher exact test to evaluate

whether the targets are involved in a given function, considering the number of

molecules in the Ingenuity Knowledge Base that are included in the corresponding

network. ‘Number of targets’ indicates the number of putative CSA targets that

overlap with a given function.
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molecular-level details of the protein–drug interactions (see

Supplementary Materials for details). In total, 300 docking simu-

lations (10 MD-generated conformations of CSA and 10 of each

of the 3 targets) were performed. These docking results were

ranked by their binding energies, and top 10 hits per target

were used as a starting point for an all-atom solvated MD simu-

lation to investigate stability and pose of CSA within the corres-

ponding binding pockets of each target. We repeated docking

using the molecular operating environment-induced fit algorithm

(www.chemcomp/com) to validate AUTODOCK results.

Although there are relatively minor variations in the docking

results, the overall binding poses generated by the two methods

are similar for the three targets (Supplementary Fig. S8). We

focus on confirming that CSA binds these targets rather than

on providing precise binding modes.
The binding poses of CSA for the three targets generated with

AUTODOCK that correspond to the minimal docking energy

among the 10 simulations are shown in Supplementary Figure

S9. To compare, the binding poses for the four representative

positive controls (targets in complex with CSA), which were also

computed combining MD and docking, are in Supplementary

Figure S10. In spite of a limited flexibility of the backbone of

the CSA peptide, its fairly flexible side chains allowed it to adopt

distinctive conformations (Supplementary Fig. S4) and to have

different geometries in binding sites. The topologies of the bind-

ing sites for the positive controls ranged from a flat and open

pocket where CSA circulates a hydrophobic protrusion

(Supplementary Fig. S10D) to a compact and closed pocket

where CSA is buried in a deep cleft (Supplementary Fig.

S10A). Similar binding poses are observed for the three putative

targets, where the interaction with MAPK14 (Supplementary

Fig. S9C) is characterized by the lowest docking energy. The

energies for CASP2, CAPN2 and MAPK14 are –40.5, –45.5

and –60.7kcal/mol, respectively. To compare, the docking ener-

gies of the positive controls are at –42.1 kcal/mol for FAB frag-

ment IGG1-kappa, –55.1 for Cyclophilin A, –60.4 for

Cyclophilin C and –60.9 for the cyclophilin-like protein. The

fact that the docking energies obtained for the putative targets

are similar to the energies obtained for the known targets sug-

gests that CSA may bind these putative targets.

3.3.2 SPR and enzymatic validation We performed SPR ana-

lysis for CAPN2, MAPK14 and CASP3 (Fig. 1), the positive

control, cyclophilin A, and the negative control, NF-kappa-B

(NFKB) (Supplementary Fig. S9). Our prior experience with

SPR showed that higher coupling amounts generate more non-

specific interactions for small molecules; thus, we monitored the

total coupling and limited it to52500 relative units (RU). We run

a dilution series of CSA (8000, 4000, 2000, 1000, 500, 250, 125

and 0nM) in triplicate. Clinical use of CSA is usually between

100 and 1600nM (Hauser, 1998) with this range covering most

clinical and physiological situations. Using BiaEvaluation, we

computed kinetic association and dissociation rate constants

and affinity KD (Supplementary Table S2) to describe drug–

target complex formation and stability. We used specific enzym-

atic assays to monitor the effect of CSA on the enzymatic activity

of CAPN2, MAPK14 and CASP3 (Fig. 1), further validating the

CSA interactions and presenting a possible hypothesis regarding

the effect of CSA on cellular signaling events.

The positive control (ILbind score of 0.86) shows robust bind-
ing (Supplementary Fig. S11A) and strong kinetics. Our meas-
urements, with the average KD of 30 nM, 0.253uM–1s–1

association rate and 6.6� 10–3 s–1 dissociation rate
(Supplementary Table S2), are in agreement with previous
work where KD was in the range of 7–40 nM (Kawai et al.,

1998; Wear et al., 2005) and association and dissociation rates
were 0.86 uM–1s–1 and 10� 10–3 s–1, respectively (Wear and
Walkinshaw, 2006). The negative control NFKB (ILbind score

of 0.58) has no appreciable binding (Supplementary Fig. S11B),
and thus, kinetics could not be calculated; to the best of our
knowledge, NFKB has not been identified to interact with

CSA. These results show that SPR discriminates between posi-
tive and negative targets. The 0.58 score is low, as the ILbind
scores range between 0.32 and 0.86, with majority of them50.65

(Supplementary Fig. S5B). NFKB is ranked 2312 among the
9652 considered proteins.
CAPN2 is a cytosolic member of calpain family that is activated

by intracellular calcium signaling and is involved in homeostasis
and apoptotic signaling (Smith and Schnellmann, 2012). SPR
shows a substantial increase in binding with the addition of

increasing concentrations of CSA (Fig. 1A). Using a luciferase-
based activity assay that measures enzymatic cleavage of a specific
substrate used by CAPN2, we found that CSA directly binds to

CAPN2 and affects its enzymatic cleavage activity in a significant
manner; a 40% increase in activity observed at the highest con-
centration of CSA (Fig. 1A). Calculation of activity constants and

curve fitting shows that CSA affects activity of CAPN2 in a quad-
ratic manner over a 2 log concentration of CSA (Fig. 1A).
MAPK14 is a central kinase that is involved in cellular signal-

ing and apoptosis (Wada and Penninger, 2004). Similar to
CAPN2, SPR indicates that CSA binds to MAPK14 at higher
CSA concentrations (Fig. 1B). Using a MAPK14-specific enzym-

atic activity assay that measures direct phosphorylation of a
MAPK14 substrate in the presence of different concentrations
of CSA, we show a 50% increase in the MAPK14 enzymatic

activity, which is approximated with a quadratic fit (Fig. 1B).
CASP3 is implicated in apoptosis and is one of the primary

caspases that is responsible for cellular damage (Slee et al., 1999).

We observe increasing binding of CSA to CASP3 with greater
concentrations of CSA (Fig. 1C). Using a luciferase-based en-
zymatic activity assay, we determined that CSA had a relatively

minor effect on CASP3 activity (Fig. 1C), i.e.� 10% increase in
activity with higher concentrations of CSA is found.
Interestingly, CAPN2, MAPK14 and CASP3 have similar

ILbind scores (0.67, 0.65 and 0.68, respectively; Supplementary
Table S1) and comparable SPR curves and RU values (Fig. 1).
Although the RU values are lower relative to the values observed

for cyclophilin A (Supplementary Fig. S11A), other studies that
considered similar small molecules showed comparably low RU
values to demonstrate binding (Du et al., 2006; Nordin et al.,

2005). Moreover, these lower values also reflect lower coupling
to the SPR sensor chip of these three proteins when compared
with cyclophilin A. The corresponding kinetic analysis

(Supplementary Table S2) reveals that CSA interacts with
these three targets, although not as strongly as with the cyclo-
philin A. We hypothesize that the physiological significance of

CSA binding to these off-target proteins should be relevant, as
some of the toxic side effects may be caused by these binding
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events that we show affects the enzymatic properties of these

proteins. A more detailed discussion, which links these targets

to nephrotoxicity (Peyrou et al., 2007; Ramesh and Reeves, 2005)

that is observed in patients who take CSA, is provided in Section

5 in the Supplementary Material.

4 DISCUSSION

We performed a large-scale structural human proteome-wide

study to find protein off-targets of CSA using state-of-the-art

computational method, ILbind. We empirically demonstrate

that predictions generated by ILbind offer good predictive per-

formance. We compiled a comprehensive list of 100+ putative

targets of this drug and then linked these targets with an assort-

ment of cellular functions, canonical pathways and toxicities,

which are typical for patients who take CSA. We used a com-

plementary arsenal of approaches, including ILbind, molecular

dynamics, molecular docking, SPR and enzymatic assays to iden-

tify and characterize in detail three novel targets of CSA. We

show that CSA likely binds to and may be an exogenous agonist

of CAPN2 and MAPK14, and that it also activates CASP3 but

to a lesser extent. A detailed discussion of the functional roles of

these interactions is provided in the Supplementary Materials.

Our study may also lead to new discoveries for a wide range of

toxic responses to CSA for which we found previously unknown

putative proteins targets. Moreover, our pipeline could be used

to provide insights into side effects and mechanisms of action of

other small molecule drugs that target proteins.
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