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ABSTRACT

Motivation: Genomics is expanding from a single reference per spe-

cies paradigm into a more comprehensive pan-genome approach that

analyzes multiple individuals together. A compressed de Bruijn graph

is a sophisticated data structure for representing the genomes of

entire populations. It robustly encodes shared segments, simple

single-nucleotide polymorphisms and complex structural variations

far beyond what can be represented in a collection of linear sequences

alone.

Results: We explore deep topological relationships between suffix

trees and compressed de Bruijn graphs and introduce an algorithm,

splitMEM, that directly constructs the compressed de Bruijn graph in

time and space linear to the total number of genomes for a given

maximum genome size. We introduce suffix skips to traverse several

suffix links simultaneously and use them to efficiently decompose

maximal exact matches into graph nodes. We demonstrate the utility

of splitMEM by analyzing the nine-strain pan-genome of Bacillus

anthracis and up to 62 strains of Escherichia coli, revealing their

core-genome properties.

Availability and implementation: Source code and documentation

available open-source http://splitmem.sourceforge.net.

Contact: mschatz@cshl.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

1.1 Background

Genome sequencing has rapidly advanced in the past 20 years.

The first free living organism was sequenced in 1995, and since

then, the number of genomes sequenced per year has been grow-

ing at an exponential rate (Liolios et al., 2006). Today, there are

currently nearly 20000 genomes sequenced across the tree of life,

including reference genomes for hundreds of eukaryotic and

thousands of microbial species. Reference genomes play an im-

portant role in genomics as an exemplar sequence for a species

and have been extremely successful at enabling genome

resequencing projects, gene discovery and numerous other im-

portant applications. However, reference genomes also suffer in

that they represent a single individual or a mosaic of individuals
as a single linear sequence, making them an incomplete catalog

of all the known genes, variants and other variable elements in a
population. Especially in the case of structural and other large-

scale variations, this creates an analysis gap when modeling the

role of complex variations or gene flow in the population. For
the human genome, for example, multiple auxiliary databases

including dbSNP, dbVAR, DGV and several others must be
separately queried through several different interfaces to access

the population-wide status of a variant (MacDonald et al., 2014).
The ‘reference-centric’ approach in genomics has been estab-

lished largely because of technological and budgetary concerns.
Especially in the case of mammalian-sized genomes, it remains

prohibitively expensive and technically challenging to assemble

each sample into a complete genome de novo, making it substan-
tially cheaper and more accessible to analyze a new sample rela-

tive to an established reference. However, for some species,
especially medically or otherwise biologically important micro-

bial genomes, multiple genomes of the same species are available.

In the current version of National Center for Biotechnology
Information (NCBI) GenBank, 296 of the 1471 bacterial species

listed have at least two strains present, including 9 strains of
Bacillus anthracis (the etiologic agent of anthrax), 62 strains of

Escherichia coli (the most widely studied prokaryotic model

organism) and 72 strains of Chlamydia trachomatis (a sexually
transmitted human pathogen). This was done because the differ-

ent genomes may have radically different properties or substan-
tially different gene content despite being of the same species:

most strains of E.coli are harmless, but some are highly patho-

genic (Rasko et al., 2011b).
When multiple genomes of the same or closely related species

are available, the ‘pan-genome’ of the population can be con-
structed and analyzed as a single comprehensive catalog of all the

sequences and variants in the population (Tettelin et al., 2005).
Several techniques and data structures have been proposed for

representing the pan-genome, i.e. Rasko et al. (2008). The most

basic is a linear concatenation of the reference genome plus any
novel sequences found in the population appended to the end or

stored in a separate database such as dbVAR. The result is a
relatively simple linear sequence but also loses much of the value

of population-wide representation, necessitating auxiliary tables

to record the status of the concatenated sequences. More signifi-
cantly, a composite linear sequence may have ambiguity or loss

in information of how the population variants relate to each*To whom correspondence should be addressed.
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other, especially at positions where the sequences of the individ-

uals in the population diverge, i.e. branch points between se-

quences shared among all the strains to any strain-specific

sequences and back again.

A much more powerful representation of a pan-genome is to

represent the collection of genomes in a graph: sequences that are

shared or unique in the population can be represented as nodes,

and edges can represent branch points between shared and

strain-specific sequences (Fig. 1). More specifically, the de

Bruijn graph is a robust and widely used data structure in

genomics for representing sequence relationships and for pan-

genome analysis (Iqbal et al., 2012). In the case of a pan-

genome, we can color the de Bruijn graph to record which of

the input genome(s) contributed each node. This way the com-

plete pan-genome will be represented in a compact graphical

representation, such that the shared/strain-specific status of any

substring is immediately identifiable, along with the context of

the flanking sequences. This strategy also enables powerful topo-

logical analysis of the pan-genome not possible from a linear

representation.
As originally presented, the de Bruijn graph encodes each dis-

tinct length k substring as a node and includes a directed edge

between substrings that overlap by k – 1 base pairs. However,

many of the nodes and edges of a de Bruijn graph can be ‘com-

pressed’ whenever the path between two nodes is non-branching.

Doing so often leads to a substantial savings in graph complexity

and a more interpretable topology: in the case of a pan-genome

graph, after compression nodes will represent variable length

strings up to divergence in shared/strain-specific status or se-

quence divergence after a repeated sequence. The compressed

de Bruijn graph is therefore the preferred data structure for

pan-genome analysis, but it is not trivial to construct such a

graph without first building the uncompressed graph and then

identifying and merging compressible edges, all of which requires

substantial overhead. Here, we present a novel space and time

efficient algorithm called splitMEM for constructing the com-

pressed de Bruijn graph from a generalized suffix tree of the

input genomes. Our approach relies on the deep relationships

between the topology of the suffix tree and the topology of the

compressed de Bruijn graph and leverages a novel construct we

developed called suffix skips that makes it possible to rapidly

navigate between overlapping suffixes in a suffix tree. We

apply these techniques to study the pan-genomes of all nine

available strains of B.anthracis and all 62 available strains of

E.coli to map and compare the ‘core genomes’ of these popula-

tions. All the source code and documentation for the analysis are

available open-source at http://splitmem.sourceforge.net.

1.2 Problem definition

The de Bruijn graph representation of a sequence contains a

node for each distinct length k substring, called a k-mer. Two

nodes are connected by a directed edge u! v for every instance

where the k-mer represented by v occurs immediately after the

k-mer represented by u at any position in the sequence. In other

words, there is an edge if u occurs at position i and v occurs at

position i+1. By construction, adjacent nodes will overlap by

k – 1 characters, and the graph can include multiple edges con-

necting the same pair of nodes or self-loops representing over-

lapping tandem repeats. This definition of a de Bruijn graph

differs from the traditional definition described in the mathem-

atical literature that requires the graph to contain all length-k

strings that can be formed from an alphabet rather than just

those present in the sequence. The formulation of the de Bruijn

graph used in this article is commonly used in the sequence as-

sembly literature, and we follow the same convention (Kingsford

et al., 2010). Notably, the original genome sequence, before

decomposing it into k-mers for the graph, corresponds to an

Eulerian path through the de Bruijn graph visiting each edge

exactly once. In the case of the pan-genome, we first concatenate

the individual genomes together separated by a terminal charac-

ter and discard any nodes or edges spanning the terminal char-

acter. The nodes are colored to indicate which genome(s) the

node originated from, so that each individual genome can be

represented by a walk of nodes of consistent color.
A de Bruijn graph can be ‘compressed’ by merging non-

branching chains of nodes into a single node with a longer se-

quence. Suppose node u is the only predecessor of node v and v is

the only successor of u. They can thus be unambiguously com-

pressed without loss of sequence or topological information by

merging the sequence of u with the sequence of v into a single

node that has the predecessors of u and the successors of v. After

maximally compressing the graph, every node will terminate at a

‘branch-point’, meaning every node has in-degree � 2 or its

single predecessor has out-degree � 2 and every node has out-

degree � 2 or its single successor has in-degree � 2. The com-

pressed de Bruijn graph has the minimum number of nodes with

which the path labels in the compressed graph are the same as in

the uncompressed graph (Kingsford et al., 2010). In this way, the

compressed de Bruijn graph of a pan-genome will naturally

branch at the boundaries between sequences that diverge in

their amount of sharing in the population.

Fig. 1. Overview of a graphical representation of a pan-genome. The four

input genomes (A–D) are decomposed into segments shared or specific to

the individuals in the population with edges maintaining the adjacencies

of the segments
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The compressed de Bruijn graph is normally built from its

uncompressed counterpart, necessitating the initial construction

and storage of a much larger graph. In the limit, a basic con-

struction algorithm may need to construct and compress n nodes,

while ours would directly output just a single node. In practice,

the compressed graph of real genomic data is often orders of

magnitude smaller than the uncompressed, although the exact

savings is data dependent.

In this article, we present an innovative algorithm that directly

constructs the compressed de Bruijn graph by exploiting the

relationships between the compressed de Bruijn graph and

the suffix tree of the sequences. Our algorithm achieves overall

Oðnlog gÞ time and space complexity for an input sequence of

total length n with the longest genome in the set of length g.

Thus, for typical applications of applying splitMEM to a set of

genomes of similar size, the runtime is linear with respect to the

total number of genomes (Section 3.1). Alternatively, we also

present a slower algorithm in the Supplementary Material that

constructs the compressed de Bruijn graph from the set of exact

self-alignments of length� k in the genome. The alignment-based

algorithm considers each alignment in turn and decomposes the

graph nodes to represent smaller substrings when alignments are

found to overlap one another. At worst, the number of pairwise

alignments in a genome can be quadratic. Both algorithms have

the same underlying intuition, and the faster suffix-tree approach

was inspired by the alignment-based algorithm.

1.3 Suffix tree, suffix array and maximal exact matches

The suffix tree is a data structure that facilitates linear time so-

lutions to many common problems in computational biology,

such as genome alignment, finding the longest common substring

among genomes, all-pairs suffix–prefix matching and locating all

maximal repetitions (Gusfield, 1997). It is a compact trie that

represents all suffixes of the underlying text. The suffix tree for

T=t1t2 � � � tn is a rooted, directed tree with n leaves, one for each

suffix. A special character ‘$’ is appended to the string before

construction of the suffix tree to guarantee that each suffix ends

at a leaf in the tree. Each internal node, except the root, has at

least two children. Each edge is labeled with a nonempty sub-

string of T and no two edges out of a node begin with the same

character. The path from the root to leaf i spells suffix T½i . . . n�.
The suffix tree can be constructed in linear time and space with

respect to the string it represents (Ukkonen, 1995). Suffix links

are an implementation technique that enable linear time and

space suffix tree construction algorithms. Suffix links facilitate

rapid navigation to a distant but related part of the tree. A suffix

link is a pointer from an internal node representing a string xS to

another internal node representing string S, where x is a single

character and S is a possibly empty string.

A closely related data structure, called a suffix array, is an

array of the integers in the range 1 to n specifying the lexico-

graphic order of the n suffixes of string T. It can be obtained in

linear time from the suffix tree for T by performing a depth-first

traversal that traverses siblings in lexical order of their edge

labels. (Gusfield, 1997) For any node u in the suffix tree, the

subtree rooted at u contains one leaf for each suffix in a contigu-

ous interval in the suffix array. That interval is the set of suffixes

beginning with the path label from the root to node u (Kasai

et al., 2001).
Maximal exact matches (MEMs) are exact matches within a

sequence that cannot be extended to the left or right without

introducing a mismatch. By construction, MEMs are internal

nodes in the suffix tree that have left-diverse descendants, i.e.

leaves that represent suffixes that have different characters pre-

ceding them in the sequence. As such, the MEM nodes can be

identified in linear time by a bottom-up traversal of the tree,

tracking the set of character preceding the leaves of the subtree

rooted at each node. Because each MEM is an internal node in

the suffix tree, there are at most n maximal repeats in a string of

length n (Gusfield, 1997). Our algorithm computes the nodes in

the compressed de Bruijn graph by decomposing the MEMs and

extracting overlapping components that are of length � k.

1.4 Existing methodologies

We introduce new concepts and algorithms for directly con-

structing the compressed de Bruijn graph to represent a pan-

genome. Several alternative tools achieve similar goals, although

their specific objectives differ, along with their algorithmic tech-

niques. The first analysis of a pan-genome was in 2005 by

Tettelin et al. (2005) evaluating the composition of six strains

of Streptococcus agalactiae. They aligned the gene sequences in

their draft assemblies using FASTA (Pearson and Lipman, 1988)

to discover the ‘core genome’ of genes present in all strains versus

strain-specific genes. Their approach was directed only at the

gene sequences and their frequency in the population but did

not attempt to analyze the flanking regulatory regions or the

rest of the genomes.
Since then, several alternative approaches have constructed

graphical representations of entire pan-genomes such as ours,

including other approaches that also use de Bruijn graphs as

the basis of their analysis. Importantly, all of the previous pan-

genome analysis algorithms using de Bruijn graphs start with an

exhaustive analysis of individual k-mers, i.e. the uncompressed

de Bruijn graph, while instead we compute the compressed de

Bruijn graph directly from the MEMs identified in the suffix tree.

For example, Sibelia (Minkin et al., 2013) begins by constructing

the uncompressed de Bruijn graph and then iteratively refines it

to identify inexact relationships such as small indels and single-

nucleotide polymorphisms in addition to exact alignments

between the genomes. A recent article by Cazaux et al. (2014)

presents an algorithm for identifying the nodes and edges in a

compressed de Bruijn graph in linear time from the suffix tree of

a sequence, although this also requires exhaustively evaluating

each k-mer in the sequence. They also do not present an imple-

mentation of the abstract algorithm they describe. Other

approaches, such as HAL (Hickey et al., 2013), can be used to

encode multiple sequence alignments of different genomes by

decomposing the multiple sequence alignment into a set of

pair-wise alignments encoded as ‘breakpoint graphs’.

An area of recent focus surrounding de Bruijn graphs is to

reduce their space consumption, such as by using Bloom Filters

or other concise data structures that can represent the graph in as

little as 2n bits, e.g., Bowe et al. (2012), Chikhi and Rizk (2013),

Chikhi et al. (2014) and Rødland (2013). However, these tech-

niques do not directly extend to pan-genome analysis since their
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space-efficiencies require they only store a limited amount of

information, typically just the topology and fixed length k-mer

sequences of the de Bruijn graph. Our analysis requires other

attributes, especially the original genome position(s) of each

node and variable length node sequences, which are fundamen-

tally not supported by these techniques (Chikhi et al., 2014).

Without them, we cannot compute major properties of the

pan-genome from the graph, such as the number of genomes

that contribute to each node’s sequence, the number of genomes

sharing a particular gene or the nearest neighbor in the graph

whose sequence is in the core genome.

2 METHODS

In this section, we describe our algorithm for constructing the com-

pressed de Bruijn graph for a genome in Oðnlog gÞ time and space. It

is outlined in Algorithm 1. The basis of our algorithm is deriving the set

of compressed de Bruijn graph nodes from the set of MEM�k nodes in

the suffix tree, i.e. internal nodes that represent MEMs of length � k in

the genome. The underlying algorithm was inspired by the use of the

suffix tree to compute matching statistics as described by Gusfield

(1997).

Note that each node in the compressed de Bruijn graph is labeled by a

maximal genomic substring of length � k for which there are no internal

overlaps, with the same or with a different genomic substring, of length

� k. As in the uncompressed counterpart, edges connect substrings that

have a suffix-prefix match of length k – 1 in the genome. The nodes in the

compressed de Bruijn graph fall into two categories: uniqueNodes repre-

sent a unique subsequence in the pan-genome and have a single start

position and repeatNodes represent subsequences that occur at least

twice in the pan-genome, either as a repeat in a single genome or a seg-

ment shared by multiple genomes in the pan-genome population.

uniqueNodes can be thought of as nodes that link between repeatNodes.

As such, our graph construction algorithm begins by identifying the set of

repeatNodes, from which it constructs the necessary edges and

uniqueNodes along the way.

The set of MEM�k and the repeatNodes represent the same subse-

quences of the genome, although there is not a one-to-one correspond-

ence, especially in the case of overlapping or nested MEMs (Fig. 2).

A MEM�k may need to be split into several repeatNodes when it has

subsequences of length � k in common with itself or another MEM�k.

Some repeatNodes are exactly MEMs in the genome, whereas other

repeatNodes are parts of a MEM that lie between two embedded

MEMs. Any maximal subsequence of length � k that is shared among

MEMs is necessarily a MEM. Consequently, our algorithm processes the

set of MEM�k and split them into repeatNodes by extracting common

subsequences of minimum length k among them. Whenever a MEM is

split to remove a shared repeatNode, the split results in at least one

MEM as a resulting segment and the other segment can be unique to

this MEM.

2.1 Algorithm

The splitMEM algorithm uses a suffix tree of the genome to efficiently

compute the set of repeatNodes. It builds a suffix tree of the pan-genome

in linear time following Ukkonen’s algorithm (Ukkonen, 1995). It then

marks internal nodes of the suffix tree that represent MEMs (or maximal

repeats) of length � k, in the suffix tree using linear time techniques of

MUMmer (Kurtz et al., 2004) and preprocess the suffix tree for constant-

time lowest marked ancestor (LMA) queries in linear time. Then it con-

structs the set of repeatNodes by iterating through the set of MEM�k in

the suffix tree.

The challenge lies in identifying regions that are shared among

MEM�ks and decomposing MEM�ks into the correct set of

repeatNodes. If m1 and m2 are MEM�ks and m1 occurs within m2, then

m1 is a prefix of some suffix of m2. Thus, splitMEM can use the suffix

links to iterate through the suffixes of m2 along with LMA queries to find

the longest MEM�ks that occurs at the beginning of each suffix. Each

MEM is broken down to repeatNodes once, and any embedded MEMs

are extracted without examination. Thus, the subsequences that are

shared among several MEMs are only decomposed once. We describe

an efficient technique for constructing the set of repeatNodes in

Section 2.2.

As an example, Figure 3 shows the situation where a MEM�k con-

tains another MEM�k within it. Two new repeat nodes are created for

xyz��. One is the prefix ending after the first k – 1 characters of �

(shown as ’�) and the other is the suffix beginning with the last k – 1

characters of � (shown as �’). The smaller MEM�k � is dealt with

separately.

The positions at which the MEMs occur in the genome, and hence the

start positions of the repeatNodes, can be quickly computed by consider-

ing the distance from the internal node to each leaf in its subtree and the

genomic intervals that they represent. To make this computation efficient,

we build a suffix array for the pan-genome and store at each suffix tree

node its corresponding interval in the suffix array.

Once the algorithm has computed all the repeatNodes, it sorts the set of

genomic starting positions that occur in each node, so that it can con-

struct the necessary set of edges between them in a single pass over this

list. It also creates uniqueNodes to bridge any gaps between adjacent

repeatNodes in the sorted list. It does this by iterating through the

sorted list of start positions, startPos stored in each node. Suppose

startPos½i�=s. It calculates the successive start position, succi, from s

and the length of the node containing s. If succi is a start position of

an existing node, it must be at position i+1 in the sorted list and cannot

occur within a repeatNode. If startPos½i+1� is a different value, the algo-

rithm creates a uniqueNode to bridge the gap between startPos[i] and

startPos[i+1]. Then it creates an edge to join start position s to its suc-

Fig. 2. Different overlapping configurations of MEMs in a sequence. The

colored blocks represent MEMs in a genomic sequence. Different colors

are used for distinct MEMs
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cessor, whether it is in a repeatNode or a uniqueNode. If a uniqueNode was

created, it also creates an edge to connect the new uniqueNode to its

successor at startPos½i+1�.

The total length of all MEMs can be quadratic in the genome. Yet

the total time complexity of Algorithm 1 is dependent on the

total length of all repeat nodes, which is bounded by the genome

size. Algorithm 1 runs in Oðnlog gÞ time and Oðn+jCDGjÞ space,

where jCDGj is the size of the compressed de Bruijn graph. We describe

a technique in the next subsection that enables Algorithm 1 to achieve

this time complexity.

2.2 Computing repeatNodes quickly with suffix skips

In this section, we describe an Oðnlog gÞ time algorithm for deriving the

set of repeatNodes from MEM�ks in the suffix tree. It simulates the steps

of iteratively traversing suffix links and performing an LMA query at

each node traversed. In its basic form, as depicted in Figure 3, this process

takes a total of Oðn2Þ time, linear in the total length of all MEMs in the

genome.

To accelerate the process to Oðnlog gÞ time, we introduce suffix skips

to generalize suffix links. Suffix skips trim c characters from the beginning

of the path from the root to an internal node and navigate to the corres-

ponding internal node in Oðlog cÞ time, instead of the O(c) time to itera-

tively traverse c suffix links (see Supplementary Fig. S2). Suffix skips are

similar to the pointer jumping technique used in many parallel algorithms

(Jaja, 1992).

To compute the suffix skips, the algorithm creates a table of suffix

skip pointers at each node u, with blog 2ðstrdepthðuÞÞc entries, where

strdepth(u) is the length of the path from the root to node u. Entry i

corresponds to the node that can be reached by traversing 2i suffix links

from the node, 0 � i � blog 2ðstrdepthðuÞÞc. The table is initialized with

the original suffix link in entry 0 and then iteratively updated, so that

entry i of node u is assigned entry i – 1 of the node pointed to by node

u’s i – 1th pointer, i.e. u ! suffixSkip[i]=u ! suffixSkip[i – 1] !

suffixSkip[i – 1]. We use a breadth first search to compute the first level

of suffix skips, suffixSkip[1]. As i increases, the set of nodes that has

suffix skips at level i shrinks exponentially, as can be seen in

Supplementary Tables S2 and S3. As the nodes that need to be updated

on iteration i are distributed throughout the middle of the tree, we

maintain an array of pointers to just those nodes. We remove a node

from the array after all of its needed suffix skips have been computed,

thus rapidly shrinking the number of nodes that need to be updated in

each iteration and greatly reducing the total time as opposed to a

breadth first search at every iteration.

Supplementary Algorithm S3 describes the use of suffix skips in an

Oðnlog gÞ time procedure for deriving the repeatNodes from MEMs in

the suffix tree. The algorithm iterates through the set of internal nodes

that are marked as MEMs. For a MEM that is not a child of the root,

we extend the node to include the path from the root to the internal

node. The first LMA query identifies a potential prefix MEM. Then,

embedded MEMs are identified by LMA queries and extracted by tra-

versing suffix skips. A repeatNode is created to bridge gaps between

embedded MEMs. If at any point a marked ancestor is found that

extends to the end of the entire MEM, the process is complete.

Otherwise, the last step is to create a repeatNode that spans the remain-

ing suffix of the MEM.

We observe that a node is a MEM if its ancestors are all

MEMs. This allows us to save additional time when we decompose

MEMs into repeatNodes. We use depth-first search to iterate over the

suffix tree nodes to find MEM�ks. Upon reaching a node u that

has string depth � k and is not a MEM, we bypass the subtree

rooted at u.

We store auxiliary tables along with the suffix skips, so that our

algorithm can take advantage of suffix skips without potentially missing

any nested MEMs. Along with each suffix skip stored at a node, we

maintain a pointer to the bypassed LMA that is closest to the end of

the destination node along with its base pair proximity to the end of the

node. The speedup of suffix skips yields an algorithm with Oðnlog gÞ

time complexity but requires an additional Oðnlog gÞ working space. To

conserve space, we only store suffix skips and auxiliary tables for nodes

that can be traversed to decompose MEMs into repeatNodes, i.e. in-

ternal nodes that have string depth less than or equal to that of the

Fig. 3. Part of the suffix tree for a genome (left) with the corresponding part of the compressed de Bruijn graph (right). TwoMEMs in the suffix tree and

the suffix links that are followed to decompose the larger MEM to at least three repeat nodes, the purple nodes in the graph on the right. x, y and z are

characters. �, � and � are strings. Suffix links are displayed in red
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longest MEM�k and can be on the path of suffix links from a MEM�k
to the root

Algorithm 1 Construct compressed de Bruijn graph from suffix tree

Input: genome sequence, k.

Output: compressed forward de Bruijn graph of genome.

Compute set of repeatNodes.

Build suffix tree of genome

Mark internal nodes in the suffix tree that represent MEMs of length � k

Preprocess suffix tree for LMA queries

Split MEMs to repeatNodes.

for all marked nodes do

� find k-mers shared with other MEMs or this MEM

while node.strdepth � k do

if node has marked ancestor then

create repeatNode to represent substring of MEM skipped by

suffix link traversal since last internal MEM was removed

follow suffix links to trim LMA from node

continue traversing suffix links for any marked ancestors encoun-

tered during suffix link traversal, if they extend further

else

follow suffix link

end if

end while

create repeatNode representing suffix of MEM that extends past last

embedded MEM

end for

Sort list of start positions in repeatNodes, with pointers to corresponding

nodes.

Compute outgoing edges for each node. Construct uniqueNodes along the

way.

for all startPos½i�=s do

compute start position of successor j

if startPos½i+1� � j then

create edge from node with s to node with j

else

create uniqueNode representing the subsequence from j until

startPos½i+1�

create edge from node with s to node with j

end if

end for

3 RESULTS

We implemented Algorithm 1 along with Supplementary

Algorithm S3 in C++ and made it available open-source as

the splitMEM software. The code has been optimized for pan-

genome and multi-k-mer analysis, such that it can construct the

graphs for several values of k iteratively without rebuilding the

suffix tree. All testing was executed on a single core of a 64 core

Xeon E5-4650 server running at 2.70GHz and a total of 1.5 TB

of RAM at Cold Spring Harbor Laboratory.

Using the software, we built compressed de Bruijn graphs for

the pan-genomes of main chromosomes of two species: the nine

strains of B.anthracis and an arbitrary selection of nine strains of

E.coli using the k-mer lengths 25, 100 and 1000bp (accessions

listed in Supplementary Table S1). The three different k-mer

lengths provide different contexts for localizing the graphs:

shorter values provide higher resolution, whereas longer values

will be more robust to repeats and link variations in close prox-

imity into a single event. The overall characteristics of the pan-

genome graphs are presented in Table 1 and renderings of the

graphs are depicted in Supplementary Figures S5–S10.
The pan-genome graphs of the two species have similar topol-

ogies, although for a given value of k the E.coli graph has 2–4

times as many nodes and edges than B.anthracis. In both cases,

the node length distributions are exponentially distributed as

shown in Supplementary Figures S11 and S12. For example,

the mean node length for B.anthracis with k-mers of length 100

is 382 bp and extending to as long as 451 679bp. The sharp peak

at 199 bp occurs from an enrichment of mutations where subpo-

pulations or individual strains in the population differ by isolated

single nucleotides more than k+1bp apart. At these sites, a

‘bubble’ will form in the graph with a pair of nodes that are

2 � k� 1-bp long capturing all of the k-mers that intersect the

variant. Mutations of more than a single base form bubbles with

nodes that are 2 � k� 1+v-bp long, where v is the length of the

variant. Copy number and other structural variants lead to more

complex graph topologies but are all encoded in the pan-genome

graph.
Figure 4 shows the levels of population-wide genome sharing

among the nodes of the compressed de Bruijn graphs of the pan

genomes with varying k-mer lengths. The sharing in B.anthracis

is much higher than in E.coli across the levels of genome sharing.

This follows naturally from the high diversity of E.coli strains

(Rasko et al., 2008), while many of the available sequences of B.

anthracis were closely related and sequenced to track the origin

of the Amerithrax anthrax attacks (Rasko et al., 2011a).
A major strength of a graphical pan-genome representation is

that in addition to determining the shared or genome-specific

sequences, the graph also encodes the sequence context of the

different segments. We define the core genome to be the subse-

quences of the pan-genome that occur in at least 70% of the

underlying genomes. We computed the distance of each non-

core node to the core genome in python using NetworkX with

a branch-and-bound search intuited by Dijkstra’s algorithm for

shortest path. Note a breadth-first search is not sufficient as two

nodes can be further apart in terms of hops, while they are ac-

tually closer neighbors with respect to base-pair distance along

the path separating them. It traverses all distinct paths emanating

from the source node until either a core node is reached or the

current node was found to already have been visited by some

Table 1. E.coli and B.anthracis pan-genome graph characteristics

Species K Nodes Edges Avg.

degree

Time

(min)

Space

(GB)

B.anthracis 25 103 926 138 468 1.33 7:03 27.18

B.anthracis 100 41 343 54 954 1.32 6:59 27.18

B.anthracis 1000 6627 8659 1.30 7:33 27.18

E.coli 25 494 783 662 081 1.33 5:21 21.57

E.coli 100 230 996 308 256 1.33 4:56 21.57

E.coli 1000 11 900 15 695 1.31 3:45 21.57
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shorter path. Once a path is found from the source node to the

core genome, it uses this distance to bound the maximum search

distances of the other candidate paths.
Using this approach, we performed both a forward search

among descendants and a backward search among predecessors

to identify the distance to the closest core node and chose the

minimum of these two distances in the two pan-genome graphs.

This search takes O(m) time per source node, where m is the

number of distinct edges in the graph. Thus, this computation

takes a total runtime of Oðm � ‘Þ over all ‘ nodes in the graph.

To keep the search tractable, we limited the search to a 1000-hop

radius around each node. Supplementary Figure S13 shows the

distribution of distances in the graphs. Overall, for B.anthracis,

most of the nodes were in the core genome because the strains are

so similar or there was a very short path to the core genome. In

contrast, the results for E.coli show the distribution of distances

to the core genome follows an exponential distribution, suggest-

ing a complex evolutionary history of mutations.

3.1 Scaling considerations

We also ran splitMEM on an increasing number of strains of

E.coli until we included all 62 strains that are available at NCBI

(accessions are listed in Supplementary Table S4). As seen in

Figure 5, the time and space complexity of the software is

linear in the total number of genomes analyzed. More specific-

ally, the running time of our algorithm is Oðnlog jmaxMEMjÞ,

where the length of the longest MEM, jmaxMEMj5n, is

bounded by the size of the longest single strain, g and not the

entire length of the pan-genome. As the running time and space

requirements grow linearly with the number of genomes, these

results suggest that our server could have processed over 500

strains of E.coli and in512h.

To put the results into context, we also applied the Sibelia

algorithm (Minkin et al., 2013) to the same 62 strain dataset

on the same hardware. Sibelia also showed approximately

linear time and space requirements for increasing numbers of

strains, although there was a clear space-time tradeoff between

the two algorithms: splitMEMwas considerably faster at the cost

of requiring additional RAM (Supplementary Fig. S4).

4 DISCUSSION

Comparative genomics has been and continues to be one of our

most powerful tools for understanding the genome of a species.

Now that genomic data are becoming more abundant, we are

beginning to shift away from reference genomes and see the rise

of pan-genomics. Already hundreds of microbial species have

multiple complete genomes available, and through the rise of

long read sequencing technologies from PacBio and other com-

panies, we expect a rapid growth in the availability of additional

complete genomes (Roberts et al., 2013). Sequences that are

highly conserved or segregating across the population can

reveal clues about their phenotypic roles, and a comprehensive

pan-genomic approach allows us to directly measure conserva-

tion in the context of the flanking sequences. The graphical pan-

genome approach also consolidates all available information

about complex structural variations and gene flow into a unified

framework.

Our new splitMEM algorithm efficiently computes a graphical

representation of the pan-genome by exploiting the deep rela-

tionships between suffix trees and compressed de Bruijn

graphs. MEMs are readily identified in a suffix tree and through

the splitMEM algorithm are efficiently transformed into the

nodes and edges of a compressed de Bruijn graph. This algorithm

effectively unifies the most widely used sequence data structures

in genomics into a single family containing suffix trees, suffix

arrays, FM-indexes and now compressed de Bruijn graphs. To

accomplish this goal, we have proposed a new construct, called

suffix skips, that generalizes the well-established concept of suffix

links to interrelate more distantly related portions of the suffix

tree.
To demonstrate the utility of the algorithm, we have applied it

to analyze the pan-genomes of all 9 B.anthracis and all 62 E.coli

genomes. Interestingly, when comparing a sample of nine E.coli

genomes with the nine B.anthracis genomes, the distributions of

the lengths of the nodes in the two pan-genome graphs are

Fig. 4. Levels of genome sharing in the nodes of the pan-genome graphs

of 9 strains of B.anthracis (top) and E.coli (bottom). The plots show the

fraction of nodes that have each level of sharing

Fig. 5. The running time and peak memory of splitMEM on the pan-

genome graphs of increasing numbers of E.coli strains with k-mer length

of 25. Each point represents the minimum value recorded over five trials

to reduce measurement noise introduced by competing activity of the

server. The line represents the linear regression of the points
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similar, whereas other properties are markedly different, such as

the distributions of the levels of sharing or the distance to the

core genomes. This suggests that we have only narrowly explored

the genomic variability of B.anthracis, and future experimental

work remains to examine the functional significance of the vari-

able regions.
Future work remains to improve splitMEM and further

unify the family of sequence indices. Although our current im-

plementation can easily scale to dozens or hundreds of gen-

omes on a common server, most desired are techniques to

reduce the space consumption for even larger numbers of gen-

omes. It is not directly possible to apply recent approaches

using Bloom filters or other techniques to save space (Chikhi

et al., 2014) but is an interesting research problem to consider.

We are also currently investigating techniques to construct a

pan-genome from the FM-index building on the algorithms of

the String Graph Assembler (Simpson and Durbin, 2012) for

assembling a genome from short reads. These do not directly

apply either without an exhaustive consideration of every k-

mer in the genomes, but there may be ways to generalize our

algorithm from suffix trees. We also aim to research additional

downstream analysis algorithms for the pan-genome, especially

developing a sequence aligner which can align directly to the

graph structure. Finally, we also aim to extend the splitMEM

algorithm to become more robust in the presence of incomplete

genomes, so that fragmented draft genomes can be more read-

ily analyzed.
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