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Abstract

Patient-specific modeling of ventricular electrophysiology requires an interpolated reconstruction 

of the 3-dimensional (3D) geometry of the patient ventricles from the low-resolution (Lo-res) 

clinical images. The goal of this study was to implement a processing pipeline for obtaining the 

interpolated reconstruction, and thoroughly evaluate the efficacy of this pipeline in comparison 

with alternative methods. The pipeline implemented here involves contouring the epi- and 

endocardial boundaries in Lo-res images, interpolating the contours using the variational implicit 

functions method, and merging the interpolation results to obtain the ventricular reconstruction. 

Five alternative interpolation methods, namely linear, cubic spline, spherical harmonics, 

cylindrical harmonics, and shape-based interpolation were implemented for comparison. In the 

thorough evaluation of the processing pipeline, Hi-res magnetic resonance (MR), computed 

tomography (CT), and diffusion tensor (DT) MR images from numerous hearts were used. 

Reconstructions obtained from the Hi-res images were compared with the reconstructions 

computed by each of the interpolation methods from a sparse sample of the Hi-res contours, which 

mimicked Lo-res clinical images. Qualitative and quantitative comparison of these ventricular 

geometry reconstructions showed that the variational implicit functions approach performed better 

than others. Additionally, the outcomes of electrophysiological simulations (sinus rhythm 

activation maps and pseudo-ECGs) conducted using models based on the various reconstructions 

were compared. These electrophysiological simulations demonstrated that our implementation of 

the variational implicit functions-based method had the best accuracy.
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1. Introduction

State-of-the-art computer models of the heart are being used to study a wide range of 

phenomena in cardiac electrophysiology and electromechanics (for a recent review, see 

(Trayanova and Boyle 2014)). Currently, the heart is one of the most advanced “virtual 

organs” among computational models of various physiological systems (Trayanova 2011, 

2014, Winslow et al. 2012). Recent years have witnessed the emergence of image-based 

models of the heart that incorporate representations of cardiac anatomy with unprecedented 

detail (Vadakkumpadan et al. 2010, Bishop et al. 2010, Moreno et al. 2011, Boyle et al. 

2013, Hu et al. 2013a, McDowell et al. 2013, Rantner et al. 2013a, 2013b). These detailed 

models incorporate information on cardiac geometry, tissue heterogeneity, and muscle fiber 

orientation. Structural detail is acquired using Hi-res ex vivo imaging techniques, such as ex 

vivo diffusion tensor magnetic resonance imaging (DTMRI) and ex vivo late-gadolinium 

enhanced (LGE) MRI. Such ex vivo models are being applied in basic research to uncover 

specific mechanisms of heart dysfunction in diseases such as myocardial infarction and heart 

failure. For example, Arevalo et al. (Arevalo et al. 2013) employed Hi-res 

electrophysiological models of infarcted canine ventricles reconstructed from ex vivo 

imaging data that represented infarct scar and border (peri-infarct) zone to examine the role 

of border zone extent in arrhythmogenesis. This study established that ventricular 

tachycardia (VT) maintenance requires a minimum volume of remodeled but viable tissue, 

and that the organizing center of infarct-related VT is located within the border zone. This 

finding could have major clinical impact in the development of new approaches for 

determining the ablation target of infarct-related VT, which is the most frequent clinical 

ventricular arrhythmia (Stevenson et al. 1985). In other studies, a correspondence between in 

vivo electroanatomical and in silico voltage maps was demonstrated by Pop et al. (Pop et al. 

2011) by using a model of infarcted pig ventricles reconstructed from ex vivo MRI and 

DTMRI data. Their simulations in two infarcted hearts successfully predicted the VT-

inducibility consistent with the in vivo electrophysiological studies. Ng et al. (Ng et al. 2012) 

also demonstrated the feasibility of using simulations, with a model of the pig left ventricles 

(LV) reconstructed from high-resolution in vivo MRI data, to predict VT circuits.

The emerging field of patient-specific cardiac modeling seeks to translate the above 

advancements into the clinical arena. In a recent study by Ashikaga et al. (Ashikaga et al. 

2013), finite element meshes of hearts from LGE MR images were created for computer 

simulation to non-invasively predict the VT circuits and to examine the targets for ablation 

of infarct-related VT. This study demonstrated that in silico prediction of the optimal 

ablation targets could result in much smaller lesion than those executed in the clinic. Relan 

et al. (Relan et al. 2011) applied a personalization framework to a clinical dataset derived 

from a hybrid X-ray/MRI and non-contact mapping procedure on a patient with heart 

failure. The results of simulations using the personalized model demonstrated that it could 
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successfully be used to predict the induction of infarct-related VT from sites not accessible 

in the clinic. Vadakkumpadan et al. (Vadakkumpadan et al. 2013a) developed MRI-based 

heart models from 20 patients with ischemic cardiomyopathy to simulate VT inducibility. 

The successful prediction of arrhythmia risk may provide an opportunity to noninvasively 

predict the risk of sudden cardiac death in patients.

Eventually, physicians may be able to utilize the simulation tools for diagnosis and guidance 

of therapies in a patient-specific manner. To this end however, an interpolated three-

dimensional (3D) reconstruction of the patient ventricular geometry with accurate 

representation of the myocardial surfaces is crucial. Specifically, electrophysiological 

studies have demonstrated that an edge length of 250–400 μm is needed in the finite element 

models to resolve wave front propagation (Plank et al. 2008, Gurev et al. 2011). However, 

due to limitations such as those associated with image acquisition time and patient 

discomfort, clinical cardiac magnetic resonance (CMR) cannot currently fulfill the 

resolution requirement. An inter-slice spacing of about 7 mm is the norm in routine clinical 

LGE-CMR and Cine MR. Although isotropic sub-millimeter whole-heart coronary MRI 

techniques have been developed (Akçakaya et al. 2014), these techniques use acceleration 

rates beyond what is available clinically. Therefore, the myocardial boundaries obtained 

from a clinical MR image need to be interpolated to obtain a 3D cardiac geometry 

reconstruction, the first step in the image-based patient-specific cardiac model generation.

Methods that combine such a reconstruction with automatic segmentation of ventricular 

boundaries were reviewed by Petitjean and Dacher (Petitjean and Dacher 2011). Among 

these methods, the atlas-based approach can reconstruct a Hi-res ventricular geometry from 

Lo-res cardiac images, provided that a Hi-res atlas or template is available. For example, 

Lamata et al. (Lamata et al. 2014) developed an atlas-based platform for the personalization 

of ventricular cardiac meshes. However, the method used was highly dependent on the 

accuracy of registration between the atlas mesh and the patient images. Notably, recent 

study by Paiement et al. (Paiement et al. 2014) summarized the approaches for 3D modeling 

from sparse medical data. They also proposed a method to integrate segmentation and 

interpolation into a level set framework which uses the radial basis function interpolation. 

While these studies have focused on automatic cardiac segmentation, manual contouring is 

the standard for derivation of important clinical indices such as ventricular mass and 

volume, and is the ground truth in the validation of automatic segmentation methods 

(Grosgeorge et al. 2011). Indeed, efforts to reconstruct the ventricular geometry based on 

manual delineation of myocardial boundaries have been undertaken for patient-specific 

modeling. Specifically, Mansi et al. developed a software tool to reconstruct ventricular 

geometry based on manual landmarking and variational implicit functions interpolation, for 

patient-specific simulations of pulmonary valve replacement interventions (Mansi et al. 

2009). Image-based patient-specific cardiac modeling studies referred to earlier (Relan et al. 

2011, Ashikaga et al. 2013, Vadakkumpadan et al. 2013a) also used a combination of 

manual contouring and various interpolation methods for ventricular geometry 

reconstruction methods. However, a thorough evaluation of reconstruction methodologies 

which rely on manual segmentation has not been undertaken. A study that sought to evaluate 

the reconstruction methodology within the software tool developed by Mansi et al. was 

recently conducted by Ringenberg et al. (Ringenberg et al. 2014). This validation study, 
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however, did not examine the effect of reconstruction errors on the outcomes of simulations 

of cardiac electrophysiology, or of any other function of the heart. Ringenberg et al. also did 

not compare the variational implicit functions interpolation strategy with alternatives, or 

include any in vivo scans, where the shape of the heart is markedly different than in ex vivo 

scans.

The goal of this study is to develop and extensively evaluate a processing pipeline for 

obtaining an interpolated 3D reconstruction of patient ventricular geometry from low-

resolution (Lo-res) clinical images. The implemented pipeline involves contouring of the 

epi- and endocardial boundaries of the ventricles, interpolation of the contours using the 

variational implicit functions method, and then merging of the interpolation results to obtain 

a reconstruction. To evaluate our method, we compared the reconstructed ventricular 

geometry to that obtained by manually segmenting Hi-res images of the same ventricles. 

Numerous Hi-res ex vivo and in vivo cardiac computed tomography (CT), MR, and DTMR 

images of pigs, canines, and humans were used. Lo-res data of the same ventricles were 

generated by sparsely sampling the manual contours. The performance of our approach 

based on variational implicit functions was compared to five other interpolation methods 

previously used in cardiac reconstruction, namely those based on linear, cubic spline, 

spherical harmonics, cylindrical harmonics, and shape-based. In all cases, performance 

comparisons involved similarity metrics based on ventricular geometry. Finally, the 

accuracy of the reconstructions was evaluated in terms of the outcomes of 

electrophysiological simulations at clinically observable levels, including pseudo-ECGs.

2. Methods

2.1. Hi-res Image Data

A total of 15 Hi-res cardiac images of normal and diseased hearts were made available to us 

for this study, as described in Table 1. The datasets included those of 1 normal canine heart 

ex vivo, 4 failing canine hearts ex vivo, 3 infarcted canine hearts ex vivo, 4 infarcted pig 

hearts in vivo, and 3 human hearts in vivo. These datasets encompass heart conditions that 

would most likely be encountered in patient-specific modeling. The Hi-res in vivo datasets 

were included in this study to increase the diversity of input data. Note that, compared to ex 

vivo images, the shape of the heart in in vivo scans is different due to spatial constraints 

imposed by the nearby organs.

The porcine datasets (Pig 1 – 4) were acquired under a protocol approved by the Institutional 

Animal Care and Use Committee (IACUC). The mid-left anterior descending coronary 

artery of a swine was occluded for 120 minutes using a balloon angioplasty catheter to 

create myocardial infarction (MI). Several months post-infarction, the swine underwent an 

in vivo imaging session. As a gold standard for infarct imaging, phase sensitive inversion 

recovery (PSIR) late gadolinium-enhancement imaging was performed in a 3-Tesla clinical 

MR system (Achieva TX, Philips Healthcare, Best, The Netherlands) (Kellman et al. 2002, 

Lee et al. 2011). For the canine datasets (Dog 1 – 8) as well as the Human 1 dataset, the 

acquisitions are described in previous studies (Vadakkumpadan et al. 2012, 2013b). We also 

used a publicly available human MR dataset (Human 3) from the Auckland MRI Research 
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Group (AMRG 2014). The resolution for each image is described in Table 1. No down-

sampling of the original data was done in order to retain all anatomical details.

The epi- and endocardial boundaries of the ventricles in every 2D slice of the Hi-res images 

were manually contoured by placing a number of landmark points along the boundaries (see 

Figure 1). The contouring was performed by trained experts at Johns Hopkins University. 

Cubic splines were then fitted to these points, and the resulting contours were assembled to 

create the manual ventricular geometry reconstruction, which served as the ground truth. 

The number of landmark points was the same in each slice of a given image. Even though 

semi/automatic methods could have been used to segment the ex vivo datasets for the ground 

truth, we did not do so as these methods segment the trabeculae from the Hi-res images, 

which are not visible in the clinical MR. By excluding the trabeculae, the created ground 

truths represented the common clinical ventricular geometries, and were appropriate for our 

comparative study of the patient-specific model generation.

2.2. Ventricular Reconstruction using Interpolation Based on Variational Implicit Functions

Our method is a modification of the approaches presented by Ringenberg et al. and Mansi et 

al. (Mansi et al. 2009, Ringenberg et al. 2014) who utilized the so-called variational implicit 

functions (Turk and O’Brien 1999) to reconstruct patient-specific ventricular geometries 

from Lo-res clinical images. In brief, to reconstruct a surface from n landmark points cj, j = 

1,2, …, n, the variational implicit functions method builds a smooth function f in 3D space 

such that f = 0 at these landmark points. The interpolation function is expressed as 

 where φ(x) = |x|2 log(|x|) is the radial basis function, P(x) is a 

1-degree polynomial that accounts for the linear and constant portions of f(x), and dj are the 

weights to be computed. The weights dj are calculated by solving the linear system: 

 where φij = φ(ci − cj), and i, j = 1,2, …, n. Additional 

landmark points inside the surface where the function values are set to positive or h > 0 are 

also required. For this, we calculated the barycenter of the landmark points in each slice 

using the formula , where s was the number of landmark points in the slice (see 

Figure 2 for the LV endocardium). The points located 1% of the way from each landmark 

point to the barycenter were automatically added as the points where f > 0 (see Figure 2). 

Similarly, the points located 1% from each landmark points away from the barycenter were 

automatically added right outside the surface as the points with f < 0. We performed the 

reconstruction separately for the epi- and endocardial left and right ventricles (LV/RV) and 

then merged the results to create the full ventricular geometry. Compared to the approach by 

Mansi et al. (Mansi et al. 2009), we automatically detected the landmark points inside and 

outside of each contour, rather than manually placing those points. In contrast with the 

technique by Ringenberg et al. (Ringenberg et al. 2014), we did not contour the same part of 

myocardial boundary more than once. Accordingly, we did not require the application of 

morphological operations to remove any erroneous pixel artifacts at the edges of the 

segmented regions as Ringenberg et al. described in their study. Also, we used the radial 

basis function |x|2 log(x) in our implementation of the variational implicit functions method, 

as our initial experiments showed that this radial basis function delivered slightly more 
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accurate reconstructions than alternatives such as |x| or |x|3. One possible reason is that the 

level of smoothness in ventricular surfaces is best captured by the radial basis function |x|2 

log(x).

In this study, for all datasets, the contours of Lo-res images to use with automatic 

interpolation methods were mimicked, by selecting sparse samples of contours drawn on the 

Hires images described above. Assessment of the accuracy of reconstructions was 

performed by comparing the reconstructed ventricular geometry to the ground truth 

geometry of the same ventricles.

2.3 Alternative Ventricular Geometry Reconstruction Methods

The performance of our modified variational implicit functions method was also compared 

to five other interpolation methods previously used in Lo-res cardiac reconstruction, namely 

those based on linear, cubic spline, spherical harmonics, cylindrical harmonics, and shape-

based. These are briefly described below.

2.3.1 Linear and Cubic Splines Interpolation—In the linear interpolation method, 

from two adjacent slices l and k containing corresponding landmark points xk and xl, we 

calculated xm = xl + ((m − l)/(k − l))(xk − xl) for the slices m = l, l + k, …, k − l, k, where xm 

is a landmark point of a slice that lied in between the two slices (Vadakkumpadan et al. 

2010). The in-plane boundary contour for slice m was computed by joining the landmark 

points xm with straight lines. In the cubic spline reconstruction method, a cubic spline was 

used to find xm between xk and xl and then a cubic spline interpolation was applied in each 

slice to reconstruct the in-plane boundary contour. In order to incorporate an anatomically 

meaningful reconstruction of the apical region into the linear and cubic reconstruction 

methods, the location of the tip of the apex for the epicardium was automatically estimated, 

and an additional landmark point was placed at this location. More precisely, the in-plane 

coordinates of this additional landmark point were the same as those of the barycenter of the 

epicardial contour in the most apical slice. The out-of-plane coordinate was calculated such 

that the distance between the landmark point and the most apical slice was the same as the 

slice thickness of the Lo-res images.

2.3.2 Spherical and Cylindrical Harmonics Interpolation—In the spherical and 

cylindrical surface harmonics methods, the interpolation function is a linear combination of 

surface harmonics (Matheny and Goldgof 1995, Hopenfeld 2004). Harmonics functions are 

the solutions of Laplace’s equation. The landmark points were expressed in spherical and 

circular cylindrical coordinates, and the coefficients of the surface harmonics were 

calculated by fitting the solution of Laplace’s equation to all landmark points. More details 

are provided in the Appendix.

2.3.3 Shape-Based Interpolation—The shape-based interpolation method we 

implemented was originally proposed by Raya and Udupa (Raya and Udupa 1990). Brieftly, 

a cubic spline was fit to the landmark points in each slice, and the pixels inside the curve 

were marked to create a binary image slice. The binary image slice was then converted into 

a grayscale image by computing the 2D signed distance transform. Next, the stack of 
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grayscale image slices was linearly interpolated, and an isosurface was extracted from the 

interpolated image. More details are given in the Appendix section. As in the linear and 

cubic spline interpolation methods, the location of the apex was estimated to ensure that the 

apical region was meaningfully reconstructed (see Section 2.3.1). Specifically, we added, to 

the apical end of the stack of binary image slices for the epicardium, a slice that contained a 

one pixel region at the estimated location of the apex.

2.4. Performance Evaluation of the Ventricular Geometry Reconstructions

Our pipeline for performance evaluation of the ventricular geometry reconstructions is 

illustrated in Figure 3. The acquired Hi-res images were used as input to the pipeline, with 

every slice of these images contoured, to reconstruct the ground truth ventricular geometry. 

To mimic the sparseness of a clinical CMR image (Lo-res), 7 to 9 evenly distributed 

contours were selected from each Hi-res image. Six ventricular geometry reconstruction 

methods, the one developed here, plus 5 others, linear, cubic spline, spherical harmonics, 

cylindrical harmonics and shape-based method, were used to reconstruct ventricular 

geometries from each Lo-res dataset. The reconstruction results obtained with our 

variational implicit functions method were compared to the ground truth, as well as to those 

obtained with the other interpolation methods.

For each dataset in Table 1, we quantitatively evaluated the reconstruction methods using 

similarity criteria. The first quantitative measure was the Dice Similarity Coefficient (DSC) 

(Zou et al. 2004), which measures the spatial overlap between two sets of segmentation of 

the same (ventricular) geometry. It is defined as DSC = 2(Myom ∩ Myoc)/(Myom ∪ Myoc) 

where Myom and Myoc are the manual (ground truth) and computed (with any of the 

interpolation methods) ventricular geometry reconstructions. Additionally, we used the 

Mean Shortest Distance (MSD) metric, which is the mean of the shortest distance from each 

point in the surface of computed reconstruction to the surface of manual reconstruction.

The metrics of relative errors in LV chamber volume, LV mass, and myocardium mass were 

also used in the geometry reconstruction evaluations. For relative errors in the LV chamber 

volume and LV mass, the values calculated from the reconstructed ventricular geometries 

were compared with the values calculated from the estimates of the Simpson’s rule method, 

a commonly used method in the clinic, which treats each slice as a volume slab having a 

given thickness. In the Simpson’s rule method, the LV chamber and LV wall volume for 

each slice are calculated by multiplying the area of the LV chamber or the LV wall by the 

slice thickness, and to calculate the LV mass, the LV wall volume is multiplied by the 

density of myocardium.

Finally, we performed comparisons between results of electrophysiological simulations 

(Figure 3) conducted with the manually-reconstructed geometry (ground truth geometry), 

and with each of the computed geometries (using our method as well as the other methods). 

The aim of this comparison was to assess how sensitive the results of electrophysiological 

simulations were to the differences in the ventricular geometry reconstructions. Specifically, 

for each of the dataset in Table 1, we compared pseudo-ECGs (see Section. 2.5) calculated 

with ventricular models generated from the manual reconstructions and those generated 

from computed reconstructions. The pseudo-ECG signals were normalized so that the signal 
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values lay within the interval [0,1]. This normalization was done to focus the evaluation on 

the morphology of the ECG, as opposed to actual signal values. The metrics that we used to 

compare normalized pseudo-ECGs were the root mean square error (RMSE), the relative 

error (RE), the maximum cross-correlation (MCC) = |(xm * xc)(xl)| where τ = arg maxi |(xm * 

xc)(i)|, and the mean absolute deviation (MAD)

where xm(i), xc(i) are the pseudo-ECGs computed from the simulation using the manual and 

computed reconstructions at time point i, respectively, for each dataset, and t is the signal 

length.

2.5 Cardiac Electrophysiological Modeling Methods and Simulations

First, for the hearts that had ischemic cardiomyopathy (the datasets Dog 6, Dog 7, Dog 8, 

Pig 1, Pig 2, Pig 3 and Pig 4), the infarct zones were extracted semi-automatically using an 

interactive level-set segmentation method (CIBC 2014). The labeling of the border zone and 

the infarct core zone (scar) was done by employing the full-width half-maximum algorithm 

(Vadakkumpadan et al. 2013b). The infarct zone reconstructions were combined with the 

corresponding ventricular geometry reconstructions. Then, for each dataset and each 

ventricular geometry reconstruction method, a volumetric mesh of the reconstructed 

ventricles was first generated, as described elsewhere (Prassl et al. 2009). Fiber orientation 

data are required to determine the directions of the cardiac electrical propagation in 

electrophysiological simulations. Accordingly, we acquired DTMR images for 2 of the 

hearts (Dog 6 and Dog 7), and used these images to assign fiber orientations to each element 

in the meshes for these hearts as described previously (Vadakkumpadan et al. 2010). For the 

other hearts, DTMRI data were not available; fiber orientations for the meshes of these 

hearts were computed by a rule-based algorithm (Bayer et al. 2012).

To evaluate the performance of the various reconstruction methods in terms of outcomes of 

electrophysiological simulations, sinus rhythm was simulated by replicating activations 

originating from the Purkinje network. The ventricles were activated at six locations on the 

endocardium: one on the RV free wall, three on the LV septum and two on the LV free wall 

as described previously (Gurev et al. 2010, Hu et al. 2013b, 2014). Appropriate timings of 

the stimuli were chosen such that the resultant 3D electrical propagation matched with 

experimental data (Durrer et al. 1970, Spach and Barr 1975). Electrophysiology of the 

healthy myocyte was represented by the ten Tusscher model of human ventricular action 

potential (Tusscher et al. 2004). In the infarcted heart datasets, to represent the infarct border 

zone, the ten Tusscher model was modified by incorporating experimentally recorded 

changes in the sodium (Pu and Boyden 1997) and L-type calcium currents (Dun et al. 2004), 

as well as in the potassium currents IKr, and IKs (Jiang et al. 2000). Transverse conductivity 

was also decreased by 90% to represent connexin 43 reorganization (Yao et al. 2003). Scar 

was modeled as an insulator collagen.
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A pseudo-ECG for each simulation was obtained by calculating the difference of 

extracellular potentials between two points in an isotropic bath surrounding the heart. The 

two points were placed near the apex or the base of the heart separated by 18 cm 

(Vadakkumpadan et al. 2010). The electrophysiological simulations were performed using 

the software package CARP (CardioSolv, LLC) with the numerical methods described by 

Vigmond et al. (Vigmond et al. 2002). Previous studies by Rodríguez et al., Bishop et al. 

and Rantner et al. (Rodríguez et al. 2005, Bishop et al. 2007, Rantner et al. 2012), have 

validated that the electrophysiological simulations using this methodology in rabbit hearts 

matched the experiments conducted using optical imaging.

3. Results

3.1 Accuracy of the 3D Ventricular Geometry Reconstructions

Figure 4 shows the reconstructions of the ventricular geometry for the Dog 6 dataset, which 

was chosen as a good representative sample that illustrates the differences in quality 

between the various interpolation methodologies and the manual reconstruction (ground 

truth). All interpolation methods except the linear generated smooth ventricular surfaces. 

Interpolation artifacts are apparent as surface roughness in the shape-based interpolation. 

Since cylindrical harmonics method assumes that there is a periodic condition along the 

long-axis direction, this method did not produce physiologically meaningful reconstructions 

(see Figure 4).

The results of quantitative evaluation of the reconstruction methods using various geometry-

based metrics are shown in Table 2. The method based on variational implicit functions 

generated the best overall reconstruction. It had the highest DSC, smallest MSD, and also 

the smallest RE on the LV chamber, LV mass, and myocardium mass. The LV chamber 

volume estimates for our method, and for the spherical harmonics method were the only 

ones not significantly different from those of the manual reconstructions (p>0.05). Cubic 

spline, spherical harmonics and our method provided better estimations of LV chamber 

volume than the clinically used Simpson’s rule. In terms of the LV mass, the cylindrical 

harmonics, the spherical harmonics, and our method generated better estimations than the 

Simpson’s rule. Even though the spherical harmonics method had the second best 

performance, we observed that increasing the cut-off parameter L led to the anatomically 

incorrect ventricular reconstructions, as illustrated in Figure 5. Our investigation revealed 

that, at larger values of L, a highly concave region appears at the apex of the reconstructed 

LV epicardium. A hole is formed when the part of this concave region falls inside the 

endocardial surface.

3.2 Electrophysiological Simulation Results Comparisons

Only the variational implicit function method and the spherical harmonics method, the 

second-best method in our evaluations of the reconstructions with geometry-based metrics 

(please see Section 3.1), were included in the comparison of outcomes of 

electrophysiological simulations. We excluded the human and pig hearts from simulations 

since the original images, and accordingly the manual reconstructions of these hearts, had an 

out-of-plane resolution above 1 mm, which is too low for resolving electrophysiological 
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phenomena. Thus, given 3 reconstruction methods (manual, our method outlined here, 

spherical harmonics), and 8 hearts, we conducted a total of 24 sets of electrophysiological 

simulations.

As an example, Figure 6 shows results of simulations for Dog 6. The sinus rhythm activation 

time maps in the Dog 6 model generated with different geometry reconstruction methods 

were visually similar (see Figure 6). It is also evident that the pseudo-ECG corresponding to 

the heart geometry generated by our implementation of the variational implicit functions 

method (blue) was the closest to the one corresponding to the manual reconstruction (black). 

Table 3 and 4 show that our implementation of the variational implicit functions method 

outperformed the others. Overall, the proposed technique resulted in the smallest RMSE, 

smallest RE, highest MCC, and also the smallest MAD. We observed significant differences 

in Table 3, with the variational implicit method showing 31%, 31%, and 26% improvement 

in the means of RMSE, MAD and RE, respectively, over the spherical harmonics method. 

These results suggest that, in comparison with alternative methods, the variational implicit 

method developed here is more accurate in generating interpolated 3D ventricular geometry 

reconstructions from Lo-res clinical images. Our observations also suggest that relatively 

small global differences in geometry (see Table 2) have significant effects on outcomes of 

electrophysiological simulations (see Tables 3 and 4).

4. Discussion and Conclusion

The objective of this study was to implement a processing pipeline that utilizes the 

variational implicit functions method for obtaining an interpolated 3D reconstruction of 

ventricular geometry from Lo-res clinical images, and to thoroughly evaluate the efficacy of 

this pipeline in comparison with alternatives. This evaluation is crucial for advancing 

clinical applications of patient-specific simulations, and the lack of such evaluation has been 

a major stumbling block in ventricular model construction for clinical applications. 

Addressing this need is the main contribution of this study. The comparison of the 

automatically reconstructed ventricular geometries generated by the various methods 

showed that our implementation of the variational implicit functions-based method had the 

best accuracy. Though the current study was focused on patient-specific cardiac modeling, 

our method based on variational implicit would also allow more accurate estimations of 

other important image-based metrics such as myocardial mass, LV chamber volume, and 

consequently LV ejection fraction, which are proven to be predictive of clinical outcomes.

Our evaluation showed that the spherical harmonics method performed the second best after 

the variational implicit functions method, in terms of the various geometry-based error 

metrics. However, the spherical harmonics method generated increasingly anatomically-

incorrect ventricular reconstructions as the cut-off degree L parameter was increased (see 

Figure 5). The poor performance of the linear, cubic splines and shape-based methods was 

mostly due to the inaccuracy of reconstruction in the apical area. Interestingly, the 

cylindrical harmonics method estimated the LV mass relatively well, although it did not 

reconstruct meaningful ventricular geometries. Note that the variational implicit scheme that 

we have implemented generates a noticeable notch at the LV/RV junction. We believe that 
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this is realistic as this notch is also observed in high resolution ex vivo data 

(Vadakkumpadan et al. 2010, Deng et al. 2012).

Ideally, experimental electrophysiological data should serve as the ground truth for 

comparing outcomes of simulations. However, such data were not available for this study, 

and overall, are not routinely available together with imaging data. Under this limitation, we 

resorted to an alternative, i.e, performing comparisons between the outcomes of 

electrophysiological simulations with automatic reconstruction and those with manual 

reconstructions. While this approach was an indirect way of evaluating outcomes of 

simulations with automatic reconstructions, it was the best alternative available to us, 

considering that the contours for the manual reconstructions were drawn by experts, and the 

electrophysiological simulation methodologies we used have been shown to match 

experimental recordings in previous studies (see Section 2.5). Note that, though the 

accuracies of reconstructions were evaluated with volume and geometry-based metrics (see 

Section 3.1), the comparison of simulation outcomes was an important part of this study, as 

the degree of sensitivity of the results of electrophysiological simulations to differences in 

ventricular geometry reconstructions was unknown. We found that relatively small global 

differences in ventricular geometry reconstructions can lead to significant differences in 

sinus rhythm pseudo-ECGs, and this underscores the need for accurate reconstruction 

methods in patient-specific modeling of ventricular function.

A limitation of the current study is in the use of one specific ground truth reconstruction of 

each heart for the evaluation, without explicitly considering any inter-subject variability in 

contouring. However, we believe that our conclusions are still valid, since not all datasets 

were contoured by the same experts, and so the variability in contouring was introduced into 

our analysis. The variational implicit functions reconstruction method consistently 

outperformed the other methods, regardless of who did the contouring. Another limitation of 

our study is in the exclusion of papillary muscles in the models. The reason for excluding 

papillary muscles was that current clinical Lo-res cardiac MR images only show partial 

(mostly basal) part of the papillary muscles which are connected to the endocardium. The 

exclusion of papillary muscles, however, has not posed a limitation thus far for patient-

specific simulations since such models have been predominantly used to simulate infarct-

related ventricular tachycardia, as in the study by Ashikaga et al. (Ashikaga et al. 2013). 

Also, the 2D manual contouring scheme brings out the details on the surface. This, 

combined with the fact that no constraint was applied to ensure a smooth transition of 

contours between adjacent slices, made the manual reconstructions less smooth. However, 

the manual contours do reflect experts’ observations and thus, the reconstructed surface is 

not far from the expected smooth surface. Furthermore, Swenson et al. (Swenson et al. 

2013) demonstrated that such surface irregularities do not significantly affect the results of 

cardiac electrical simulations. Specifically, they compared electrical propagation simulated 

in non-conformal (jagged surfaces) and conformal (smooth surfaces) meshes. They found 

that, while local voltage patterns were affected by the mesh type, the overall electrical 

potential root mean squared errors was small. Finally, we mimicked the contouring of Lo-res 

clinical images by choosing a subset of contours drawn on the Hi-res images. The level of 

realism in our derivation of contours of clinical images is limited, as the contours were not 

Prakosa et al. Page 11

Prog Biophys Mol Biol. Author manuscript; available in PMC 2015 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



directly drawn on images of clinical resolution and quality, where boundaries are difficult to 

delineate. Additionally, since our experts drew the contours on Hi-res images, for each 

contour, they had access to the contours of immediately adjacent slices, which is not the case 

when dealing with clinical images only. Ideally, each slice of the Lo-res clinical images 

should be mimicked by averaging multiple slices from the Hi-res dataset, and the contours 

of the Lo-res images should be generated by drawing on the averaged slices. However, this 

would have required additional contouring instead of utilizing the contours we obtained for 

the Hi-res dataset. Our experimental setup was a trade-off between accuracy in the 

mimicking of the contours of clinical images, and the amount of manual labor required.
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Appendix

Spherical and Cylindrical Harmonics

For spherical harmonics, the model which represents the surfaces in spherical coordinate is r 

= r(θ, Ø), where for each pair of angles θ and Ø, the radial coordinate r is unique. Up to a 

specified cut-off, the linear combination of spherical harmonics that represents the surfaces 

is

where L is the cut-off degree. Features of higher spatial frequency can be better captured by 

increasing the cut-off degree. Pl and  are Legendre polynomials, where l and m are 

separation constants. The coefficient parameters  and  are computed by fitting the 

model to the 3D data.
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The model in circular cylindrical coordinates is ρ(z, Ø), where ρ, z, and Ø are the radial 

coordinate, polar angle and height, respectively. The general surface representation of the 

cylindrical harmonics is

where z̃ represents the period along the z axis of the solution to Laplace’s equation. Alm, Blm, 

Clm, and Dlm are the coefficient parameters which are found by fitting the model to the 

scattered 3D data, where l and m are separation constants.

Shape-based Interpolation

In shape-based interpolation, the notion of univariate data interpolation is generalized to 

achieve high-order interpolation between cross section of a 3D body of general topology 

(Raya and Udupa 1990). In our case, the set of parallel cross sections C1, C2, ···, Ck of a 

ventricular surface O are region contained within the in-plane boundary contours created by 

applying cubic spline interpolation to the landmark points in each slice z1, z2, ···, zk of the 

sparse sample of the manual contours. The interpolation problem is to estimate new cross 

sections  at . To solve this, first the problem is converted into 

univariate interpolation problem to determine if  for some fixed real number x, 

y and some integer j ∈ {1,2, ···, m}. This univariate interpolation problem is solved by 

calculating the signed distance transform di at each (x, y, zi) based on the boundary of Ci for 

1 ≤ i ≤ k, where di > 0 if (x, y, zi) ∈ Ci, di < 0 if (x, y, zi) ∈ C̄l, the complement of Ci, and 0 if 

(x, y, zi) is a boundary point of Ci. A univariate function f is then computed by linearly 

interpolating d1, d2, ···, dk. The final reconstructed surface is an isosurface of the new cross 

section  created by considering (x, y, ) to belong to  if .
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Figure 1. Manual reconstruction of ventricular geometry
Landmark points were placed manually on the boundaries of the epi- and endocardial 

LV/RV in the 2D slices (1). 2D splines were fitted to the landmark points for each surface 

(2). The surfaces were combined to create the reconstruction of the ventricles (3).

Prakosa et al. Page 17

Prog Biophys Mol Biol. Author manuscript; available in PMC 2015 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Automatic addition of landmark points for the variational implicit functions method
We automatically added several landmark points inside (blue) and outside (purple) based on 

their distance to the barycenter (orange) for each surface (epi- and endocarial LV/RV).
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Figure 3. Pipeline for performance evaluation of the different ventricular geometry 
reconstructions
Hi-res images were used as the input in the pipeline. First, manual contouring was done on 

the Hi-res images for the construction of the ground truth ventricular geometry. A sparse 

selection of manual contours was then created as the input for the Lo-res interpolation 

approaches, both our method, and the 5 alternative ones. Comparisons of reconstructed 

geometries were then performed. Final evaluation performance was done in terms of 

outcome of electrophysiological simulations with geometries reconstructed with each 

interpolation method. This required constructing an electrophysiological model of the 

ventricles (including infarction remodeling, if any, and fiber orientation).

Prakosa et al. Page 19

Prog Biophys Mol Biol. Author manuscript; available in PMC 2015 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Ventricular geometry reconstructions for the Dog 6 dataset
Smooth surfaces were generated by all methods except the linear, and the shape-based. The 

cylindrical harmonics method reconstructed holes in the RV wall. The cylindrical harmonics 

method did not generate physiologically meaningful ventricular geometry.
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Figure 5. The effect of increasing spherical harmonics cut-off degree L on ventricular geometry 
for the Dog 6 dataset
Increasing the cut-off degree parameter from 4 (optimal value we picked based on empirical 

observation) to 5 and 6, results in the anatomically-incorrect ventricular reconstruction. A 

hole appears at the apex of the LV when L =6 is used.
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Figure 6. Electrophysiological simulation results for the Dog 6
Sinus rhythm activation time maps are shown along with the pseudo-ECGs measured near 

the apex, for the different reconstruction methods. Using the pseudo-ECG, the difference 

between reconstruction methods was quantified.
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Table 1

Images used in this study.

Dataset Description Image Size (pixels) Image Resolution (mm)

Dog 1 ex vivo CMR (Normal) 256 × 256 × 130 0.31 × 0.31 × 0.80

Dog 2 ex vivo CMR (Heart Failure) 256 × 256 × 130 0.31 × 0.31 × 0.80

Dog 3 ex vivo CMR (Heart Failure) 256 × 256 × 136 0.31 × 0.31 × 0.85

Dog 4 ex vivo CMR (Heart Failure) 256 × 256 × 74 0.31 × 0.31 × 0.80

Dog 5 ex vivo CMR (Heart Failure) 704 × 704 × 520 0.25 × 0.25 × 0.25

Dog 6 ex vivo CMR (Infarcted) 400 × 400 × 480 0.25 × 0.25 × 0.25

Dog 7 ex vivo CMR (Infarcted) 480 × 480 × 480 0.25 × 0.25 × 0.25

Dog 8 ex vivo CMR (Infarcted) 448 × 448 × 560 0.25 × 0.25 × 0.25

Pig 1 in vivo CMR (Infarcted) 336 × 336 × 60 0.74 × 0.74 × 1.50

Pig 2 in vivo CMR (Infarcted) 384 × 384 × 68 0.70 × 0.70 × 1.50

Pig 3 in vivo CMR (Infarcted) 400 × 400 × 60 0.73 × 0.73 × 1.50

Pig 4 in vivo CMR (Infarcted) 384 × 384 × 60 0.70 × 0.70 × 1.50

Human 1 in vivo CT (Heart Failure) 175 × 175 × 83 0.63 × 0.63 × 1.00

Human 2 in vivo CMR (Normal) 336 × 336 × 40 0.95 × 0.95 × 2.50

Human 3 in vivo CMR (Normal) 256 × 256 × 16 1.37 × 1.37 × 6.00
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Table 3

Performance evaluation of various reconstruction methods based on simulations results of the pseudo-ECG 

measured near the apex.

Method RMSE (mV) RE (%) MCC (%) MAD (%)

1 Variational Implicit 0.0284±0.0441 4.73±5.43 99.83±0.38 6.51±9.96

2 Spherical Harmonics 0.0410±0.0510 6.87±6.04 99.77±0.42 8.82±8.77
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Table 4

Performance evaluation of various reconstruction methods based on simulations results of the pseudo-ECG 

measured near the base

Method RMSE (mV) RE (%) MCC (%) MAD (%)

1 Variational Implicit 0.0178±0.0156 3.48±1.83 99.95±0.04 4.29±3.42

2 Spherical Harmonics 0.0326±0.0317 6.30±4.07 99.85±0.16 7.56±5.79
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