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Abstract

The early postnatal period is a critical window for intestinal and immune maturation. Intestinal
development and microbiome diversity and composition differ between breast- (BF) and formula-
fed (FF) infants. Mechanistic examination into host-microbe relationships in healthy infants has
been hindered by ethical constraints surrounding tissue biopsies. Thus, a statistically rigorous
analytical framework to simultaneously examine both host and microbial responses to dietary/
environmental factors using exfoliated intestinal epithelial cells was developed. Differential
expression of ~1,200 genes, including genes regulating intestinal proliferation, differentiation and
barrier function, was observed between BF and FF term infants. Canonical correlation analysis
uncovered a relationship between microbiome virulence genes and host immunity and defense
genes. Lastly, exfoliated cells from preterm and term infants were compared. Pathways associated
with immune cell function and inflammation were up-regulated in preterm, whereas cell growth-
related genes were up-regulated in the term infants. Thus, coordinate measurement of the
transcriptomes of exfoliated epithelial cells and microbiome allows inquiry into mutualistic host-
microbe interactions in the infant, which can be used to prospectively study gut development or,
retrospectively, to identify potential triggers of disease in banked samples.
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Introduction

Intestinal epithelial cells and the commensal microbiota are in close and intimate contact.
Studies emanating from germ free and gnotobiotic animals have provided conclusive
evidence of the critical role of the intestinal microbiota in regulating gut development and
gene expression [1,2], mucosal and systemic immunity [3], the enteric nervous system [4],
gut brain axis [5] and host metabolism [6,7]. Recent studies have dispelled the concept that
amniotic fluid and meconium are sterile under normal conditions [8]. Meconium, which is
formed primarily by ingestion of amniotic fluid by the fetus in utero, also contains
exfoliated intestinal cells and mucus. The meconium microbiome is influenced by maternal
factors, including clinical conditions [9] and probiotic use [10], and may impact child health
outcomes [8, 9, 11]. Thus, host-microbe interactions and education of the neonatal immune
system begin in the womb [8].

Immediately after delivery, the human infant acquires a much more complex microbiota,
whose composition is influenced by an interplay between genetic and environmental factors
[12], of which nutrition is a key component [13]. At the same time, the gastrointestinal tract
undergoes rapid structural and functional adaptation, which differs between breast-fed (BF)
and formula-fed (FF) infants [14,15]. Although human milk contains growth factors and
bioactive proteins and lipids that may directly promote the growth of the gastrointestinal
tract [16,17], we speculated that dissimilarities in the composition of the microbiota between
breast- and formula-fed infants [17,18] could also be contributing to the enhanced gut
development observed by mode of nutrition [14,15].

Our long-term goal is to determine the role of host-microbe interactions within the neonatal
intestine on infant development and to define how these cross-functional communications
are affected by diet. Among the components of human milk that shape the composition of
the microbiota are the human milk oligosaccharides (HMO). The HMO are comprised of a
mixture of up to 200 complex oligosaccharides that constitute the third most predominant
component of human milk [19]. The HMO content and composition is influenced by the
mothers’ genetics (FUT-2 secretor status and Lewis blood group) [20], preterm delivery [21]
and, to a lesser degree, the stage of lactation, where sialic acid containing HMO decline,
while fucosylated HMO increase or stay constant over the course of lactation [19]. The
potential physiological roles of HMO for the developing infant is far reaching in that their
multifunctional actions range from regulation of intestinal cell proliferation, functional
differentiation and apoptosis [22, 23], gene expression [24], immune function [25-27],
pathogen protection [28, 29], and prebiotic activities, including serving as substrates for
fermentation [30, 31] and promoting growth of specific bifidobacteria [32], bacteroides [33]
and Lactobacillus [34] species (reviewed in [35]).

We hypothesize that nutrition is a central regulator of host-microbe interactions in early life.
As noted above, the composition of the microbiota of BF and FF infants differs in terms of
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overall diversity as well as composition [12, 13, 18]. Epidemiological studies have
demonstrated that human milk protects against common infectious diseases in infancy (otitis
media, respiratory syncytial virus, urinary tract infection), necrotizing enterocolitis (NEC) in
preterm infants as well as immune-mediated disorders in later childhood, including allergy,
asthma, atopic dermatitis, inflammatory bowel disease, Celiac Disease, Type 1 and Type 2
diabetes mellitus, and leukemia (ALL and AML) [36]. Recently, Walker [37] proposed that
a diverse balanced microbiota is necessary for the development of an appropriate innate and
adaptive immune response. This is further supported by studies associating dysbiosis in
early life with immune-mediated childhood disorders [38-40] and obesity [41, 42].
Dysbioses can arise from common pediatric practices, including preterm delivery, formula
feeding, cesarean section, and use of antibiotics [42, 43] (Figure 1). Interestingly, cesarean
section [43] and antibiotic use [44] are independently associated with an increased
susceptibility to immune-mediated disease, potentially through dysregulation of host
immune homeostasis [44, 45]. It is important to note that all of these practices are amenable
to changes in clinical protocols, and, as such, should be a priority for pediatric practice.

Given the evidence that early life nutritional exposures program long-term health outcomes,
potentially through host-microbe interactions, our research group set out to systematically
integrate genomic data from both the infant (host mucosa) and gut microbiota in order to
define host gene-diet interactions within the context of the structure and operations of gut
microbial communities. Until recently, no investigators had comprehensively profiled
intestinal gene expression during early postnatal development due to limited availability of
intestinal tissue from healthy infants. Thus, the potential for exfoliated epithelial cells to
provide a non-invasive readout of intestinal gene expression was investigated [46-48].

Use of Exfoliated Cells to Assess Host Gene Expression

Each day, ~1/3rd to 1/6th of normal adult epithelial cells are shed [49], which corresponds to
~10 billion (1019) cells per day. Exfoliation of intestinal epithelial cells from the villus tips
in the small intestine and crypt surface in the colon is ab active biochemical process linked
to intestinal epithelial homeostasis [50]. Exfoliation typically induces anoikis, rather than
apoptosis, which is a form of programmed cell death induced by anchorage-dependent cells
detaching from the surrounding extracellular matrix. Detachment also induces autophagy,
which is a survival mechanism to loss of nutrients [51]. The exfoliated cells enter into a
quiescent state and appear to maintain viability for differing lengths of time depending on
the sources of cells. For example, quiescent exfoliated epithelial cells without signs of
apoptosis were recovered in gastric fluid aspirates obtained from preterm infants [52].
Furthermore, exfoliated quiescent epithelial cells can be cultured, evidenced by the ability to
use exfoliated cells to forms lumens in 3-dimensional epithelial cell culture [47, 48],
suggesting that detachment—induced autophagy contributes to the viability of these cells.

This vast reservoir of host cells generated by exfoliation sparked interest from both basic
and clinical translational investigators due to their potential utility to non-invasively assess
cellular markers of gastrointestinal disease, predominantly colon cancer [53, 54].
Subsequently, exfoliated epithelial cells had been used as sentinels of in vivo exposure to
nutritional regimens [55, 56] or as markers of disease states, including cancer in adults [57,
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58] and children with inflammatory bowel disease [59]. More recently, the feasibility of
identifying protein markers and amplifying genes by polymerase chain reaction was
demonstrated in exfoliated gastric cells from preterm infants [52, 60]. Kaeffer and
colleagues studied isolated exfoliated cells obtained from gastric aspirates [52, 60] and stool
samples [52] obtained from preterm infants. The gastric exfoliated cells were confirmed to
be of epithelial origin by cytokeratin 18 expression and mRNA for beta-actin, clock genes
and SLC26-A7-1, an apical CI7/HCO3 /sulfate exchanger present on parietal cells, was
detected [52]. They subsequently reported that exfoliated epithelial cells isolated from
gastric aspirates were quiescent and expressed membrane bound H*/K* ATPase.
Importantly, when the H*/K* ATPase-positive cells were established in cell culture,
Pouf5F1-Oct4 expression, a biomarker of progenitor status, was maintained [52].

Our goal was to investigate genome-wide markers by interrogating the transcriptome
through gene microarray [46] or, more recently, RNAseq [48]. Because the number of intact
cells that can be isolated from fecal material is low [53], the Chapkin laboratory developed a
noninvasive mMRNA-based method as a highly sensitive technique for detecting molecular
markers of intestinal development and function [57, 58]. This methodology has the
advantage of using host exfoliated cell MRNA directly isolated from feces, which contain
sloughed small intestinal and colon cells. The method is capable of isolating and quantifying
specific MRNASs under various intestinal conditions and has been tested in adult humans [58,
61]. A summary of the studies that have applied exfoliated epithelial cells in pediatric
populations is shown in Table 1 and will be discussed below.

Stool-derived Eukaryotic mRNA can be used to Non-invasively Assess the
Impact of Nutrition on Intestinal Gene Expression in Term Infants

In a proof-of-principle study, stool samples containing exfoliated host cells and luminal
bacteria were collected from 3-month-old exclusively BF or FF infants [46]. A total of 1,214
genes were significantly differentially-expressed between BF and FF infants, however, we
focused our analyses on the 146 genes that were included in a list of 529 genes that we had a
priori hypothesized could be differentially expressed based on prior knowledge. Analysis of
gene networks reflected broad differences with respect to Sgnal Transduction (WNT,
NOTCH, TGF-B), Cytoskeletal Remodeling; Cell Adhesion and Immune Response [46].
Linear Discriminant Analysis (LDA) was used to identify genes that best “classified” or
discriminated BF from FF infants and the top up- and down-regulated genes and their fold-
changes are shown Table 2. Although these human milk-regulated genes were identified in
term infants, they could have particular importance to infants with impaired gut
development and function, including preterm infants. These genes included glucocorticoid
receptor (NRC31), as glucocorticoids are key contributors to gut maturation, Z01 (TJP1) a
critical tight junction protein, and a number of genes encoding proteins involved in cell-cell
interactions, including integrins, cadherins and syntaxin, and proteins involved in cell
proliferation and apoptosis [46]. Interestingly, the most highly ranked gene for identifying
BF versus FF infants was Endothelial PAS domain-containing protein 1 (EPAS-1; also
known as Hypoxia-inducible factor-2a [HIF-2a]). It is well known that human milk protects
preterm infants from the development of NEC, one of the most common causes of morbidity
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and mortality in very low birth weight infants [62, 63]. We postulate that induction of this
gene may provide a mechanism whereby the intestines of premature infants fed human milk
are better able to tolerate episodes of hypoxia and are thereby less likely to develop NEC. In
addition to being the best single classifier, EPAS-1 was an even stronger predictor when
combined with other genes in ten separate 2- or 3-gene combinations (an example is shown
in Figure 2), thus providing potential biomarkers for nutritional modulation of gut
development [46].

Stool-derived Eukaryotic mRNA and Intestinal Microbiota DNA can be used

to Non-minvasively Evaluate Host-Microbe Interactions in the Intestine of

Term Infants

In an extension of this work, we created a novel methodology designed to assess the
multivariate relationship between the microbiome metagenomic functional profile and the
host transcriptome [47] as shown in Figure 3. By examining the multivariate structure
underlying the bacterial metagenome or metatranscriptome and gut exfoliated cell
transcriptome, our approach leverages richer and fuller information content compared to
analyses focusing on single data sets (e.g., only host transcriptome data or only bacterial
metatranscriptome data) and only single variables (e.g., gene by gene differential expression
testing). We propose that this “integrative” strategy will help identify intestinal genes that
are responsive to diet and influenced by factors known to cause dysbiosis in term and
preterm infants (e.g. route of delivery, antibiotic use, formula feeding, parenteral nutrition).

Using this approach, phyla-level differences in the microbiota of BF and FF infants were
observed [47]. Microbiota functional characteristics were mapped to functional SEED
categories. Because of the hierarchical structure of the SEED classification system,
aggregating reads into coarser classifications provided for a more informed analysis.
Virulence was the one SEED category that differed between the bacterial metagenome of BF
and FF infants [47]. To examine the intrinsic relationship between host and microbiome,
host transcriptome and metagenomic data were combined and integrated using the
multivariate technique of canonical correlation analysis (CCA) [47]. We examined whether
a relationship existed between microbiota virulence genes and sets of host immunity and
defense genes (n=660), intestinal biology genes (n=660) or a random genes (n=459). A
robust multivariate structure relating microbiota virulence genes and host immunity and
defense genes was observed. Seven of the top eleven immunity and defense host genes that
were related to the microbiota were down-regulated in BF versus FF infants, including
ALOX5, a lipoxygenase involved in arachidonic acid and leukotriene synthesis, the cytokine
IL1a, and binding proteins for natural Killer cells (KLRF1), T-lymphocytes (AOC3) and
LPS (BPILI) [47]. These findings indicate that the overall impact of breastfeeding was to
reduce inflammatory genes in the gut potentially promoting tolerance to the luminal
microbes.
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Stool-Derived Eukaryotic mRNA can be used to Non-Invasively Assess the
Impact of Preterm Delivery on Intestinal Gene Expression

We next applied our exfoliated cell transcriptomic approach to the preterm infant [48].
Preterm birth, which affected 15 million children in 2010, is a major determinant of neonatal
morbidity and is the second leading cause of death in children under 5 years [64, 65]. Infants
born at <32 weeks gestational age (GA) are faced with a unique set of challenges due to
their developmental immaturity. In the U.S., the costs associated with preterm birth were
more than $26.2 billion in 2005 [66]. Emerging evidence has clearly demonstrated direct
and interactive links between diet, the intestinal microbiome and immune development
[67,68]. Many common diseases afflicting preterm infants are associated with dysregulated
immune function [69-73].

To determine whether sufficient exfoliated epithelial cells could be isolated from preterm
infants and whether they would inform developmental differences, host transcript abundance
in healthy full term (>38 weeks GA) and extremely preterm (24-30 weeks GA) infants were
measured using RNA-Seq [48]. Approximately, 5500 genes were detected (FPKM>1) on
average in both preterm and term samples. Several key observations were made. First, gene
expression in preterm infants was more heterogeneous amongst themselves and compared to
term infants. Second, exfoliated cells express genes associated with specific intestinal cell
types including absorptive enterocytes (lactase and sucrose-isomaltase), Goblet cells
(mucin-2), enteroendocrine cells (chromogranin A), and Paneth cells (lysozyme). Lastly, the
transcriptional landscape is dramatically altered in the preterm versus term infant intestine
[48].

Gene pathways that were over-expressed in preterm versus term or term versus preterm
intestine were evaluated. Although none of the infants were clinically ill at the time the stool
samples were collected, preterm over-expressed genes related to immune function. Several
cytokines, including IL-1a and IL-33 were up-regulated in preterm versus term. In addition,
several genes that regulate the expression of cytokines and other immune genes were
expressed at 3- (NFKB1a) to 6-fold (CASP1) higher levels in preterm versus term infant
exfoliated cells [48]. This is consistent with work by Nanthakumar and colleagues who
showed that immortalized cells isolated from fetuses (H4 cells) or tissue explants from
fetuses mount a more robust proinflammatory cytokine response (IL-8) after inflammatory
stimulation with lipopolysaccharide or IL-1f than cells from adult tissue (Caco-2) or
explants from older children [74]. The excessive inflammatory response of the immature
intestine appeared to be in part due to a developmental under-expression of 1kB [75] coupled
with overexpression of the NFkB/MyD88 innate inflammatory genes (TLR2, TLR4,
MyD88, TRAF-6, NFkB1 and IL-8) and reduced expression of negative regulator genes
(SIGIRR, IRAK-M, A-20 and TOLLIP) in fetal intestine relative to other children [75].
Thus, it appears that immaturity of the intestinal innate immune response may contribute to
excessive inflammation in the intestine in response to colonizing bacteria, which is a
hallmark of NEC [76].

In contrast, in term infants, up-regulated immune genes were involved in balancing the
immune system, e.g. promoting T-cell development (LCP2; 3.6-fold greater than preterm),
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while inhibiting macrophage activation (LENGSY; 16-fold greater than preterm). The
majority of genes were involved in cell turnover, by regulating proliferation and apoptosis.
One of the most highly differentially-expressed genes was an anti-apoptotic factor
(MTRNRZ2LS6; 5-fold higher in term than preterm). Another interesting gene was SP3 (~2-
fold higher in term than preterm), which is a transcription factor that can be regulated
through short-chain fatty acid induced acetylation [77, 78], potentially supporting the role of
products of microbial metabolism in regulating normal gut growth in term infants.

The underlying reason for differences in intestinal gene expression between preterm and
term infants is multifactorial and may be a result of the developmental immaturity of the
preterm gut, coupled with specific environmental exposures that are unique to the post-natal
course of this population. Although well-controlled studies are needed to evaluate these
exposures, this study highlights the potential of using the described noninvasive technology.
We anticipate that this approach will allow investigators to elucidate how diet and bedside
clinical management of this immature population influences intestinal development and
immune ontogeny over time and has the potential for generating comprehensive, diagnostic
gene sets for the noninvasive identification/prediction of different intestinal phenotypes in
infants.

In addition to the host gene networks that are affected by the developing microbiota, the
metabolic products from both microbes and host can give rise to signaling and inflammatory
pathways that can affect numerous organs such as the lung, liver and brain in addition to the
intestinal tract [73]. Undoubtedly, the comprehensive analysis of microbiota, intestinal
transcriptome and metabolites will provide an overall picture of the milieu that is associated
with many of the major morbidities seen in preterm infants.

Eukaryotic mRNA -derived for Meconium can be used to Non-invasively

Assess the Impact of Maternal Probiotic treatment on Fetal Intestinal

Immune Gene Expression In Utero

The long-held belief that the fetus existed in a sterile intrauterine environment and that
introduction of bacteria into the amniotic fluid would lead to an adverse pregnancy outcome
has been challenged by recent studies showing that the placenta, amniotic fluid and fetus
contain a diversity bacteria and that these differ between term and preterm infants [79, 80].
Although dysbiosis may trigger preterm delivery [11, 81], other studies have described a
relatively complex placenta microbiota comprised of nonpathogenic commensal microbiota
from the Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria phyla [9,
79, 80] that, surprisingly, clusters more similarly to the maternal oral than vaginal or gut
microbiota [79, 82]. These results suggest that the placental and intrauterine bacteria do not
ascend from the vagina, but may be delivered through the circulation [82]. Rautava [10]
administered probiotics in order to investigate whether microbes in placenta or amniotic
fluid affected fetal innate immune gene expression during late pregnancy and whether innate
immune gene expression profiles in the placenta and the fetal gut may be modulated by
dietary supplementation with specific probiotics. In a double-blind clinical trial, pregnant
women were administered either placebo, Bifidobacterium lactis (B. lactis) or B. lactisand
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Lactobacillus rhamnosus GG (LGG) for 14 days before elective cesarean section at full term
[10]. Bacterial DNA was detected in all placenta samples by PCR. Meconium samples were
collected and host mMRNA extracted from fetal exfoliated epithelial cells using the method of
Chapkin and colleagues [46]. An association between the presence of microbial DNA in
amniotic fluid and placenta and changes in toll like receptor (TLR)-related gene expression
in the fetal intestine was observed. Additionally maternal probiotic supplementation
significantly modulated the expression of TLR-related genes both in the placenta and in the
fetal gut. Compared to mRNA expression in exfoliated cells of infants exposed to the
placebo, TLR6 mRNA expression was down-regulated nearly 90% in exfoliated cells from
infants whose mothers consumed B. lactis + LGG, whereas TLR7 was down-regulated 70%
in infants of mothers administered B. lactisalone [10]. TLR are important mediators of
innate immunity through their recognition of highly conserved microbial-associated
molecular patterns. Specfically, TLR6 interacts with TLR2 to mediate cellular response to
bacterial lipoproteins. TLR7 recognizes single-stranded RNA in endosomes, which is a
common feature of viral genomes [83]. These findings support the hypothesis that microbial
programming begins in fetal life through host-microbe interactions in utero [8], which can
be manipulated by maternal probiotic intervention [10].

We have recently validated a novel molecular methodology that utilizes stool samples
containing intact sloughed epithelial cells to noninvasively quantify intestinal gene
expression profiles in the developing human neonate, which is “an important first step
towards a more comprehensive understanding of the biological mechanisms underlying the
parallel development of the host and microbiome in early life” [84]. This approach enables
repeated assessment of the same infant overtime to assess temporal changes in gene
expression [40]. Furthermore, we have expanded upon this methodology by combining host
gene expression with the bacterial metagenome from the same infant [47]. This approach is
statistically rigorous and is sensitive to dietary intake [46, 47] and the stage of gestation
[48]. In conclusion, we propose that the investigation of host-microbiome interaction will
fill an important gap in our understanding of the coordinated development of gut microbiota
and the infant intestine. In the long-term, it is anticipated that nutritional strategies to
improve the development of the microbiome and intestine will enhance the clinical care of
high-risk infants.
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Common pediatric practices that impact gut microbiota and host microbe interactions.
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