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Abstract

Introduction—Lung cancer remains the leading cause of cancer-related deaths in the US and 

worldwide. Adenocarcinoma is the most common type of lung cancer and encompasses lesions 

with widely variable clinical outcomes. In the absence of noninvasive risk stratification, 

individualized patient management remains challenging. Consequently a subgroup of pulmonary 

nodules of the lung adenocarcinoma spectrum is likely treated more aggressively than necessary.

Methods—Consecutive patients with surgically resected pulmonary nodules of the lung 

adenocarcinoma spectrum (lesion size ≤ 3 cm, 2006–2009) and available pre-surgical high-

resolution computed tomography (HRCT) imaging were identified at Mayo Clinic Rochester. All 

cases were classified using an unbiased Computer-Aided Nodule Assessment and Risk Yield 

(CANARY) approach based on the quantification of pre-surgical HRCT characteristics. 

CANARY-based classification was independently correlated to postsurgical progression-free 

survival.

Results—CANARY analysis of 264 consecutive patients identified three distinct subgroups. 

Independent comparisons of 5-year disease-free survival (DFS) between these subgroups 

demonstrated statistically significant differences in 5-year DFS, 100%, 72.7% and 51.4%, 

respectively (p = 0.0005).

Conclusions—Non-invasive CANARY based risk stratification identifies subgroups of patients 

with pulmonary nodules of the adenocarcinoma spectrum characterized by distinct clinical 

outcomes. This technique may ultimately improve the current expert opinion-based approach to 

the management of these lesions by facilitating individualized patient management.

Introduction

With an estimated 224,210 new cases and 159,260 deaths in 20141, lung cancer remains the 

leading cause of cancer-related mortality in the United States (US). While early diagnosis 
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offers a chance of cure, the majority of patients are diagnosed with advanced stage disease 

associated with extremely poor outcomes. Based on the 20% relative reduction in lung 

cancer-specific mortality observed in the National Lung Screening Trial (NLST)2, the US 

Preventive Services Task Force has issued recommendations in favor of High-Resolution 

Computed Tomography (HRCT)-based screening3. Consequently, lung cancer screening 

programs are being implemented across the US4–7. However, in addition to the early 

detection of aggressive lung cancers, screening also leads to the detection of a substantial 

proportion of “overdiagnosed” lung cancers, i.e. cancers unlikely to impact the overall 

survival of patients regardless of management 3, 8, 9. This could represent a substantial 

problem as an estimated 10.6 million individuals would be eligible for HRCT screening in 

the US alone based on NLST criteria.

Lung adenocarcinoma is the most common type of lung cancer. It typically presents as 

persistent solitary or multifocal, solid or subsolid nodules on HRCT. Histologically, 

adenocarcinomas consist of various combinations of lepidic growth (non-invasive tumor cell 

growth along intact alveolar septa) and tissue invasion, corresponding generally to areas of 

ground-glass attenuation and solid density, respectively on HRCT 10–12.

While most lung adenocarcinomas are aggressive, some have a more indolent course, 

clinically asymptomatic incidentally or screen-detected represent the majority of potentially 

overdiagnosed lesions. Current treatment strategies are predominantly based on the size and 

location of the lesions, without assessment of lesion-specific aggressiveness, which may 

result in overtreatment (treatment of an otherwise asymptomatic indolent lesion) leading to 

unnecessary morbidity, mortality and healthcare expenses.2, 8, 9, 13, 14. Specifically, 

adenocarcinomas in situ (AIS) and minimally invasive adenocarcinomas (MIA) are 

characterized by excellent (almost 100%) postsurgical 5-year survival, whereas invasive 

adenocarcinomas (IA) have worse prognosis.15, 16 These differences in clinical outcome are 

reflected in the recently updated classification of lung adenocarcinomas, which is based on 

the semi-quantitative histologic assessment of these lesions16. In addition to clinical-

pathological disease staging (Tumor-Node-Metastasis (TNM) staging), comprehensive 

histological assessment represents the most powerful outcome predictor for these 

patients16, 17. Assuming that we can infer the biological behavior of these lesions from these 

post-treatment outcomes, non-invasive assessment through HRCT classification could 

ultimately assist in the selection of alternative treatment strategies. However, currently risk 

assessment and tumor behavior prediction is limited to surgically resected lesions. 

Comprehensive histopathological assessment is not possible with small bronchoscopic or 

CT-guided biopsies and no other non-invasive or minimally invasive biomarkers help to 

guide preoperative treatment strategies. Robust and reproducible non-invasive pretreatment 

risk-stratification strategies are therefore urgently needed.

Computer-Aided Nodule Assessment and Risk Yield (CANARY) is a novel software 

application developed at Mayo Clinic, which allows automated HRCT-based quantitative 

characterization of pulmonary nodules18. We previously reported the excellent correlation 

between HRCT-based CANARY signatures and semi-quantitative histology analysis. Herein 

we report a new CANARY-based risk stratification approach for pulmonary nodules of the 

adenocarcinoma spectrum. This non-invasive approach is independent of histologic 
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assessment and addresses inherent limitations of histology such as inter-observer variability 

and intra-tumor heterogeneity19.

Materials and Methods

Data

We retrospectively identified consecutive patients with surgically resected solitary lung 

adenocarcinomas and an available preoperative HRCT (within 3 months of surgery) between 

January 2006 and December 2007. In addition, we included all consecutive cases with 

clinically stage I solitary pulmonary nodules (≤ 3cm) resected between January 2008 and 

December 2009. Clinical data including disease free survival (DFS) was collected from the 

Mayo Clinic electronic medical records. The study was approved by the Mayo Clinic IRB.

Nodule characterization and CANARY development

The development of CANARY has been described in detail18. Briefly, a thoracic chest 

radiologist (BJB) arbitrarily selected 774 regions of interest (ROIs, 9×9 voxels) spanning the 

spectrum of radiologic appearance of adenocarcinomas (form pure groundglass to pure 

solid) in 37 randomly selected pulmonary nodules. The similarity of the radiologic features 

between ROIs was compared using a pairwise similarity metric and nine characteristic ROI 

clusters (i.e. groups of radiologically similar ROIs) and corresponding “ROI exemplars” 

were identified using Affinity Propagation (AP)20, an unsupervised clustering algorithm. 

Unlike other clustering algorithms, AP does not require the number of clusters to be 

specified prior to analysis i.e., it identifies natural clusters with their most representative 

data point within the dataset. The nine ROI exemplars were color-coded as violet (V), indigo 

(I), blue (B), green (G), yellow (Y), orange (O), red (R), cyan (C) and pink (P) and represent 

the basic building blocks of nodules of the adenocarcinoma spectrum. Nodules are analyzed 

by sequential analysis of each voxel within the nodule of interest. Each voxel (with its 

surrounding 80 voxels in a 9×9 voxel ROI) is compared to the nine identified ROI 

exemplars, and the color code of the most similar ROI exemplar is assigned to the analyzed 

voxel. The adjacent voxel is then analyzed in a similar fashion until all voxels contained in 

the nodule of interest have been color-coded, yielding a specific parametric signature for 

the nodule. This methodology and the parametric signatures have previously been validated 

by consensus histology of resected nodules in the adenocarcinoma spectrum18.

Nodule categorization and quantitative unsupervised stratification

Given the correlation of histologic analysis with survival characteristics in pulmonary 

adenocarcinoma, we hypothesized that CANARY-based parametric signatures of these 

nodules would correlate with prognosis, independent of histology. Specifically, we 

postulated that the distribution of the 9 ROI exemplars within individual nodules would 

correlate with the risk of disease progression, independent of histology or clinical input, 

similar in that way to the comprehensive histological assessment17 described in the updated 

classification of adenocarcinomas16. To that end, we applied the same clustering algorithm 

(AP) to identify natural clusters within the cohort of CANARY analyzed nodules to 

determine the type and number of groups of radiologically similar nodules based on the 
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CANARY parametric signatures that constitute those nodules. DFS was compared between 

the resulting groups.

Nodule Exemplars—AP was used to identify natural clusters (clusters with similar 

distribution of parametric signatures) among lung adenocarcinomas. The most representative 

nodule or “nodule exemplar” was identified within each cluster that served as the reference 

for the cluster.

Nodule categorization—All included clinical stage I solitary pulmonary nodules were 

categorized into one of the identified clusters by comparing the mathematical similarity 

(details in supplementary methods) of each nodule with the naturally identified nodule 

exemplars.

Cluster Analysis—The quantitative efficacy of the stratification was assessed for 

statistical significance using Analysis of Similarity (ANOSIM)21.

Survival Analysis

Follow-up data was collected retrospectively and post-operative follow-up was not 

standardized. As reflected by the divergence in the guideline recommendations by different 

professional organizations follow-up visits and imaging modalities varied based on provider 

preferences22–27. The majority of patients had follow-up at Mayo Clinic. In general patients 

were seen more commonly (every 3–6 months) during the first 2 years and every 6 months 

between 3–5 years. The median follow-up was 3.07 years (last update: Dec 2013). Chest CT 

was the most commonly used imaging modality for follow-up. As expected, the majority of 

recurrences were distant metastasis rather than pulmonary recurrences/metastasis. Deaths 

due to clearly documented other causes, in the absence of any evidence for recurrent disease, 

were censored at the time of death. There were a total of 27 such events in the study cohort.

Kaplan-Meier analysis (GraphPad Prism version 5.00 for Microsoft Windows, GraphPad 

Software, San Diego, California, USA) was performed to compare the DFS of the identified 

groups. The curves were compared using log-rank statistical test. Cox proportional hazard fit 

(JMP 10.0.0, SAS) was performed to form the multivariate model accounting for age, 

gender, smoking (never vs current/former), histologic staging and stratified clusters. All 

patients had R0 surgical resections (curative resection) and clinical progression was defined 

as pathologically confirmed disease recurrence, as assessed by consensus of 3 of the author 

investigators (F.M., T.P. and Z.S.D.). The patients were censored at the time of their last 

follow-up in the absence of disease recurrence. P-values < 0.05 were considered significant.

Results

Patients

Three-hundred-six patients with surgically resected lung adenocarcinomas, January 2006 to 

December 2009 at Mayo Clinic, Rochester, MN were included in our study. This included 

264 cases of clinically Stage I solitary pulmonary nodules. Demographic information and 

pathological tumor stages of these cases are summarized in Table 1.
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Quantitative Nodule Characterization and Visualization

CANARY-based characterization of representative resected adenocarcinomas is illustrated 

in Figure 1. The glyphs represent a quantitative summary of the respective distribution of the 

ROI exemplars within each nodule. The radius of each glyph is set proportional to the 

volume of the nodule

Quantitative Nodule Categorization

The AP clustering using 170 cases of lung adenocarcinoma including 128 clinical Stage I 

pulmonary nodules (2006–2007) yielded three natural clusters from which the three nodule 

exemplars were identified, and were secondarily found to represent predominantly B-G-C 

(i), mixed (ii) and predominantly V-I-R-O nodules (iii). Figure 2 shows the CT sections, 

color-coded patterns and glyphs for the three nodule exemplars. ANOSIM yielded R = 

0.6930 with p-value = 0.001. Internal validation was successfully performed using leave-

one-out (LOO) and k-fold (k = 10) cross validation (CV) techniques (details in 

supplementary methods).

Correlation with DFS

All 264 clinical Stage I pulmonary nodules of the lung adenocarcinoma spectrum were 

categorized into the identified three clusters. This categorization was statistically significant 

(ANOSIM R = 0.59; p-value = 0.001). DFS was extracted in a blinded fashion and analyzed 

for these three clusters using Kaplan-Meier statistics. This analysis yielded 100%, 72.7% 

and 51.4%, 5-year DFS for the three groups respectively (log-rank test p = 0.0005). Figure 3 

shows the DFS curves. Based on this analysis the three groups were labeled as good (G), 

intermediate (I) and poor (P) risk. The log-rank test and univariate Mantel-Haenszel Hazard 

ratios (HR) revealed statistically significant differences between groups G and I with p-

value = 0.0055 (HR: 3.47 [1.44 to 8.22]); groups G and P with p-value = 0.0002 (HR: 5.338 

[2.23 to 12.78]) and groups I and P with p-value = 0.02 (HR: 2.02 [1.10 to 3.73]). Table 2 

summarizes the multivariate cox proportional model using likelihood ratio tests for the 

stratified groups adjusted for age, gender, smoking history and histologic staging as 

covariates.

Discussion

In the present study, we report the use of a novel HRCT-based imaging biomarker for the 

noninvasive risk stratification of lung adenocarcinoma. We have identified three clusters of 

adenocarcinomas that naturally segregate using AP based on HRCT characteristics. Each of 

these clusters correlates strongly with the post-surgical DFS. Unlike other stratification 

approaches,28 we did not use an outcome-matched trained model but identified these 

clusters independently of clinical data. Furthermore, in contrast to methods that differentiate 

lung nodules based on their HRCT appearance using various combinations of multiple 

quantitative features29, 30 we used a single, robust similarity metric for objective risk 

stratification. The three identified groups corresponded to good (G), intermediate (I) and 

poor (P) postoperative DFS. This strategy potentially facilitates the non-invasive 

classification of nodules prospectively in new patients. Inferring biological behavior based 

on these known post-treatment outcomes, HRCT-based CANARY classification could 

Raghunath et al. Page 5

J Thorac Oncol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



ultimately guide the individualized management of these lesions. For example, nodules non-

invasively categorized as ‘Good,’ representing indolent lesions, could benefit from less 

aggressive surgical approaches, non-invasive or minimally invasive therapy or watchful 

waiting while nodules that have characteristics corresponding to the more aggressive lesions 

(P group) would be managed with current standard of care, such as lobectomy, and perhaps 

additional adjuvant therapy. The introduction of lung cancer screening is expected to result 

in a substantial increase in screening-detected lung cancers. Early detection is projected to 

decrease lung cancer specific mortality; however an estimated 20% of patients with 

screening-detected lung cancer, almost exclusively adenocarcinomas, will potentially be 

overdiagnosed9. This phenomenon could result in increased morbidity, mortality and health 

care costs. In comparison to strategies mitigating the impact of false-positive pulmonary 

nodules, preoperative non-invasive risk stratification of pulmonary nodules of the lung 

adenocarcinoma spectrum has been less well studied. Effective biomarkers to discriminate 

aggressive from indolent lesions are urgently needed3, 31. Current therapeutic management 

decisions for these nodules currently rely on low-level evidence and expert opinion12. For 

example, the selection of patients for limited surgical resection in ongoing clinical trials is 

largely restricted to lesion size, highlighting the need for accurate and consistent 

interpretation tools32. Ideally, treatment strategies including standard lobectomy, limited 

local resection (wedge or segmentectomy), stereotactic body radiation therapy and watchful 

waiting33, 34 should be individualized based on the aggressiveness of the lesion.

Thus far quantitative imaging efforts for lung nodules have generally focused on nodule 

detection strategies35–38. Several CT-based techniques have been explored to characterize 

pulmonary nodules39–42. The majority of these studies focus exclusively on solid nodules. 

They utilize the shape characteristics like spiculation, nodule eccentricity, volume and 

largest diameter. Correlation of these strategies with histology and survival has been 

inconsistent42, 43.

In real-world clinical practice, the variable HRCT acquisition techniques, methods of image 

reconstruction and filtering from different CT scanner equipment can have enormous effects 

on the visual appearance of images and the quantitative characteristics of the pixels. To 

overcome some of the potential variability and assure that quantitative results are valid, an 

assessment of algorithm performance across multiple different types of input is required. 

Our preliminary assessment suggests CANARY represents a robust risk stratification tool 

that can be utilized on a variety of HRCT techniques for retrospective or prospective 

evaluation of lung nodules in a real-world setting. Specifically, our results are consistent 

across a wide variety of clinically utilized CT protocols performed on various types of 

equipment. The stability of CANARY characterization and stratification of scans 

reconstructed with sharp and smooth filtering algorithms are shown in Figure E1. 

Additional work to assess the specific limitations of CANARY parametric signature 

quantification with regard to the effects of slice thickness, reconstruction methodology and 

other factors such as noise or dose-related changes in image characteristics may be 

warranted.
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Our current report represents, to our knowledge, the first attempt using population imaging 

data and quantified radiologic characteristics to identify distinct clusters of lesions 

characterized by similar biologic behavior.

We acknowledge that prognostication based on a single time point is uncertain44 and the 

estimate of prognosis for an individual patient may change over time. As such, the 

application of CANARY over time will promote our understanding of the natural history of 

pulmonary nodules of the lung adenocarcinoma spectrum. Determination of the rate of 

transition from indolent to aggressive characteristics or confident quantification of stability 

may enable timely appropriate management of lesions through non-invasive HRCT 

assessment. With additional validation, we expect that this method will facilitate 

individualized follow-up and management of pulmonary nodules of the lung 

adenocarcinoma in a standardized, objective fashion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Sources of support: K23 award (K23CA159391-01A1) – Dr. Tobias Peikert.

Center of Individualized Medicine (CIM), Mayo Clinic.

Mayo Graduate School, Mayo Clinic – Dr. Sushravya Raghunath.

References

1. Society AC. Cancer Facts and Figures 2014. Atlanta: American Cancer Society; 2014. 

2. Aberle DR, Adams AM, et al. National Lung Screening Trial Research T. Reduced lung-cancer 
mortality with low-dose computed tomographic screening. The New England journal of medicine. 
2011; 365:395–409. [PubMed: 21714641] 

3. Moyer VA. Screening for lung cancer: US Preventive Services Task Force recommendation 
statement. Annals of internal medicine. 2014

4. Bach PB, Mirkin JN, Oliver TK, et al. Benefits and harms of CT screening for lung cancer: a 
systematic review. JAMA: the journal of the American Medical Association. 2012; 307:2418–2429.

5. Jaklitsch MT, Jacobson FL, Austin JH, et al. The American Association for Thoracic Surgery 
guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer 
survivors and other high-risk groups. The Journal of thoracic and cardiovascular surgery. 2012; 
144:33–38. [PubMed: 22710039] 

6. Wender R, Fontham ET, Barrera E Jr, et al. American Cancer Society lung cancer screening 
guidelines. CA: a cancer journal for clinicians. 2013; 63:107–117. [PubMed: 23315954] 

7. Wood DE, Eapen GA, Ettinger DS, et al. Lung cancer screening. Journal of the National 
Comprehensive Cancer Network: JNCCN. 2012; 10:240–265. [PubMed: 22308518] 

8. Veronesi G, Maisonneuve P, Bellomi M, et al. Estimating overdiagnosis in low-dose computed 
tomography screening for lung cancer: a cohort study. Annals of internal medicine. 2012; 157:776–
784. [PubMed: 23208167] 

9. Patz EF Jr, Pinsky P, Gatsonis C, et al. Overdiagnosis in Low-Dose Computed Tomography 
Screening for Lung Cancer. JAMA internal medicine. 2013

10. Detterbeck FC, Homer RJ. Approach to the ground-glass nodule. Clinics in chest medicine. 2011; 
32:799–810. [PubMed: 22054887] 

Raghunath et al. Page 7

J Thorac Oncol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



11. Godoy MC, Naidich DP. Subsolid pulmonary nodules and the spectrum of peripheral 
adenocarcinomas of the lung: recommended interim guidelines for assessment and management. 
Radiology. 2009; 253:606–622. [PubMed: 19952025] 

12. Naidich DP, Bankier AA, MacMahon H, et al. Recommendations for the Management of Subsolid 
Pulmonary Nodules Detected at CT: A Statement from the Fleischner Society. Radiology. 2013; 
266:304–317. [PubMed: 23070270] 

13. Detterbeck FC, Gibson CJ. Turning gray: the natural history of lung cancer over time. Journal of 
thoracic oncology: official publication of the International Association for the Study of Lung 
Cancer. 2008; 3:781–792.

14. Takiguchi Y, Sekine I, Iwasawa S. Overdiagnosis in lung cancer screening with low-dose 
computed tomography. Journal of thoracic oncology: official publication of the International 
Association for the Study of Lung Cancer. 2013; 8:e101–102.

15. Nakata M, Saeki H, Takata I, et al. Focal ground-glass opacity detected by low-dose helical CT. 
Chest. 2002; 121:1464–1467. [PubMed: 12006429] 

16. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/
american thoracic society/european respiratory society international multidisciplinary 
classification of lung adenocarcinoma. Journal of thoracic oncology: official publication of the 
International Association for the Study of Lung Cancer. 2011; 6:244–285.

17. Warth A, Muley T, Meister M, et al. The novel histologic International Association for the Study 
of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of 
lung adenocarcinoma is a stage-independent predictor of survival. Journal of clinical oncology: 
official journal of the American Society of Clinical Oncology. 2012; 30:1438–1446. [PubMed: 
22393100] 

18. Maldonado F, Boland JM, Raghunath S, et al. Noninvasive characterization of the histopathologic 
features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule 
assessment and risk yield (CANARY)--a pilot study. Journal of thoracic oncology: official 
publication of the International Association for the Study of Lung Cancer. 2013; 8:452–460.

19. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat 
Rev Cancer. 2012; 12:323–334. [PubMed: 22513401] 

20. Frey BJ, Dueck D. Clustering by passing messages between data points. science. 2007; 315:972–
976. [PubMed: 17218491] 

21. CLARKE KR. Non-parametric multivariate analyses of changes in community structure. 
Australian journal of ecology. 1993; 18:117–143.

22. Centers AoCC. Oncology patient management guidelines. Rockville, MD: 2000. version 3.0

23. Rubins J, Unger M, Colice GL, et al. Follow-up and surveillance of the lung cancer patient 
following curative intent therapy: ACCP evidence-based clinical practice guideline (2nd edition). 
Chest. 2007; 132:355S–367S. [PubMed: 17873180] 

24. Sause WT, Byhardt RW, Curran WJ Jr, et al. Follow-up of non-small cell lung cancer. American 
College of Radiology. ACR Appropriateness Criteria. Radiology. 2000; 215 (Suppl):1363–1372. 
[PubMed: 11037552] 

25. Pfister DG, Johnson DH, Azzoli CG, et al. American Society of Clinical Oncology treatment of 
unresectable non-small-cell lung cancer guideline: update 2003. Journal of clinical oncology: 
official journal of the American Society of Clinical Oncology. 2004; 22:330–353. [PubMed: 
14691125] 

26. Felip E, Stahel RA, Pavlidis N, et al. ESMO Minimum Clinical Recommendations for diagnosis, 
treatment and follow-up of non-small-cell lung cancer (NSCLC). Annals of oncology: official 
journal of the European Society for Medical Oncology/ESMO. 2005; 16 (Suppl 1):i28–29. 
[PubMed: 15888743] 

27. Ettinger D, Bepler G, Bueno R, et al. Non-small cell lung cancer clinical practice guidelines in 
oncology. Journal of the National Comprehensive Cancer Network: JNCCN. 2006; 4:548. 
[PubMed: 16813724] 

28. Cima I, Schiess R, Wild P, et al. Cancer genetics-guided discovery of serum biomarker signatures 
for diagnosis and prognosis of prostate cancer. Proceedings of the National Academy of Sciences 
of the United States of America. 2011; 108:3342–3347. [PubMed: 21300890] 

Raghunath et al. Page 8

J Thorac Oncol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



29. Ravanelli M, Farina D, Morassi M, et al. Texture analysis of advanced non-small cell lung cancer 
(NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line 
chemotherapy. European radiology. 2013

30. Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging 
biomarkers by leveraging public gene expression microarray data--methods and preliminary 
results. Radiology. 2012; 264:387–396. [PubMed: 22723499] 

31. Van Schil PE, Asamura H, Rusch VW, et al. Surgical implications of the new IASLC/ATS/ERS 
adenocarcinoma classification. The European respiratory journal. 2012; 39:478–486. [PubMed: 
21828029] 

32. Adjei AA. Lung cancer-celebrating progress and acknowledging challenges. Journal of thoracic 
oncology: official publication of the International Association for the Study of Lung Cancer. 2013; 
8:1350–1351.

33. Gulati CM, Schreiner AM, Libby DM, et al. Outcomes of unresected ground-glass nodules with 
cytology suspicious for adenocarcinoma. Journal of thoracic oncology: official publication of the 
International Association for the Study of Lung Cancer. 2014; 9:685–691.

34. Chang B, Hwang JH, Choi YH, et al. Natural history of pure ground-glass opacity lung nodules 
detected by low-dose CT scan. Chest. 2013; 143:172–178. [PubMed: 22797081] 

35. Roos JE, Paik D, Olsen D, et al. Computer-aided detection (CAD) of lung nodules in CT scans: 
radiologist performance and reading time with incremental CAD assistance. European radiology. 
2010; 20:549–557. [PubMed: 19760237] 

36. Messay T, Hardie RC, Rogers SK. A new computationally efficient CAD system for pulmonary 
nodule detection in CT imagery. Medical Image Analysis. 2010; 14:390–406. [PubMed: 
20346728] 

37. Awai K, Murao K, Ozawa A, et al. Pulmonary Nodules: Estimation of Malignancy at Thin-Section 
Helical CT—Effect of Computer-aided Diagnosis on Performance of Radiologists1. Radiology. 
2006; 239:276–284. [PubMed: 16467210] 

38. Bayarri MS, Suárez-Cuenca JJ, Tahoces PG, et al. Automatic detection of pulmonary nodules: 
Evaluation of performance using two different MDCT scanners. Journal of Biomedical Graphics 
& Computing. 2012:2.

39. McNitt-Gray MF, Hart EM, Wyckoff N, et al. A pattern classification approach to characterizing 
solitary pulmonary nodules imaged on high resolution CT: preliminary results. Medical physics. 
1999; 26:880–888. [PubMed: 10436888] 

40. Ye X, Lin X, Dehmeshki J, et al. Shape-based computer-aided detection of lung nodules in 
thoracic CT images. Biomedical Engineering, IEEE Transactions on. 2009; 56:1810–1820.

41. Way T, Chan H-P, Hadjiiski L, et al. Computer-Aided Diagnosis of Lung Nodules on CT Scans:: 
ROC Study of Its Effect on Radiologists’ Performance. Academic radiology. 2010; 17:323–332. 
[PubMed: 20152726] 

42. Kawata Y, Niki N, Ohmatsu H, et al. Quantitative classification based on CT histogram analysis of 
non-small cell lung cancer: Correlation with histopathological characteristics and recurrence-free 
survival. Medical physics. 2012; 39:988–1000. [PubMed: 22320808] 

43. Tacelli N, Remy-Jardin M, Copin M-C, et al. Assessment of Non–Small Cell Lung Cancer 
Perfusion: Pathologic-CT Correlation in 15 Patients 1. Radiology. 2010; 257:863–871. [PubMed: 
20843993] 

44. Detterbeck F. Stage Classification and Prediction of Prognosis: Difference between Accountants 
and Speculators. Journal of thoracic oncology: official publication of the International Association 
for the Study of Lung Cancer. 2013; 8:820–822.

Raghunath et al. Page 9

J Thorac Oncol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
The original CT axial sections, color-coded voxel classification overlay and glyph 

representations are shown for representative nodules.
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Figure 2. 
The raw CT section, pattern overlay and glyph visualization of the three nodule exemplars 

identified by unsupervised affinity propagation (AP)-based clustering using pair-wise 

similarity of the parametric signatures.
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Figure 3. 
Kaplan-Meier survival curve of 264 cases categorized into three automatically identified 

three groups of unique parametric signature.
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Table 1

Patient demographics and pathological tumor stage.

Demographics N = 264

Age at diagnosis
Years: median (range)

68 (35–91)

Gender n (%)
Women

141 (53)

Smoking n (%)
Never

45 (17)

Pathologic TNM Stage n (%)

I 216 (82)

II 22 (8)

III 23 (9)

IV 3 (1)
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Table 2

Summary of effect of stratified clusters on outcomes adjusted by covariates using proportional fit model.

Effect likelihood ratio tests

Variable Chi Square p-value

Age 1.22 0.26

Gender: Male vs Female 3.46 0.06

Smoking: Never vs current/former 3.36 0.06

Pathologic stage (I/II/III/IV) 2.08 0.55

Stratified groups (G/I/P) 19.75 <0.0001*
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