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Abstract

The primary purpose of this study was to compare static and dynamic optimization muscle force 

and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to 

compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim 

forces. The forward dynamics simulation minimized differences between simulated and 

experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For 

direct comparison between models, the shoulder and elbow muscle moment arms and net joint 

moments from the dynamic optimization were used as inputs into the static optimization routine. 

RMS errors between model predictions were calculated to quantify model agreement. There was a 

wide range of individual muscle force agreement that spanned from poor (26.4 % Fmax error in the 

middle deltoid) to good (6.4 % Fmax error in the anterior deltoid) in the prime movers of the 

shoulder. The predicted muscle forces from the static optimization were sufficient to create the 

appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, 

but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. 

These results suggest the static approach does not produce results similar enough to be a 

replacement for forward dynamics simulations, and care should be taken in choosing the 

appropriate method for a specific task and set of constraints. Dynamic optimization modeling 

approaches may be required for motions that are greatly influenced by muscle activation dynamics 

or that require significant co-contraction.
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INTRODUCTION

Numerous studies using inverse dynamics analyses have documented high mechanical loads 

on the upper extremity (UE) during handrim wheelchair propulsion (Rodgers et al. 1994; 

Robertson et al. 1996; Boninger et al. 1997; Kulig et al. 1998; Boninger et al. 1999; 

Boninger et al. 2000; Boninger et al. 2002; Veeger et al. 2002; Rozendaal and Veeger 2003). 

While providing useful data and insights that can aid in determining potential links between 

propulsion mechanics and the development of pain, clinical interpretations made from 

intersegmental joint forces and moments calculated from an inverse dynamics model are 

limited. Intersegmental forces do not represent the articulating surface load (i.e., joint 

contact force), and moments are an estimate of the net action of all muscles crossing each 

joint. Because measuring in-vivo joint contact forces without an invasive procedure is not 

feasible, more complex musculoskeletal modeling and optimization techniques are needed to 

estimate joint contact forces and individual muscle contributions to the joint moment. This 

information is useful in identifying activities and conditions that place manual wheelchair 

users at increased risk for shoulder pain and rotator cuff injury.

The majority of prior investigations have utilized static optimization techniques to solve the 

indeterminate muscle force distribution problem at the shoulder joint during wheelchair 

propulsion (Veeger et al. 2002; Lin et al. 2004; van Drongelen et al. 2005; van Drongelen et 

al. 2006; Dubowsky et al. 2008; Morrow et al. 2009; Rankin et al. 2011). Dynamic 

optimization techniques, which have been found to be useful in other movements such as 

pedaling, standing and walking (Rankin and Neptune 2010; Nataraj et al. 2012; Miller et al. 

2013) have recently been used with upper extremity models to investigate manual 

wheelchair propulsion biomechanics (Rankin et al. 2011; Rankin et al. 2012; Slowik and 

Neptune 2013). Compared to dynamic optimization, static optimization has a much lower 

computational cost. However, unlike dynamic optimization, the method is time-independent 

and does not include the time-dependent physiological nature of muscles. Thus, it is not 

clear whether static optimization predictions of muscle forces can be used to investigate 

wheelchair propulsion mechanics. Anderson and Pandy (2001) investigated the necessity of 

complex forward dynamics techniques to simulate half a gait cycle during walking using a 

lower extremity (LE) model and found the muscle force predictions between static and 

dynamic approaches were practically equivalent. However, it is unknown if Anderson and 

Pandy’s (2001) conclusions are generalizable to UE tasks. A comparison performed for the 

UE may differ from the LE due to its increased range of motion, complexity of the 

musculature and different task demands.

Therefore, the primary purpose of this study was to assess whether the UE muscle force and 

muscle work predictions during the push phase of wheelchair propulsion generated from 

static and dynamic optimization are the same. A secondary purpose was to compare the 

differences in predicted shoulder and elbow kinetics and kinematics and handrim forces 
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between a dynamic simulation and a dynamic simulation driven by the statically-optimized 

muscle forces. We expected that, despite the increase in complexity and range of motion of 

the movement compared to walking, static and dynamic muscle force predictions would 

show good agreement. However, due to the complex non-linear UE dynamics, we expected 

that even small differences in the static muscle force solution would cause the simulation to 

deviate from the forward dynamics solution when used to drive the model.

METHODS

Data Collection

A previously collected dataset using a cross-sectional, observational study design of manual 

wheelchair users (Rankin et al. 2012) was used as the basis for performing the static and 

dynamic optimization analyses. Twelve experienced manual wheelchair users (10 men, 2 

women) with an average age of 32 years provided informed consent. All data collection 

procedures were performed at MAX Mobility, LLC (Antioch, TN). Testing was conducted 

on a custom-built wheelchair treadmill while each subject propelled their own wheelchair at 

a selfselected speed (Rankin et al. 2012). Shoulder and elbow kinematics were obtained 

using a 3-camera motion capture system (Phoenix Technologies Inc., BC, Canada) with an 

active marker set. Markers were placed on the head, sternum and right side acromium 

process, lateral epicondyle, radial and ulnar styloids, 3rd and 5th metcapophalangeal joints, 

2nd proximal interphalangeal joint and wheelchair hub. Marker data were collected at 100 

Hz and low-pass filtered (10 Hz) using an eighth-order Butterworth filter. Handrim kinetics 

and wheel angle were recorded at 200 Hz using an OptiPush force sensing wheel (MAX 

Mobility, LLC) (Richter and Axelson 2005) and low-pass filtered (20 Hz) using an eighth-

order Butterworth filter.

Musculoskeletal Model

An UE musculoskeletal model was developed in SIMM (Musculographics, Inc., Santa Rosa, 

CA) with associated muscle properties and origin/insertion sites based on the work by 

Holzbaur et al. (2005) and Rankin et al. (2011). The model consisted of rigid segments 

representing the trunk, right upper arm, forearm (independent ulna and radius) and hand of a 

50th percentile male. Articulations were defined between rigid segments to represent 

anatomical joints at the shoulder (3 DOF: shoulder elevation plane, shoulder elevation angle, 

shoulder internal/external rotation) and elbow (2 DOF: Flexion-Extension, Pronation-

Supination). Trunk lean and hand location were constrained based on experimental data and 

a scapulohumeral rhythm was defined from cadaver data of subjects with no apparent upper 

extremity dysfunction (de Groot and Brand 2001). The model was driven by 26 Hill-type 

musculotendon actuators to represent the major UE muscles crossing the shoulder and elbow 

joints. Each actuator was defined using two states (activation, fiber length) and was 

governed by intrinsic force-length-velocity relationships (Zajac 1989). All other model 

parameters were selected from Holzbaur et al. (2005). Musculotendon lengths and moment 

arms were determined as a function of the joint angles at each time step of the motion using 

polynomial equations (Rankin and Neptune 2012). The resultant dynamic model had 8 

kinematic states (trunk lean, three shoulder angles, elbow flexion-extension and pronation-

supination) and 26 muscle activation and fiber length states.
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Dynamic and Static Optimization

Dynamic simulation data were obtained from the push phase of a single forward dynamics 

simulation that reproduced the group average experimental data (identical to Rankin et al. 

2011) using a global optimization algorithm (simulated annealing, Goffe et al. 1994). The 

algorithm determined the muscle excitation patterns that minimized differences between 

simulated and experimental joint kinematics (shoulder, elbow and wrist) and handrim forces 

using an optimal tracking cost function in the form of Neptune et al. (2001):

where Yij and Ŷij are the experimental and corresponding simulation value for variable j at 

time step i and SDj is the standard deviation of variable j calculated from the experimental 

data. Based on the assumption that the efficiency of the human neuromuscular system is 

governed by the minimization of redundant muscle activation for a given task, an additional 

term was included in the cost function that was directly proportional to muscle stress (i.e., 

force ratio, expressed as percentage of maximum isometric force) to reduce co-contraction. 

The average force percentage was calculated over the motion for each muscle and then 

summed across all muscles. Individual terms in the tracking cost function were weighted 

independently and adjusted in an iterative manner until tracking of joint kinematics and 

handrim kinetics were within 1 SD of the experimental data (Figs. 1 & 2). The weight on the 

muscle stress term was then increased iteratively until an increase in tracking errors was 

observed.

To allow for a direct comparison between approaches, the muscle moment arms and net 

joint moments at the shoulder and elbow from the dynamic optimization were then used as 

input into the static optimization routine (Morrow et al. 2009). For the static optimization, 

the identical musculoskeletal model parameters were implemented in MATLAB 

(Mathworks, Nantucket, MA). The static optimization used a quadratic programming 

algorithm to predict the muscle forces constrained to produce the dynamic optimization net 

joint moments while minimizing the sum of the each muscle’s force ratio squared 

(equivalent to the sum of the muscle activations squared). The static optimization defined 

the upper limit on muscle forces as the maximum isometric force (Fmax) utilized in the 

dynamic musculoskeletal model, and therefore, it did not require muscle activation-

deactivation dynamics or intrinsic muscle properties (i.e., the force-length-velocity 

relationships).

Analysis

Predicted muscle forces were normalized to Fmax for each muscle (Rankin et al. 2011). To 

compare the static and dynamic optimization solutions, the root mean square error (RMSE) 

between solutions was determined for each muscle and then averaged across muscles to 

yield a global RMSE with units of % Fmax. Because the RMSE data are normalized to Fmax, 

thresholds were set to define the comparisons as excellent (<5 % Fmax), good (5–10 % 

Fmax), moderate (11–20 % Fmax) and poor (>20 % Fmax) agreements. In addition, peak force 
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and total muscle mechanical work (positive work + absolute value of the negative work) 

were determined for all muscles from each solution for qualitative comparison.

To test whether the static optimization results could produce a simulation with similar 

kinematics and kinetics as the dynamic optimization solution, an additional forward 

dynamics simulation was generated by driving the model with the predicted muscle forces 

from the static optimization. The dynamic simulation driven by the statically-optimized 

muscle forces overrode the "muscle model/excitation level" generated forces and instead 

applied the previously predicted static optimization muscle forces at each time step. Muscle 

moments were then calculated during the simulation using these input force values. As a 

result, the applied muscle moments could differ from the original dynamic optimization 

simulation since the UE kinematics were free to change from the original simulation, which 

would lead to temporal changes in the muscle moment arms. Shoulder and elbow 

kinematics, joint moments and handrim forces were then compared between the dynamic 

simulation and the dynamic simulation driven by the statically-optimized muscle forces 

using the RMSE.

RESULTS

There was a range of good to poor agreement in the general waveform of the predicted 

muscle forces between the static and dynamic solutions for the prime movers (i.e., anterior 

deltoid, middle deltoid, pectoralis major, triceps long head and biceps long head) and rotator 

cuff musculature (i.e., suprapinatus, infraspinatus, subscapularis and teres minor) (Fig. 3). 

The global RSME value between the static and dynamic solutions was borderline between 

good and moderate (9.9 % Fmax, Table 1). In the rotator cuff and prime mover muscles, the 

posterior deltoid had the best agreement (1.7 % Fmax) while the middle deltoid had the worst 

(26.4 % Fmax). The dynamic optimization predicted larger peak forces of the prime movers 

and rotator cuff muscles than the static solution (Fig. 4A) except for the posterior deltoid, 

supraspinatus, biceps short head and triceps lateralis. The dynamic optimization predicted 

the largest peak forces in the infraspinatus and middle deltoid. The static optimization 

predicted the largest peak forces in the subscapularis and anterior deltoid. Similar to the 

peak forces, the dynamic optimization predicted larger total work magnitudes (Fig. 4B) than 

the static solution with the exception of the muscles that had larger static peak forces. The 

overall RMSE for the muscle work between models was 1.1 J.

The dynamic simulation accurately reproduced experimental joint kinematics and handrim 

forces (Table 2). The UE motion from the dynamic simulation driven by the statically-

optimized muscle forces showed excellent agreement with the dynamic simulation for the 

shoulder (Fig. 5A) and elbow flexion-extension (Fig. 5B) with RMSE values less than 5° 

(Table 2). However, the predicted forearm pronation-supination from the dynamic 

simulation using statically-optimized muscle forces had poor agreement with the dynamic 

simulation with differences up to 35° (Fig. 5C) and an RMSE of 25°. The predicted shoulder 

moments showed excellent agreement between the two simulations (Fig. 6A) with RSME 

values less than 0.9 Nm (Table 2). The elbow flexion moment showed agreement in the 

general waveform between the simulations (Fig. 6B), but there were differences in the 

magnitude throughout the push phase resulting in an RMSE of 1.8 Nm. There was excellent 
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agreement in the forearm pronation-supination moment (Fig. 6B). The predicted handrim 

force comparisons had RMSE values from 2.6 to 8.0 N (Table 2, Fig. 6C).

DISCUSSION

This study compared predicted muscle forces during the push phase of wheelchair 

propulsion between static (Morrow et al. 2009) and dynamic (Rankin et al. 2011) 

optimization approaches using an identical UE model. Using the muscle moment arms and 

net joint moments at the shoulder and elbow from the dynamic optimization as inputs into 

the static optimization routine allowed for a direct comparison. Additionally, we compared 

how differences in the muscle forces predicted by the static and dynamic approaches 

influence simulated UE motion and kinetics. The 9.9% global RMSE between the static and 

dynamic predicted muscle forces indicates the agreement between solutions was at the low 

end of a good agreement. Surprisingly, the dynamic simulation driven by the statically-

optimized muscle forces was stable and compared well with the dynamic simulation 

shoulder kinematics (RMSE < 5°) and kinetics (RMSE < 0.9 Nm). However, the magnitudes 

of the elbow flexion moment and rim forces did not compare as well between the original 

dynamic simulation and the dynamic simulation driven by the statically-optimized muscle 

forces (Table 2).

To reduce confounding differences between the two optimization methods, the net joint 

moments in the static optimization were constrained to match the dynamic optimization 

moments. This resulted in similar overall net muscle work; however, the dynamic approach 

predicted higher muscle forces than the static approach (Fig. 4) in the majority of the 

muscles. The RMSE force values between the static and dynamic solutions ranged from 1.3 

to 26.4 % Fmax (Table 1). Generally, the muscles with the smallest predicted activation 

throughout the push phase and no appreciable isolated peaks had the best agreement 

between models (e.g., supraspinatus). The muscles with the worst agreement occurred when 

the dynamic approach predicted large force values while the static model predicted low 

values (e.g., infraspinatus and teres minor, Fig. 3).

The two approaches had a range of good to poor agreement in the forces generated by 

muscles responsible for the majority of the joint motion at the shoulder and elbow during the 

push phase. The force patterns showed good agreement between the static and dynamic 

approaches in the anterior deltoid muscle (Fig. 3), which is largely responsible for the 

forward flexion of the humerus (shoulder plane of elevation, Fig. 5A). The humerus flexion 

has the largest range of motion about the shoulder during the push phase. Similarly, the 

force patterns compared well between approaches in the biceps long head (Fig. 3), which is 

responsible for elbow flexion during the first half of the push phase (Fig. 5B). In contrast, 

the middle deltoid and triceps long head (Fig. 3) had poor agreement between approaches 

(Table 1). The static approach showed minimal to no activation of the middle deltoid, which 

is responsible for the lateral elevation (abduction) of the humerus, while the dynamic 

approach predicted peak activation of the middle deltoid over 40 % Fmax. The dynamic 

solution also predicted a large activation of the triceps long head (> 40% Fmax) towards the 

end of the push phase to extend the elbow while the static solution predicted a much smaller 

value (< 10 % Fmax).
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When using the muscle forces from the static optimization to drive a forward dynamics 

simulation, the shoulder joint kinematics and moments were simulated well. However, 

differences between the two approaches increased distally along the arm, with the largest 

differences occurring in the pronation-supination angle and resulting rim forces (Figs. 5 & 

6). This is partly explained by the setup of the static optimization approach, which optimized 

shoulder and elbow joint net moments but did not account for the wrist which drives forearm 

pronation-supination. The pronation-supination was the one degree of freedom not greatly 

influenced by the constraints associated with wheelchair propulsion (cyclical movement, 

limited cycle-to-cycle variability), and presumably, in UE tasks that are less constrained, the 

static approach would perform worse.

The agreement between the static and dynamic approaches in our study was not as good as 

that presented by Anderson and Pandy (2001), who showed a more favorable agreement 

between approaches during half a gait cycle simulation of walking. Walking is a complex, 

highly nonlinear dynamic task that can require carefully setting the initial conditions and 

terminal constraints, and selecting an appropriate cost function to simulate effectively. As a 

result, the dynamic optimization approach and short simulation duration used in Anderson 

and Pandy (2001) may have constrained the solution and contributed to the similar results 

between the dynamic and static approaches. In contrast, the dynamic optimization approach 

used in the present study solved the optimal tracking problem and evaluated the cost 

function after the simulation had reached steady-state (i.e., not until the third consecutive 

push and recovery cycle). Thus, the solution is independent of the initial conditions and has 

no explicit terminal constraints. Another factor potentially contributing to difference 

between studies is the difference in workload between the two tasks. In contrast to self-

selected walking, wheelchair propulsion requires significant upper extremity demand that 

may require increased muscle co-contraction (e.g., at the transition between the push and 

recovery phases) relative to walking that is difficult to capture using static optimization.

In this study, we are not able to conclude which optimization method more closely predicts 

human muscle performance because we do not have the actual in vivo muscle, tendon and/or 

contact force measurements to reference. Although we cannot fully assess the accuracy of 

either method, our findings highlight that if the human subjects had used a similar pattern as 

the forward dynamics simulation, the static optimization approach would not have 

accurately predicted the human subject results. More general, for a given motion, a simple 

static optimization scheme using a standard optimal criterion is not able to closely match the 

dynamic simulation muscle force predictions in upper extremity movement. Although both 

approaches produced muscle forces and activation patterns that could approximately 

reproduce the kinematics, a qualitative assessment of the predicted muscle time-series plots 

obtained using the two methods (Fig. 1) would have not led to that conclusion. Predicted 

magnitudes and timing differ for nearly every muscle between methods, yet both muscle 

force solution sets closely approximate the experimental kinematics at the shoulder and 

elbow. This point serves as a reminder that the solution set is just one of many possible 

solutions and that extreme care should be taken to validate the underlying model 

assumptions and parameters that will govern the solution set.
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Limitations of the musculoskeletal model and the dynamic and static approaches used in this 

study have been previously described (Morrow et al. 2009; Rankin et al. 2011). When 

comparing the two approaches, only one static optimization cost function (minimize force 

ratio) was presented. Additional cost functions were implemented post-hoc, but these did not 

improve the agreement between solutions. However, future studies could benefit from 

exploring other cost functions that might improve model agreement. Further, although the 

dynamic optimization tracked the body segment kinematics and hand rim forces, there were 

some minor differences in joint moment patterns between the inverse and forward dynamics 

solutions. Since static optimization analyses most often use joint moments derived from 

inverse dynamics rather than forward dynamics solutions, we would expect some 

differences with the static optimization results presented here. However, our primary goal 

was to investigate differences between the two optimization techniques, and we feel that 

constraining the static optimization to match the forward dynamics joint moments allowed 

for a more direct and clear comparison between the two methods. Finally, including the 

wrist may also improve the pronation-supination comparison. To fully test the capabilities of 

the static optimization to predict muscle forces from the dynamic approach, the hand 

translation constraints in the forward simulation could be relaxed to see how the static 

solution performs in a less constrained environment.

CONCLUSIONS

The dynamic and static approaches had good to moderate overall agreement with a wide 

range from excellent to poor in individual muscle agreement. The approaches did not 

compare as well as the walking analysis in Anderson and Pandy (2001), and the peak force 

data highlight considerable differences in the rotator cuff and large prime mover shoulder 

muscles. The predicted muscle forces from the static approach were sufficient to create the 

appropriate motion and joint moments at the shoulder for the push phase of wheelchair 

propulsion, but showed considerable deviations in the elbow moment, pronation-supination 

motion and hand rim forces. The inability of the static approach to replicate the forward 

dynamics simulation may highlight an underestimated co-contraction/joint stiffness needed 

to produce the dynamic movement. Based on these results, the static approach did not 

produce results similar enough to be a replacement for the dynamic simulation, and care 

should be taken in choosing the most appropriate method for a specific task and set of 

constraints. Finally, dynamic optimization modeling approaches may be required for 

motions that are greatly influenced by muscle activation dynamics or that require significant 

co-contraction.
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Figure 1. 
Comparisons between the experimental and dynamic simulation kinematic data. Average 

experimental and simulation values are represented by solid and dashed lines, respectively. 

Shaded regions represent ±1SD of the experimental data.
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Figure 2. 
Comparisons between the experimental and dynamic simulation hand rim force data. 

Average experimental and simulation values are represented by solid and dashed lines, 

respectively. Shaded regions represent ±1SD of the experimental data.
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Figure 3. 
Predicted muscle force time series for the upper extremity prime movers and rotator cuff 

musculature during the push phase of wheelchair propulsion obtained from static (blue) and 

dynamic (orange) optimization approaches.
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Figure 4. 
Peak forces (A) and net muscle work (B) during the push phase of wheelchair propulsion 

obtained from the static (blue) and dynamic (orange) optimization approaches.
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Figure 5. 
Forward dynamic simulation results for (A) shoulder joint moment, (B) elbow flexion-

extension, and (C) Pronation-supination from static (solid line) and dynamic (dotted line) 

predicted muscle forces during the push phase of wheelchair propulsion. ElvPlane refers to 

the shoulder elevation plane angle, ElvAngle refers to the shoulder elevation angle, and 

Rotation refers to the internal-external rotation of the shoulder.
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Figure 6. 
Forward dynamic simulation results for (A) shoulder joint moments (τ), (B) elbow joint 

moments (τ), and (C) hand rim forces from static (solid line) and dynamic (dotted line) 

predicted muscle forces during the push phase of wheelchair propulsion.. ElvPlane refers to 

the shoulder elevation plane axis, ElvAngle refers to the shoulder elevation axis, and 

Rotation refers to the internal-external rotation axis of the shoulder. FE refers to the flexion-

extension axis of the elbow, and ProSup refers to the pronation-supination axis of the 
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forearm. The tangential (Tan), radial (Rad), and lateral forces (Lat) are shown for the 

handrim.
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Table 1

RMS Error for dynamic versus static optimization force predictions

Muscle

Dynamic
vs. Static

RMS Error
(%Fmax)

Anterior Deltoid 6.4

Middle Deltoid 26.4

Posterior Deltoid 1.7

Supraspinatus 5.5

Infraspinatus 22.2

Subscapularis 5.9

Teres minor 22.4

Teres Major 1.4

Pec Major-Clav 3.9

Pec Major-Stern upper 9.8

Pec Major-Stern lower 4.6

Lat Dorsi upper 9.7

Lat Dorsi middle 4.9

Lat Dorsi lower 12.7

Corocobrachialis 20.7

Triceps Long 23.2

Biceps Long 9.3

Biceps Short 4.7

Brachialis 4.5

Triceps Lateral 1.7

Triceps Medial 20.1

Anconeous 1.3

Brachioradialis 3.8

GLOBAL RMSE 9.9
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Table 2

RMS Error for dynamic simulation compared to dynamic simulation using statically-optimized muscle forces 

and RMS Error for experimental (exp) data compared to dynamically simulated data for the push phase of the 

forward dynamics simulation

Measure (units)
Dynamic vs. Static

RMS Error
Dynamic vs. Exp

RMS Error

Shoulder elevation plane(deg) 2.4 0.6

Shoulder elevation angle (deg) 1.3 2.3

Shoulder int/ext rotation (deg) 4.4 1.2

Elbow flexion (deg) 0.3 1.3

Pronation supination (deg) 25.0 1.3

Shoulder elevation plane moment (N.m) 0.8

Shoulder elevation angle moment (N.m) 0.6

Shoulder int/ext rotation moment (N.m) 0.5

Elbow flexion moment (N.m) 1.8

Pronation supination moment (N.m) 0.2

Rim tangential force (N) 8.0 2.3

Rim radial force (N) 7.6 3.8

Rim lateral froce (N) 2.6 1.1
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