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ABSTRACT

Motivation: DNA methylation is an epigenetic change occurring in

genomic CpG sequences that contribute to the regulation of gene

transcription both in normal and malignant cells. Next-generation

sequencing has been used to characterize DNA methylation status

at the genome scale, but suffers from high sequencing cost in the

case of whole-genome bisulfite sequencing, or from reduced reso-

lution (inability to precisely define which of the CpGs are methylated)

with capture-based techniques.

Results: Here we present a computational method that computes

nucleotide-resolution methylation values from capture-based data by

incorporating fragment length profiles into a model of methylation ana-

lysis. We demonstrate that it compares favorably with nucleotide-

resolution bisulfite sequencing and has better predictive power with

respect to a reference than window-based methods, often used for

enrichment data. The described method was used to produce the

methylation data used in tandem with gene expression to produce a

novel and clinically significant gene signature in acute myeloid leuke-

mia. In addition, we introduce a complementary statistical method that

uses this nucleotide-resolution methylation data for detection of differ-

entially methylated features.
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1 INTRODUCTION

DNA methylation, the addition of a methyl group to cytosine

residues in a CpG dinucleotide pair, is one of the best character-

ized epigenetic changes in eukaryotes and plays a pivotal role in

silencing gene transcription in diverse biologic settings, including

embryonic development, lyonization, autoimmunity and cancer

(Feinberg and Tycko, 2004; Richardson, 2007; Smith and

Meissner, 2013). In the context of cancer, with the discovery

that DNA methylation status may carry prognostic information

and with the advent of novel DNA hypomethylating agents (i.e.

aza-nucleosides), the study of the biologic, diagnostic, prognostic

and pharmacodynamic role of DNA methylation has immediate

relevance in the design of novel treatment approaches.
A variety of methods to determine DNA methylation have

been developed and can be broadly categorized on the basis of

methylation readout (bisulfite converted versus capture-based

techniques) and of sample or data throughput. Throughput

ranges from low-throughput analysis of a small number of loci

[e.g. methylation profiling of 24 tumor-suppressor gene promoter

CpG islands (Seeber et al., 2010)] to array-based methods with

on the order of 480000 probes in the case of the Infinium

HumanMethylation450 BeadChip, to next-generation sequen-

cing (NGS)-based approaches that offer high-resolution broad

genomic coverage at extremely high throughput. Supplementary

Text and Supplementary Table S1 further describe these tech-

niques and categorize methylation analysis techniques in terms of

readout and throughput.
The gold standard for the characterization of genome-wide

DNA methylation status is whole-genome bisulfite sequencing

(WGBS). With the current NGS platforms, data yields in

excess of 300 GB per flow cell, the costs associated with data

generation and analysis for this approach still remain out of

reach, especially if a relatively large number of patient samples

need to be evaluated at diagnosis and at sequential time points

after treatment. Genome complexity-reduction methods such as

reduced representation bisulfite sequencing (RRBS) (Gu et al.,

2011; Meissner et al., 2005), double-enzyme RRBS (Wang et al.,

2013), Infinium arrays (Dedeurwaerder et al., 2011) and

GoldenGate Methylation assay (Bibikova and Fan, 2009) have

been developed to make bisulfite-based approaches more suitable

for large-scale studies. However, one notable drawback of these

methods is the limited proportion of the genome and types of

regions these assays interrogate (Bock et al., 2010). Additionally,

researchers should be aware that the bisulfite conversion process

may occur with limited efficiency and cannot distinguish between

the two alternative bases, 5-methylcytosine and 5-hydroxy-

methylcytosine (Jin et al., 2010), which are likely to have differ-

ent biologic significance: in contrast to 5-methylcytosine’s
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transcriptional repression, the hydroxymethylated bases may

have a transcriptionally activating effect (Ficz et al., 2011).
Capture-based methylated DNA enrichment techniques

(Supplementary Table S1) avoid the majority of the problems

associated with WGBS (cost; complexity), RRBS and arrays

(lengthy procedure that is difficult to automate; limited genomic

scope) and of bisulfite chemistry in general [potential for incom-

plete conversion; DNA degradation; the inability to distinguish

methylation from hydroxymethylation (Jin et al., 2010)]. Despite

the cost advantage of the capture-based approaches, there has

been some reluctance to adopt these methods owing to a lack of

a nucleotide-level methylation signal. In fact, because the base

unit of information is a DNA fragment captured by a methylcy-

tosine-binding protein or antibody and sequenced, it is presup-

posed that at least some CpGs within each sequenced fragment

are methylated because of the capture/enrichment step, but it is

uncertain precisely which CpG dinucleotides within the fragment

are methylated.
Current algorithms associated with these approaches focus on

the methylation signal within genomic ‘windows’, i.e. genomic

intervals of a predetermined nucleotide length. While in the past

we have also used 500 bp windows along the entire genome to

bin enrichment-based sequence ‘reads’ in the analysis of the

global methylation effect of the hypomethylating agent decita-

bine in acute myeloid leukemia (AML) patients (Yan et al.,

2012), we more recently recognized the untapped potential of

transforming read-based data into nucleotide-level data, a solu-

tion that we present here. Nucleotide scale methylation values

computationally derived from captured fragment data are inher-

ently an approximation and therefore cannot completely replace

bisulfite-based data. However, this novel approach of transform-

ing read-based data into nucleotide-based signals not only re-

moves artifacts associated with window-based algorithms (e.g.

window-based methods may erroneously assign sequencing

reads to windows devoid of CG dinucleotides; Fig. 1) but also

produces flexible intermediate data, unconstrained by genomic

region boundaries, for subsequent analyses. Compared with

other current methods, Probabilistic Extension of Methylated
Reads at CpG resolution (PrEMeR-CG) has the advantage of
not requiring an extra sequencing experiment such as an artifi-

cially methylated sample (Riebler et al., 2014) or a paired restric-
tion enzyme sample (Stevens et al., 2013) to arrive at CpG

resolution signal.
PrEMeR-CG is a computational approach that harnesses the

implicit information associated with library fragment profiles to

infer nucleotide-resolution methylation values in addition to read
counts data, and Methylation Modeling Analysis using GEEs

(MethMAGE), a complementary statistical method that uses
the nucleotide-resolution methylation data in the detection of

differentially methylated features (DiMeFs), previously anno-
tated genomic regions in which the methylation profile differs
between different groups (e.g. those treated with a hypomethy-

lating agent versus those that are not). Because enrichment-based
methylome analysis is easily automated and suitable for large

sample size studies, our method provides a critical bridge be-
tween the practicality of capture-based studies and the resolution

of WGBS. This fact is demonstrated by the large AML cohort in
which PrEMeR-CG derived methylation was able to stratify pa-
tients based on outcome and was combined with gene expression

to create a novel prognostic gene signature, which was validated
in other patient cohorts (Marcucci et al., 2014).

2 METHODS

2.1 MethylCap-seq library generation and sequencing

Under an institutional review board-approved protocol and with the in-

formed consent of patients, bone marrow (BM) aspirates were procured

from 10 patients with AML. Genomic DNA was extracted from BM

mononuclear cells and sonicated. Methylated DNA fragments were en-

riched with a biotinylated methyl-binding protein pulldown technique.

Libraries were constructed and the methylated fragments were sequenced

on an Illumina GAIIx yielding �40� 106 reads of 36nt per sample.

Sample quality control was evaluated using criteria described in our qual-

ity control module (Trimarchi et al., 2012). For complete details of la-

boratory methods, see the Supplementary Text.

2.2 MethylCap-seq read alignment

Passed filter (using default Illumina pass filter settings) sequencing reads

were processed to collapse duplicates (i.e. all reads with the same se-

quence information) to a single read to control for polymerase chain

reaction artifacts. Non-duplicate reads were then aligned to the human

reference genome NCBI 36.1/hg18 using Bowtie (Langmead et al., 2009).

Alignment parameters allowed for two mismatches in a 32bp seed and

suppressed all reads that mapped to multiple locations in the genome.

2.3 Assignment of methylation values from MethylCap-

seq reads

For MethylCap-seq reads, methylation values were assigned by one of

two methods. For the 500bp window method, we used our previously

published algorithm (Rodriguez et al., 2012; Yan et al., 2012), which bins

the genome into 500bp windows and assigns a normalized ‘reads per

million’ metric to each window. The method takes each read and extends

it to the average fragment size for the sample. These fragments are then

assigned to the 500bp window that contains more than half of the ex-

tended fragment, and the total count of these reads in a 500bp genomic

window represents its methylation value. For the PrEMeR-CG method,

we used the algorithm described in Section 3.

Fig. 1. When methylation signal is determined by dividing the genome

into windows, many windows with no CpGs contained within them may

have methylation values ascribed to them. Here, window sizes of 100, 200

and 500nt are all shown to exhibit this binning artifact. Data shown are

from the present study
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2.4 Reduced representation bisulfite sequencing

RRBS sequencing libraries were generated from the same 10 AML pa-

tients described above using a published protocol (Gu et al., 2011). They

were sequenced on the Illumina HiSeq 2000 to generate 50bp single-end

reads. Sequenced reads were aligned using the Bismark aligner (Krueger

and Andrews, 2011).

2.5 Comparison of methylation calling accuracy

To quantify the accuracy of methylation determination, we compared the

methylation signals of two MethylCap-seq–based analysis methods with

that obtained with the RRBS method in matching samples. In order not

to give an advantage to either window-based or CpG-resolution

MethylCap-seq analysis methods, we analyzed the performance of each

method at both CpG and 500bp window resolution. When evaluating

performance at CpG resolution, the methylation values of the CpG reso-

lution method could be used directly (i.e. each CpG could be assigned a

distinct value according to the method described below), whereas for the

window-based method, the methylation value of a window calculated

according to the method described in detail elsewhere (Rodriguez et al.,

2012; Yan et al., 2012) was assigned to all CpGs in that window.

Similarly, when evaluating performance at window resolution, the methy-

lation values of the window-based method could be used directly, whereas

for the CpG resolution method, each window was assigned the mean

methylation value of all CpGs in that window.

We selected loci for comparison as follows. For the nucleotide-

resolution comparison, we selected all CpGs that had a minimum cover-

age of 10 RRBS reads and for which the pulldown-based methylation

call was non-zero. Similarly, for the window-resolution comparison,

we selected genomic windows of fixed width, which had at least two

CpGs with at least 10 covering RRBS reads each and for which the

window pulldown-based methylation signal was non-zero.

To compare the two different methods, we constructed receiver-

operator characteristic (ROC) curves using a threshold on each method’s

methylation call as a high/low binary discriminator and the correspond-

ing methylation call from paired RRBS analysis as benchmark, or meas-

ure of truth. Curves were then constructed by plotting the true-positive

rate versus the false-positive rate in ROC space for 100 values of the

respective discriminator. Noting that RRBS methylation signal is

highly concentrated about 0 and 1, consistent with the binary nature of

true methylation, we defined an RRBS signal of 550% as ‘low’ and

�50% as ‘high’.

2.6 Determination of DiMeFs

Methylation status in a region can be compared between two groups

(generically ‘A’ and ‘B’, but in practice perhaps ‘drug treated’ and ‘con-

trol’, or ‘mutated’ and ‘unmutated’), and if different, the region is desig-

nated a DiMeF. DiMeFs are genomic regions that have defined

boundaries usually based on previous annotation as opposed to the dy-

namically determined boundaries typically associated with differentially

methylated regions. DiMeFs were determined using a generalized esti-

mating equation (GEE) set up as follows. Suppose we have n subjects and

Yi=ðYi1; . . .YikÞ
T; i=1; . . . ; n is a vector of nucleotide-resolution methy-

lation signals of subject i observed at CpG sites 1; . . . ; k within a region.

Then, we model a mean structure with identity link by

�i � EðYiÞ=�0+�1Xi ð1Þ

with Xi being a vector of indicator function taking the value 1 when

subject i belongs to group A and 0 otherwise. Then the estimator of �=

ð�0; �1Þ
T is obtained by solving � such that

Sð�Þ=
Xn

i=1

@�i

@�T
V�1i ðYi � �iÞ=0; ð2Þ

where Vi=�A
1=2
i Rið�ÞA

1=2
i in which Ai is a diagonal matrix with the em-

pirical marginal variances on the diagonal, Rið�Þ is a working correlation

matrix and � is an over-dispersion parameter. For the working correl-

ation, an autoregressive AR(1) model is used:

CorrðYi;j;Yi;j+sÞ=�
s; s=0; . . . ; ðk� jÞ ð3Þ

Such a model is appropriate because the correlation of methylation

signals in CpGs is related to proximity of the CpGs within the region. For

further details on setting up the model, see Aerts et al. (2002). Finally, we

tested on H0 : �1=0 versus Ha : �1 6¼ 0 for each region and selected sig-

nificant regions based on a false discovery rate (FDR)50.05.

2.7 Calculations

All calculations were performed in Python 2.7 and in R version 2.15 (R

Development Core Team, 2012) with the geepack package (Højsgaard

et al., 2006), which is available from the CRAN repository.

3 RESULTS

3.1 Sequencing

Genomic DNA from BM samples from 10 AML patients was

extracted and divided into two aliquots; one aliquot was enriched
for methylated DNA (see Section 2). Libraries were prepared

and sequenced on an Illumina GAIIx sequencer resulting in an

average yield of 21629 060 reads per sample (range 17 541841–
26 311159). For validation purposes, the other aliquot was sub-

jected to RRBS (see Section 2) yielding on average 14651 361

reads per sample (range 6 289882–25 039 287).

3.2 Methylation calling with window-based method

One of the major shortcomings of window-based methods in the

analysis of MethylCap-seq data is the fact that windows impose
artificial boundaries along the genome, which can result in ana-

lysis artifacts. To demonstrate this, we used our previously pub-
lished window-based analysis tool (Rodriguez et al., 2012; Yan

et al., 2012) to determine methylation values from our

MethylCap-seq data. Figure 1 depicts the number of windows
with attributed methylation signal compared with all windows

containing the indicated number of CpGs for various window

sizes. Using this approach, we demonstrated that the window-
based method assigns methylation even in windows that contain

no CpGs; this artifact is a result of methylated CpGs in neigh-

boring windows pulling down fragments that span the window
boundary and thus are counted even in CpG-less windows.

Despite the disadvantage of containing artifacts, window meth-
ods provide global methylation information for a large portion

of the genome.

3.3 Methylation calling from pulldown data at CpG

resolution

Motivated by the recognition of artifacts in window-based meth-

ods for the analysis of MethylCap-seq data, we strove to develop

a method that could use these data to infer methylation values at
CpG resolution; such a method is inherently free from artifacts

associated with window boundaries. An existing boundary-free

tool, BALM (Lan et al., 2011), uses a tag-shifting method with a
bi-asymmetric-Laplace model to identify methylated loci. When

implemented on our data, we noted that BALM covers a
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significantly reduced portion of the genome than, e.g. the 500bp

window method (Supplementary Table S2), and we wanted to

develop a method that preserved this global coverage. The idea

behind our new method, which we call PrEMeR-CG, is outlined

in Figure 2A. Although each fragment can localize one or more

methylated CpGs necessarily only to within the fragment length

(Fig. 2A top), the overall distribution of fragments still allows

inference of methylation at higher resolution by integrating in-

formation about the overlap of several sequenced fragments

(Fig. 2A bottom). In particular, our method proceeds as follows:
Each aligned read corresponds to one DNA fragment in the

sequencing library captured owing to the presence of methylated

cytosine(s) within the fragment. The length of the DNA fragment

from which any given sequencing read originated is unknown,

but the Bioanalyzer high sensitivity DNA chip used during li-

brary preparation (see Section 2) produces a histogram describ-

ing fragment length frequencies in the library (Fig. 2B). We used

the Bioanalyzer fragment profile information to construct a

probability function for each sample. This probability function

FðkÞ for a sample is defined as the probability that any given

fragment from that sample has a length greater than a particular

value k; this is also called the complementary cumulative distri-

bution function (CCDF; equation 4; Fig. 2C).

FðkÞ=1� PðX � kÞ=PðX4kÞ ð4Þ

Next, each sequencing read is extended along its hypothetical

fragment, and any CpG included in the extension is assigned a

weighted portion of that read’s signal. The methylation call mi

imparted by a read to the CpG at the ith position within a given

DNA fragment is calculated first by determining the probability

that a fragment containing that CpG existed in the sample, then

dividing by the expected number of CpGs (using F and sum-

ming) that likely lie within the fragment giving rise to the read,
yielding:

mi=
FðiÞXn

j=1
FðjÞ

ð5Þ

for i; j 2 C, where C is the set of nucleotide indices in the ex-
tended read that are CpG locations. That is, mi and F are calcu-

lated only at CpGs within the fragment. In this step, the

methylation value at each CpG is thus its fractional share of

all CpGs, weighted according to the probability that any and

all CpGs in the calculation existed in the fragment that generated
the read. For example, if a CpG is within range (described by the

fragment distribution profile) of N reads (even if the read does

not extend over the CpG), the signal imparted to that CpG is the

sum of N probabilities that the fragment was that long. This is

depicted graphically in Figure 2D. The two left most CpGs in the

figure lie within the CCDF graph of one fragment: first with near
100% probability, and the second CpG with near zero, but non-

zero, probability. If those probabilities were 0.95 and 0.05, each

CpG would receive that signal. Finally, the so-computed methy-

lation values at individual CpGs within the fragment are

summed over all overlapping fragments (i.e. all reads within a

Fig. 2. (A) Conceptual underpinning of nucleotide-resolution methylation inference from pulldown data. A single DNA fragment does not yield

information on which of the CpGs covered by it are methylated (top sequence), but an ensemble of such fragments contains methylation information

(bottom sequence). (B) Example Bioanalyzer output. The distribution shown describes the length in nucleotides of fragments, which comprise the DNA

library. At the extremes are calibration markers. (C) CCDFs for the 10 samples in this study derived from Bioanalyzer data. This is the probability (y

axis) that any given fragment X is longer than the indicated nucleotide position k along the x axis. (D) Schematic diagram of probabilistic read extension.

The cumulative distribution function shown in (C) is attached to every sequencing read. Then, each CpG receives contributions to its methylation signal

from all cumulative distribution functions overlapping the CpG
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predefined maximal fragment size about the CpG’s position) to
determine an overall probable methylation signal at that CpG

dinucleotide (Fig. 2D). Because each sample has a differing
number of total passed-filter reads that successfully align to the

genome, the methylation values must also be normalized for total
read yield. We used reads per million aligned reads as a normal-

ization factor to compare across samples.

3.4 Comparison with window-based method

While our CpG resolution method is by definition free from

window boundary artifacts, we needed to quantitatively compare
its accuracy in determining methylation with that of a window-

based method. To eliminate the requirement for extrinsic infor-
mation [such as an artificially methylated control sample (Riebler

et al., 2014) or a paired restriction enzyme sample (Stevens et al.,
2013)] and to focus specifically on the effect of resolution, we

chose our own previously published method (Rodriguez et al.,
2012; Yan et al., 2012) as comparison.
We used RRBS-derived methylation values from the same 10

samples as our MethylCap-seq data as a measure of true methy-

lation status for purpose of comparison. We then used PrEMeR-
CG as well as our prior window-based method to assign relative

methylation values and applied various levels of discrimination
to call ‘high methylation’ or ‘low methylation’ from the capture-

based data. By comparing these classifications with the RRBS
single-base resolution standard, we constructed two sets of ROC

curves as described in Section 2. Figure 3 shows genome-wide
ROC curves in four cases: curves were generated for PrEMeR-

CG and the prior 500 bp window calling method, each at nucleo-
tide resolution and at 500bp resolution (Supplementary Fig. S1

shows the same results for each of the 10 samples separately).
When evaluating methylation calling according to the RRBS

standard, PrEMeR-CG has a higher area under the curve
(AUC: 0.75 and 0.76), representing higher accuracy in methyla-

tion determination and outperforming the window-based

method (AUC: 0.69 and 0.72) irrespective of the resolution at

which the performance is evaluated. Although these AUCs are

somewhat low, high concordance between MethylCap-seq and

RRBS is not anticipated because of the differences in these meth-

odolgies discussed in Section 1. The same analysis was repeated

at the 100 bp window resolution with similar outcomes

(Supplementary Fig. S2).

3.5 Utilization of CpG-resolution data in the detection of

DiMeFs

One of the end goals of methylation analysis is to determine

changes between conditions in different genomic regions of inter-

est. To use the inferred single-base resolution data derived from

PrEMeR-CG, a new statistical approach is needed that does not

require averaging methylation signals across regions while iden-

tifying DiMeFs. For this expressed purpose, we developed a

method called MethMAGE, a domain-specific use of the GEE.
A primary feature of the nucleotide-resolution data generated

by PrEMeR-CG is that the signals at neighboring CpG sites are

correlated (Supplementary Fig. S3), both because they are

derived from fragments of finite size and because of biological

correlations between methylation levels at neighboring CpGs. In

fact, we believe that one of the main advantages of PrEMeR-CG

is the possibility to explicitly incorporate the correlation structure

of neighboring CpGs in DiMeF calling. In addition, the CpG

methylation signals are not normally distributed and have a rela-

tively high proportion of non-detectable signal (zero values). The

GEE approach is non-parametric and flexible with respect to

these signals and explicitly takes into account correlations, and

therefore, is well suited to model the nucleotide-resolution data

generated by PrEMeR-CG. More specifically, for each genomic

feature, GEE builds a linear model of methylation signals at

CpG sites with working covariance structure (see Section 2).

Because there is a decreasing correlation between CpG sites

with increasing distance along the genome, we chose an autore-

gressive AR(1) model to describe the covariance structure. We

note that this autoregressive AR(1) covariance structure is a

major difference compared with the previous GEE-based differ-

ential methylation calling package A-clust (Sofer et al., 2013) (in

addition to the difference that MethMAGE tests methylation in

features of fixed bounds to call DiMeFs that accommodate an-

notation whereas A-clust determines regions to test by dynamic-

ally clustering correlated CpGs). We believe that the

exchangeable working correlation used by A-clust is appropriate

for the small clusters and short distances that typically separate

the CpGs in the clusters detected by A-clust. In contrast, the

AR(1) correlation used by MethMAGE is autoregressive and

more suitable for the expected correlation of methylation in

larger annotated features. The mean difference between case

and control groups is estimated by solving generalized estimation

equations using the GEE function from the R package geepack
(see Section 2). From the fitted data, a P-value is generated for

each feature, and DiMeFs were then called with the FDR con-

trolled at 0.05 according to the Benjamini–Hochberg procedure

(1995).
To demonstrate the utility of MethMAGE, DiMeFs were

called between groups that were defined by mutation status.

The choice of mutation status as a classifier was made based

Fig. 3. ROC curves comparing the sensitivity and specificity of PrEMeR-

CG to the 500bp window method demonstrate PrEMeR-CG’s superior

match to the reference bisulfite sequenced samples at both CpG reso-

lution as well as 500bp window resolution
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on our previously published work, which showed that the methy-

lation of DiMeFs specific to known mutations are prognostic

(Marcucci et al., 2014). We selected RefSeq gene promoters,

defined as 1000bp up- and downstream of the annotated tran-

scription start sites of RefSeq genes, as well as CpG islands,

defined via their UCSC genome browser track (Gardiner-

Garden and Frommer, 1987; Meyer et al., 2013), as features

because their methylation status is associated with gene regula-

tion. To define two groups, we chose among the many different

known AML mutations shown to be associated with DiMeFs in

(Marcucci et al., 2014) the FLT3-ITD (internal tandem duplica-

tion of the FLT3 gene) status as the grouping criterion because it

provided the most balanced separation of our group of 10 pa-

tients (seven FLT3 wild type and three FLT3-ITD patients).

MethMAGE is also able to eliminate features if they do not

have sufficient coverage among the sample groups for a statis-

tical test of the model to be meaningful. For the sample groups

used here, 94% of the promoters and 91% of the CpG islands

contained sufficient coverage to be included in MethMAGE

(Table 1). MethMAGE identified 181 DiMeFs in promoters

and 584 DiMeFs in CpG islands, whereas MEDIPS identified

four DiMeFs in promoters and four DiMeFs in CpG islands,

while zero DiMeFs were detected by the t-test, and the negative

binomial-based edgeR and DEseq methods (Supplementary

Table S2). Analysis details can be found in the Supplementary

Material.
It is known that P-values generated by the GEE can become

unreliable for small numbers of samples, and it is thus difficult to

assess whether these DiMeFs are false-positive findings resulting

from inaccurate estimation of P-values or are biologically mean-

ingful DiMeFs. However, the methylation profiles of the ex-

amples shown in Figure 4 and Supplementary Figures S4 and

S5 demonstrate that the regions MethMAGE identified appear

to have different methylation profiles between the wild type and

FLT3-ITD groups. In addition, the problem of unreliable P-

value estimations, and thus possible false-positive findings,

should become less of an issue when larger numbers of samples

are compared, given the asymptotic property of GEE.
To assess the performance of MethMAGE, paired RRBS sam-

ples were used to determine which promoters and CpG Islands

were differentially methylated (RRBS DiMeFs) and which were

not differentially methylated (RRBS non-DiMeFs).

These RRBS DiMeFs and non-DiMeFs, called between the

wild type and FLT3-ITD group, were compared with the

DiMeFs reported by MethMAGE. Among the RRBS non-

DiMeFs, MethMAGE demonstrated a low false-positive rate,

detecting only a single DiMeF (Supplementary Table S4).

MethMAGE also reported 60% of the RRBS DiMeFs demon-

strating relatively good sensitivity considering the differences pre-

viously discussed between RRBS and MethylCap data

(Supplementary Table S4). An example of some of the features

identified as a DiMeF can be seen in Figure 4 and

Supplementary Figures S4 and S5.

4 DISCUSSION

DNAmethylation is well established as an epigenetic regulator in

a wide variety of biological processes (Feinberg and Tycko, 2004;

Richardson, 2007; Smith and Meissner, 2013), and recent years

have seen tremendous progress in the laboratory and computa-

tional techniques of methylation analysis (Bock, 2012). Bock

et al. analyzed two pairs of samples using two enrichment

Fig. 4. Representative features detected as differentially methylated by

MethMAGE. (A) Methylation signal of each CpG is represented as a dot

(lower curve [purple online] for FLT3 wild type and upper curve [green

online] for FLT3-ITD samples) and the line segments connect the means

of these values. (B) Normalized read density of the same region calculated

by extending each read using the cumulative distribution functions for

each sample, normalizing each sample to reads per million and averaging

over the samples in each of the two groups

Table 1. DiMeFs generated by MethMAGE

Feature Number of

features

Features

evaluated

DiMeFs

identified by

MethMAGE

CpG islands 27 640 22 562 589

RefSeq gene promoters 39 945 37 584 181
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methods (MeDIP and MethylCap) coupled with NGS and two

bisulfite-based methods (RRBS and Infinium assay) (Bock et al.,

2010). Compared with MeDIP-seq, MethylCap-seq gave rise to

peaks of methylated DNA with higher dynamic range (higher

peaks and lower baseline signals), and the authors noted that

bisulfite-based methods generally confirmed the enrichment-

based methods. Overall, when compared with RRBS, the

MethylCap-seq method had richer and more even coverage of

the entire genome, including within-key features such as CpG

islands and promoter regions, methylation of which is known

to affect transcription.
Capture-based methods in combination with NGS offer the

potential of cost-effective whole-genome methylation analysis,

with the added benefit of the possibility to distinguish alternative

cytosine modifications (Jin et al., 2010). Many capture-based

sequencing methods have been implemented with success, assess-

ing methylation in genomic windows, typically 50bp and larger.

We have previously published a technique for the analysis of

MethylCap-seq data in which the genome is divided into

500 bp bins and genome-wide and per-feature differential methy-

lation patterns can be described in terms of these bins (Rodriguez

et al., 2012; Yan et al., 2012).
Still, it is inescapable that bisulfite-based methods provide in-

herently higher resolution than capture-based methods, and it is

notable that methylation at an individual CpG dinucleotide has

demonstrated biological importance (Claus et al., 2012). Because

of the foregoing limitations in bisulfite as well as capture-based

methods and to make more accurate methylation calls, we were

motivated to devise a comprehensive method for analyzing cap-

ture-based data that could provide genome-wide nucleotide-reso-

lution information as well as define DiMeFs between groups, but

that would be free from external requirements (e.g. would not

require a positive control sample treated with the prokaryotic

methyltransferase M.SssI or paired normal samples).
In this article, we proposed a method to provide methylation

values at individual CpG dinucleotides, thereby eliminating

many of the issues associated with larger genomic windows.

For example, once PrEMeR-CG calculates a methylation

signal for each CpG, it is straightforward to assign methylation

signal to any genomic region by averaging over all the CpGs

contained in this region. This stands in contrast to window-

based methods in which the raw data must be reanalyzed every

time a new type of genomic region is introduced or one risks

including DNA fragments that overlap a predefined window,

which in turn overlaps the genomic region without the fragment

itself actually overlapping the genomic region. Although the as-

signment of fractional methylation signal to CpGs within a read

is straightforward, the key innovation in the PrEMeR-CG

method is the recognition that CpGs in a pulled-down fragment

may exist outside the read, and incorporating sequencing-library

fragment length statistics to create a probabilistic model of

methylation by virtually extending reads along their hypothetical

fragments. Sequencing-library fragment statistics, although not

typically available with public datasets, are almost certainly

available to the laboratories and groups who generated the

data: fragment-length profiling is an important preparatory

step in sequencing to confirm the lack of adapter dimers as

well as to ensure a specific average fragment length. To our

knowledge, we are the first group to use this highly available
yet underused information in DNA methylation analysis.
Using paired RRBS data from the same samples, we com-

pared PrEMeR-CG with our prior 500 bp window-based
method and demonstrated superior discriminatory power. In
addition, we provide a non-parametric statistical method

(MethMAGE) for detecting changes in methylation within a
defined genomic region (feature) and demonstrated its utility in
identifying regions with methylation differences.

We recognize there are limitations in the present method.
First, these methylation calls are only inferences suitable for dis-
covery and hypothesis generation; important findings must be

validated by alternative techniques. Second, in any pulldown
experiment there is an inherent bias vis-�a-vis the actual fragments
pulled down: density and spatial arrangement of methylated

CpGs are known to affect pulldown (Fraga et al., 2003), and
there may exist some other unknown factors that influence the
affinity of the methyl-binding domain protein for the DNA.

Finally, using RRBS as the standard for comparison in the gen-
eration of the ROC curves may be complicated by the potential
differences in methylation affinities assessed by the two methods

(i.e. RRBS may report both 5-methylcytosine and 5-hydroxy-
methylcytosine, while MethylCap may report only 5-methylcyto-
sine). This confounding factor may explain the somewhat low

reported AUC values.
As DNA methylation analysis is increasingly important in the

clinical arena, sample preparation is moving away from manual

preparation to automation. In manual sample preparation, a gel-
based approach is used for fragment selection. It produces a tight
distribution of fragment sizes although ranges can still vary sig-

nificantly from sample to sample as depicted in Figure 2C. With
automation, fragment selection is performed by paramagnetic
bead selection, which produces a broader size distribution

(data not shown) and a longer fall from one to zero in the
CCDF. This heightens the importance of a probabilistic
method such as PrEMeR-CG to take into account library frag-

ment size.
An added incentive in using PrEMeR-CG is its accuracy in

estimating the empirical distribution of fragment size in a sequen-
cing library. We compared the PrEMeR-CG-derived fragment

size to fragment size calculated from aligning paired-end reads
to the genome and found excellent concordance of the distribu-

tions (Supplementary Figure S6). Paired-end data from
MethylCap-Seq libraries will allow assignment of the true
length for each fragment rather than using our probabilistic ap-

proach. However, paired-end experiments are more costly. To
that end, our method is the most cost-effective means to infer
nucleotide-level methylation values for a large clinical trial. The

power of this approach is well illustrated by the derivation of a
prognostically significant signature by combining gene expres-
sion and methylation data in a cohort of 134 AML patients

(Marcucci et al., 2014).
In conclusion, we have presented an algorithm for inferring

nucleotide-resolution methylation signal from a capture-based
technique and a companion statistical test to detect DiMeFs

using this nucleotide-level information. Discriminatory power
was demonstrated using biological samples (acute leukemia
BM blasts), and our approach warrants further study in future

experiments.
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