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Abstract

Potent gastric acid suppression using proton pump inhibitors (PPIs) is common in clinical practice 

yet may have important effects on human health that are mediated through changes in the 

gastrointestinal microbiome. Acting through pH-dependent or pH-independent mechanisms, PPIs 

have the potential to alter the normal microbiota throughout the human gastrointestinal lumen. In 

the esophagus, PPIs change the normal bacterial milieu to decrease distal esophageal exposure to 

inflammatory Gram-negative bacteria which may lower the risk of Barrett's esophagus. In the 

stomach, PPIs alter the abundance and location of gastric Helicobacter pylori and other bacteria, 

which has implications for peptic ulcer disease and gastric malignancy. In the small bowel, PPIs 

cause polymicrobial small bowel bacterial overgrowth and have been associated with the 

diagnosis of celiac disease. In the colon, PPIs associate with incident but not recurrent Clostridium 

difficile infection, putatively through alterations in commensal colonic anaerobes. Our 

understanding of the effect of gastric acid suppression on the human gastrointestinal microbiome 

is incomplete but is rapidly advancing.
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INTRODUCTION

For centuries, it has been known that dietary factors influence gastrointestinal bacteria; 

Dorlencourt hypothesized that pH differences between breast milk and cow’s milk explained 

the higher proportions of Lactobacillus observed in the stools of breastfed children.1 Today, 

the role of gastric acidity in the human gastrointestinal microbiome is intertwined with the 

development and increasing use of proton pump inhibitors (PPIs). Other medications can 

alter the pH of the human gastrointestinal lumen. However, PPIs are the most potent, the 

most common, and have received the most attention. This review focuses on PPIs and 

covers the physiology of gastric acid production and suppression, and the evidence and 

clinical consequences of acid-related changes in the normal microbiome.

PROTON PUMP INHIBITORS AND GASTROINTESTINAL ACIDITY

Normal gastrointestinal acidity

Acidity within the human gastrointestinal tract varies by anatomic location and is part of 

essential physiologic processes including digestion and nutrient absorption.2 In the stomach, 

lumenal pH can approach 1.0; gastric acid plays a role in breakdown of food particles, and 

the pH-dependent separation of intrinsic factor from R-protein.3 Outside of the stomach, 

lumenal pH is often discussed in the context of optimizing drug delivery. In general, pH 

tends to rise gradually from 6.5 in the small bowel to a high of 7.5, drop in the cecum (to as 

low as 5.5), and again rise gradually in the left colon to a high of 6.5 – 7.0.4 The invariant 

pattern of gastrointestinal pH seen between individuals suggests that pH plays crucial 

physiologic roles throughout the gastrointestinal tract. Local pH partially determines the 

absorption of biotin and folate in the small bowel,5,6 vitamin B12 in the distal ileum,7 and 

calcium and other electrolytes in the colon.8 Thus, in addition to the influence that pH exerts 

on the microbiome, gastrointestinal acidity is important and tightly regulated.

Physiology of gastric acid production

Food, stress, and other central and hormonal mechanisms stimulate gastric acid secretion 

acting via autonomic and paracrine signals. The primary signals are gastrin from pyloric and 

duodenal G-cells, acetylcholine from postganglionic neurons in the gastric submucosa, and 

histamine from enterochromaffin-like cells; the common target of these signals and the acid-

producing cell of the stomach is the parietal cell.9 In response to stimuli, transmembrane 

H+/K+-ATPase pumps are translocated from tubulovesicles into parietal cell canaliculi, 

increasing their concentration on the cell surface by 10-fold. These powerful pumps then 

acidify the stomach by utilizing ATP for energy to drive protons or hydronium ions against 

enormous concentration gradients.10

Proton pump inhibitors

Proton pump inhibitors were independently synthesized by two companies from 2-

pyridylthioacetamide by screening modified compounds (Figure 1); the first PPIs were 

omeprazole (1988) and lansoprazole (1991).11 There were initial safety concerns 

surrounding omeprazole, which was linked to increased risk for gastric carcinoids.12 

Subsequent studies suggested that PPIs did not confer increased risk for malignancy and 
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more PPIs were developed including enantiomers (esomeprazole and dexlansoprazole) of 

the original PPIs.13 There are currently 7 PPIs available in the United States by prescription, 

2 PPIs (omeprazole and lansoprazole) that are available over-the-counter, and 3 PPIs 

(omeprazole, lansoprazole, and pantoprazole) which are available as generics. Because PPIs 

are metabolized through the hepatic cytochrome P450 system, drug levels can vary between 

formulations for individuals with certain pharmacogenetic characteristics.14 However, there 

is little evidence that the various PPI formulations differ significantly in clinical efficacy or 

in side effects.15

All PPIs are pro-drugs that are concentrated in a pH-dependent manner in the canaliculi of 

parietal cells. PPIs are concentrated within acidic parietal cell canaliculi, protonated, and 

covalently bound to cysteine residues of parietal cell H+/K+-ATPase antiporter pumps.16 

Because stimulation at the prospect of food causes H+/K+-ATPases to be translocated into 

parietal cell canaliculi, PPIs are most effective if taken before meals when the maximal 

number of H+/K+-ATPases are available as targets. Once bound by PPIs, parietal cell H+/

K+-ATPases are irreversibly fixed into an inactive configuration, which lasts approximately 

24 hours until more H+/K+-ATPases can be inserted from resting intracellular vesicles into 

the apical membrane of the parietal cell. The key to the tremendous efficacy of PPIs is that 

they inhabit the end pathway of gastric acid production and thus, unlike other acid 

suppressive medications, cannot be overwhelmed by normal physiologic compensatory 

mechanisms.

In the stomach, PPIs induce profound hypochlorhydria. Serum concentration peaks after 2–5 

hours; after 3–4 hours, a single oral PPI dose will raise gastric pH in most patients from 2.0 

to over 6.0, a 10,000-fold change.17 The pH-raising effect of PPIs persist in the proximal 

duodenum, but are attenuated by the distal duodenum. In a study of healthy volunteers who 

underwent continuous pH monitoring, median pH in the distal duodenum was 5.85 after 1 

week of PPIs compared to 5.95 after 1 week of placebo.18 Using wireless capsule pH 

measurement, there is similar overall small bowel pH between users and non-users of high-

dose PPIs.19 The best available evidence thus suggests that, by the proximal jejunum, the 

direct pH effect of PPIs has been fully attenuated and is no longer significant.

Proton pump inhibitors have established clinical efficacy for many health conditions 

including peptic ulcer disease, gastroesophageal reflux, eosinophilic esophagitis, and acid 

hypersecretory conditions (e.g., Zollinger-Ellison syndrome). Because they are effective and 

are believed to be benign, PPIs have gained widespread use. They are perennially among the 

top three drug classes by sales in the world; one PPI, esomeprazole, was the fourth most 

prescribed drug by sales in the United States in 2012 and the top drug by sales through the 

first six months of 2013.20 When used for appropriate indications, PPIs have great benefits. 

However, they are often prescribed in situations where they have no potential clinical 

benefit.21 Over half of all inpatients who receive PPIs do not have an appropriate indication 

for the drugs and, among these patients, over one third are discharged on PPIs.22 Among 

outpatients, 80% of PPI prescriptions are repeats and 40 to 50% are for non-specific 

abdominal pain.23
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Non-pH dependent effects of PPIs

The influence of PPIs on the gastrointestinal microbiome is presumed to depend upon their 

capacity to raise gastric pH. However, PPIs also have the potential to influence the 

microbiome through pH-independent mechanisms. First, proton pump inhibitors induce 

hormonal changes including hypergastrinemia and hyperparathyroidism that have the 

potential to alter the gastrointestinal bacterial milieu.24 Second, PPIs can alter lumenal 

contents to interfere with nutrient absorption and change the amount or location of bacterial 

food substrates. Case reports and cross-sectional studies document increased 

hypomagnesemia among patients on longterm PPIs, suggesting the possibility that PPIs 

interfere with small bowel magnesium transport.25,26 Finally, PPIs have been shown to bind 

non-gastric H+/K+-ATPases, both on human cells and on commensal bacteria and fungi.27 

The P-type family of ATPases, which includes H+/K+-ATPases, is present on fungi, 

Helicobacter pylori,28 and Streptococcus pneumoniae,29 but little is known about the effect 

of PPIs on specific bacteria aside from H. pylori.

EFFECTS OF PROTON PUMP INHIBITORS ON THE MICROBIOME

Esophagus

Proton pump inhibitors are first-line treatment for acid-related esophageal disorders 

including gastroesophageal reflux disease (GERD), erosive esophagitis, Barrett’s esophagus 

(BE), suspected eosinophilic esophagitis, and non-erosive reflux disease.30–32 Esophageal 

disorders are the most common reason for prescribing a PPI. Since the 1970s, there has been 

a 5 to 10-fold rise in BE and esophageal adenocarcinoma (EAC), with a parallel rise in 

GERD.33,34 In a large pharmacy database, over 60% of patients on long-term PPIs reported 

heartburn and 68% carried diagnoses of GERD, dyspepsia, or both.35 But diagnostic testing 

was rare; only 27% of these patients underwent upper endoscopy and only 3% had testing 

for Helicobacter pylori.

The esophageal microbiome is altered in esophagitis and BE compared to normal controls.36 

A study of distal esophageal specimens from 34 subjects who had esophagitis, BE, or an 

endoscopically normal esophagus found that the microbiome could be separated into 2 

types: a pattern dominated by Streptococcus that associated with a normal esophagus, and a 

pattern dominated by Gram-negative anaerobes or microaerophilic bacteria that associated 

with esophagitis or Barrett's. These Gram-negative bacteria may increase esophageal 

inflammation by activating Toll-like receptor 4 and the NF-kB pathway through surface 

lipopolysaccharides (LPS).37 Alternatively, these bacteria may increase distal esophageal 

acid exposure by lowering lower esophageal sphincter tone or by delaying gastric 

emptying.38,39

Proton pump inhibitors are believed to protect against progression of Barrett's esophagus to 

EAC by decreasing distal esophageal mucosal acid exposure. PPIs simultaneously alter the 

distal esophageal microbiome in ways that may affect inflammation and carcinogenesis. The 

mucosal-associated microbiota of the distal esophagus, which is altered in patients with 

esophagitis or BE,36,40 is further modified by PPIs. A study of 34 patients with Barrett's, 

esophagitis, or a normal distal esophagus used 16S rRNA gene sequencing to assess the 
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microbiome from distal esophageal biopsies and gastric aspirates, comparing results before 

versus after PPIs.41 Before PPIs were administered, there were no major differences in distal 

esophageal mucosal bacteria comparing patients with esophagitis/BE to controls. After PPIs 

were administered, however, there were significant increases in distal esophageal 

Lachnospiraceae, Comamonadaceae, and unclassified Clostridial families. The family 

Methylobacteriaceae, which were increased in gastric aspirates among BE/esophagitis 

patients before PPIs, were dramatically depleted in these patients after PPI therapy. This 

bacterial family has also been associated with inflamed tissue in patients with inflammatory 

bowel disease and found in patients with irritable bowel syndrome, suggesting that these 

bacteria can only thrive on altered mucosa.42

Although Helicobacter is not a dominant organism in the esophagus, H. pylori exerts control 

over the distal esophageal microbiome. There is a strong inverse correlation between H. 

pylori infection (especially cagA positive H. pylori) and Barrett's esophagus or EAC.43,44 A 

recent study by Fischbach et al investigated the role of acid suppression in the H. pylori-

Barrett's relationship.45 The authors found that the odds ratio for the association between H. 

Pylori and BE was 0.56 among those who used PPIs compared to 0.90 among those who did 

not, implying that PPIs augment the protective effects of H. pylori for BE. These results are 

surprising because PPIs have powerful anti-H. pylori activity and H. pylori appears to be 

protective for esophageal neoplasia. The most likely explanation is that the direct protective 

effects of PPIs in Barrett's (via decreased distal esophageal acid exposure) outweigh indirect 

and less potent anti-H. pylori effects. Future studies should further elaborate the influence of 

PPIs in the H. pylori-Barrett's relationship and determine the precise mechanisms by which 

PPIs alter the distal esophageal microbiome.

Stomach

Proton pump inhibitors are a mainstay of H. pylori eradication therapy and have direct 

bacteriostatic activity against H. pylori46 as well as indirect Helicobacter activity via 

increases in gastric pH. Because H. pylori and an acidic environment are necessary for the 

formation of most gastric and duodenal ulcers, PPIs effectively prevent peptic ulcer disease 

and dramatically speed the healing of ulcers that have already formed.47 PPIs are often used 

in non-ulcer dyspepsia and other functional gastric conditions, although their utility under 

these circumstances is less clear.

The acidity of the stomach distinguishes the gastric niche from the rest of the human 

gastrointestinal tract and determines the composition of the gastric flora. H. pylori is the 

dominant microorganism of the stomach, accounting for at least 70% of the gastric 

microbiome by 16S rRNA sequencing in positive individuals.48 Gastric acidity both allows 

Helicobacter pylori to thrive and is influenced by the presence of H. pylori. Acid 

suppression with PPIs decreases H. pylori abundance and, in antrum-predominant infection, 

shifts H. pylori’s location to the corpus; meanwhile, corpus-predominant H. pylori infection 

can cause atrophic gastritis and achlorhydria.49

PPIs cause gastric bacterial overgrowth, and PPI-induced gastric bacterial overgrowth is 

related to H. pylori infection. H. pylori-infected individuals have greater pH changes with 

PPIs than do uninfected individuals and are consequently more susceptible to overgrowth.50 

Freedberg et al. Page 5

Clin Lab Med. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



When H. pylori is absent, dominant gastric bacteria include oral flora such as Streptococcus 

(primarily in the mitis group)51 and common commensals such as Lactobacillus and 

Clostridium spp. that are seen elsewhere in the gastrointestinal tract.52,53 When gastric pH is 

raised above 4.0 by PPIs, Lactobacillus spp., Streptococcus spp., and other gastric bacteria 

proliferate and can cause nausea, bloating, and altered concentrations of upper GI anaerobes, 

which in turn affects conjugation of bile acids and can lead to diarrhea.54,55

In susceptible individuals, chronic H. pylori infection leads to multifocal atrophic gastritis, 

gastric epithelial dysplasia, and gastric cancer.56 This stepwise inflammatory process, 

termed the Correa cascade, has been demonstrated in animal models and corroborated by 

human studies; in 1994, H. pylori was recognized as a class I (definite) carcinogen by the 

World Health Organization.57 Because of improved hygiene and increased use of 

antibiotics, H. pylori infection is declining in the developed world. However, in areas at high 

risk for gastric cancer, PPIs have been successfully used with antibiotics to eradicate H. 

pylori for the chemoprevention of gastric cancer. Two large, randomized and placebo-

controlled trials have been conducted in areas in China with very high baseline rates of 

gastric cancer. The first study, conducted among 1,630 participants with H. pylori infection 

in the Fujian Province showed that antibiotics and PPIs decreased incident gastric cancer 

among those without precursor lesions after 7.5 years of follow-up.58 A second, larger trial 

in the Shandong province showed a significant reduction in incident gastric cancer among 

all participants, comparing PPIs and amoxicillin versus placebo after 15 years of follow-

up.59 Because of this and similar data, short courses of PPIs are recommended as part of a 

chemopreventive strategy in high-risk individuals with H. pylori infection in guidelines from 

the United States, Europe, and Asia.47,60,61

In H. pylori negative individuals, the effect of chronic PPI use on gastric dysplasia is less 

clear, and recent data suggest that H. pylori is not the only gastric microorganism that 

contributes to dysplasia and gastric cancer. Ironically, H. pylori does not thrive in the 

relatively high pH environment associated with gastric cancer. In patients with gastric 

cancer, H. pylori decreases in abundance and there is a shift towards Streptococci genera 

that are not often found in normal individuals.62 Recent data from mouse models have 

contributed to our understanding of the role of the non-H. pylori gastric microbiome in the 

pathogenesis of gastric cancer, although the high gastric pH of mice (baseline 3.0 to 4.0) 

may limit the ability to generalize murine microbiome findings to humans.63 A well-

established mouse model of gastric cancer is the transgenic INS-GAS mouse, which 

overexpresses gastrin and almost invariably develops gastric cancer.64 When raised in a 

germfree environment, H. pylori-monoinfected INS-GAS mice had delayed progression of 

gastric dysplasia compared to mice with a complex gastric microbiome.65 Introduction of 

complex microbiota or of defined species (altered Schaedler’s flora) into the stomachs of 

INS-GAS mice was sufficient to accelerate dysplasia.66 This interesting finding raises the 

possibility that PPIs, if continued after H. pylori eradication, could promote gastric cancer 

pathogenesis by causing non-H. pylori gastric dysbiosis that perpetuates the Correa cascade.

The preponderance of data does not support the idea that PPIs accelerate cancer in the 

stomach in humans through the microbiome or other mechanisms. Early animal studies of 

omeprazole showed increased rates of enterochromaffin (ECL) cell carcinoids, but 
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subsequent lifelong studies of rats failed to confirm this finding.12 Further animal studies did 

not indicate risk,13 and longterm prospective cohort data in humans have not shown an 

association between PPIs and gastric carcinoids or gastric adenocarcinoma.67

Small Bowel

The profound effect of PPIs on pH is limited to the stomach and proximal duodenum, with 

little-to-no effect on the pH of the majority of the small bowel.18 Nevertheless, gastric acid 

suppression by PPIs exerts a downstream effect on small intestinal bacterial composition. 

The increase in the quantity and diversity of the gastric microbiome in PPI users is 

paralleled by an increase in the quantity of bacteria in the proximal small bowel. A study of 

450 consecutive patients undergoing glucose hydrogen breath test for suspected small 

intestinal bacterial overgrowth (SIBO) found that 50% of PPI users tested positively, 

compared to 6% of non-users.68 Using duodenal aspirates and a diagnostic criteria of 103 

colonic-type organisms per cc of fluid, a study of over 300 patients found that that 36% of 

PPI users had SIBO compared to 22% of non-users.69 The most common organisms in 

SIBO patients were Escherichia coli (37%), Enterococcus spp. (32%), and Klebsiella 

pneumoniae (24%). Finally, a recent meta-analysis found a nearly three-fold increase in the 

risk of SIBO among adult users of PPIs compared to non-users (OR 2.28, 95% CI 1.24–

4.21).70 The association was particularly strong when the endpoint of SIBO was classified 

solely on the gold standard of duodenal or jejunal aspirates (OR 7.59). While individuals 

with SIBO are often asymptomatic, clinical sequelae can include gas and bloating sensation 

due to increased intralumenal carbohydrate fermentation, iron and vitamin B12 deficiency 

due to competitive microbial uptake, and fat malabsorption as a consequence of bacterial 

deconjugation of bile acids.71,72

PPIs are often prescribed to provide gastric protection in patients who are co-ingesting 

nonsteroidal anti-inflammatory drugs (NSAIDs), but the combined use of these agents may 

exert a paradoxical cytotoxic effect on the small bowel. In a study of rats administered 

omeprazole or lansoprazole for 9 days plus celecoxib or naproxen for the final 4 days, PPI 

use was associated with reductions in jejunal Actinobacteria and Bifidobacteria, and 

exacerbated intestinal damage.73 This injury appeared to be mediated by dysbiosis, because 

injury was ameliorated when PPI-treated rats were repleted with a Bifidobacteria-enriched 

microbiota. Also, when germ-free mice were given jejunal bacteria from PPI-treated rats, the 

germ-free mice had more severe NSAID-related injuries than did germ-free mice given 

bacteria from control rats. While this effect has not been demonstrated in humans, these 

results suggest that PPIs, when co-administered with NSAIDs, may potentiate cytoxocity in 

the small bowel via a microbiome-mediated effect.

The rise of PPI use in recent decades has coincided temporally with an increased incidence 

of celiac disease, an immune-mediated enteropathy characterized by intraepithelial 

lymphocytosis and villous atrophy in response to the ingestion of gluten. Children with 

celiac disease appear to have distinct duodenal microbial characteristics including reduced 

Lactobacillus and Bifidobacterium and increased Bacteroides and E. coli.74 A population-

based case-control study found that a prescription of a PPI was far more likely in patients 

prior to being diagnosed with celiac disease compared to age and sex-matched controls (OR 
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4.79; 95% CI 4.17–5.51). Given the possibility that PPIs may have been prescribed in 

response to symptoms of undiagnosed celiac disease, a sensitivity analysis excluding all PPI 

prescriptions in the one year immediately preceding this diagnosis found that the effect, 

though diminished, remained significant (OR 2.28; 95% CI 1.67–3.10).75 While these 

results do not prove causality, the potentially mediating effect of the microbiome on the PPI-

celiac disease relationship warrants further investigation.

A second link between PPI use and the increased risk of celiac disease may relate to the 

effect of PPIs on H. pylori. In a large cross-sectional study of simultaneously submitted 

gastric and duodenal biopsy specimens to a national commercial pathology laboratory, there 

was a strong inverse association between H. pylori and celiac disease; this remained 

significant after adjusting for age, gender, and socioeconomic status (OR 0.48; 95% CI 

0.40–0.58).76 This apparently protective effect of H. pylori may be due to the local 

recruitment of regulatory T lymphocytes, damping the immune response to potentially 

antigenic dietary exposures.77 Because PPIs exert a bacteriostatic effect on H. pylori, the 

potentially protective effect of this bacteria on celiac disease risk may be diminished by 

PPIs; in support of this hypothesis, the rise in diagnosis of celiac disease correlates with 

decreased rates of Helicobacter infection in western societies.

Colon

The large intestine contains most of the human gastrointestinal microbiome in part because 

the colonic pH of 5.5 to 7.0 is permissive for the growth of many microbial species.78 

Elegant interspecies experiments show that, when a mammalian microbiome is transplanted 

into a germ-free zebrafish, the microbial structure quickly changes to resemble a 

conventional zebrafish microbiome.79 This suggests that very basic host characteristics – 

pH, temperature, and motility – are important determinants of overall microbiome structure. 

PPIs do not directly alter the pH of the colon, yet they may have clinically important effects 

on the distal gut, and interest has focused around the relationship between PPIs and 

Clostridium difficile infection (CDI).

C. difficile infection is a highly morbid form of infectious colitis that has been associated 

with exposure to PPIs in over thirty observational studies.80,81 During a period of declining 

use of antibiotics, the rise in CDI correlates with increased use of proton pump inhibitors 

(Figure 2).82 An association between PPIs and CDI has been found among outpatients,83 

inpatients,84 and patients in intensive care units.85 Multiple meta-analyses and population-

based data support these findings.80,81 A program of active surveillance undertaken by the 

Centers for Disease Control that covers over 11 million people found that PPI exposure was 

5% higher among those with CDI who did not report exposure to antibiotics, compared to 

those with CDI who did report exposure to antibiotics.86

The mechanism linking PPIs and CDI is uncertain, but is believed to be via the microbiome. 

C. difficile spores are acid resistant, and acid suppression has little impact on their 

survival.87,88 Antibiotic use causes CDI by depleting commensal bacteria that normally 

block C. difficile proliferation and reducing the diversity of the colonic microbiome.89,90 

Proton pump inhibitors cause small bowel bacterial overgrowth with predominantly colonic 

species; it follows that, with overgrowth in the proximal gut, an altered bacterial load is 

Freedberg et al. Page 8

Clin Lab Med. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



delivered to the colon that may predispose to CDI. Distal gut bacteria interact with colonic 

epithelial cells and patients using PPIs have been shown to have increased colonic 

intraepithelial leukocytes91 and fecal calprotectin levels,92 suggesting colonic mucosal 

inflammation. Proton pump inhibitors may also directly bind colonic epithelial H+/K+-

ATPases, or act on the colonic mucosa through NF-kB or other systemic immune 

pathways.93 Further evidence supporting the hypothesis that the microbiome mediates the 

PPI-CDI relationship can be found in studies examining PPIs as a risk factor for recurrent 

CDI. Unlike studies of incident CDI, the relationship between PPIs and recurrent CDI is not 

clear.94,95 It is biologically plausible that PPIs cause incident CDI by altering the colonic 

microbiome and that this effect is blunted after the microbiome has already been perturbed 

by CDI.

Few studies have investigated the changes within the fecal microbiome that precede CDI. In 

a prospective cohort study of 599 patients during a C. difficile outbreak, decreased 

Bacteroidetes at the time of admission was associated with subsequent development of 

CDI.96 When 16S rRNA sequencing was used to compare the fecal microbiome from 25 

patients who developed CDI to 25 randomly selected controls who did not, the patients who 

developed CDI had significant depletions in Clostridiales Incertae Sedis XI, a family that 

belongs to the same order as C. difficile.97 In humans, the combination of antibiotics and 

PPIs produced a pattern of reduced fecal bacterial diversity and reduced Bacteroidetes 

abundance although the effect of PPIs alone in humans is unknown.98

Under controlled conditions, PPIs have effects on the fecal microbiome of animals. In dogs, 

administration of high-dose PPIs increased Lactobacillus and, in male dogs, reduced 

commensal fecal bacterial types including Bacteroidetes.99 Another study used quantitative 

real-time PCR to assess the effect of achlorhydria on the fecal microbiome in Wistar rats 

treated with high-dose PPIs and humans with chronic atrophic gastritis.100 They observed 

significant increases in the levels of Lactobacillus in acid-suppressed rats and achlorhydric 

humans compared to controls, without comparable increases in Bacteroidetes. These fecal 

microbiome changes resemble some of the alterations seen after administration of 

antibiotics, raising the possibility that PPIs may act like antibiotics to decrease microbiome 

diversity or otherwise alter normal microbiome structure and lower normal colonization 

resistance to C. difficile.90

SUMMARY

Proton pump inhibitors irreversibly bind and inactivate gastric H+/K+-ATPases to induce 

profound gastric achlorhydria. PPIs are highly effective treatment for acid-related disorders 

but are widely overused. PPIs alter the microbiome throughout the human gastrointestinal 

tract with important potential consequences for human health (Figure 3). The ability of PPIs 

to heal erosive esophagitis and slow progression of Barrett's esophagus may be partly 

mediated by PPI-related decreases in Gram negative bacteria. In the stomach, PPIs have a 

chemopreventive effect when used for eradication of Helicobacter pylori, yet contribute to 

gastric carcinogenesis in animals by causing dysbiosis if given after H. pylori is eradicated. 

In the small bowel, PPIs may cause diarrhea through bacterial overgrowth and may be a risk 

factor for celiac disease. Finally, epidemiological studies show that PPIs are associated with 
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Clostridium difficile infection, although the mechanism linking PPIs and incident C. difficile 

remains unclear. Further research is needed to determine the effect of PPIs on the 

gastrointestinal microbiome and on human health.
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Key points

• Proton pump inhibitors (PPIs) have the potential to affect human health via 

interactions with the gastrointestinal microbiome.

• PPIs reduce esophageal Gram negative bacteria and may decrease risk for distal 

esophageal neoplasia.

• Given for Helicobacter pylori eradication, PPIs can prevent gastric cancer yet 

may cause gastric dysbiosis after H. pylori has been eradicated.

• PPIs may cause small intestinal bacterial overgrowth and are associated with the 

diagnosis of celiac disease.

• PPIs are associated with Clostridium difficile infection (CDI), although the 

mechanism linking PPIs and CDI is uncertain.
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Figure 1. 
Common structure of proton pump inhibitors (PPIs). All PPIs share a common backbone, 

with a pyridine linked to a benzimadazole.
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Figure 2. 
Corresponding rises in the incidence of C. difficile infection (CDI) and rate of proton pump 

inhibitor (PPI) use, during a time of decreasing antibiotic use. Adapted from: Dial S, 

Delaney JA, Barkun AN, Suissa S. Use of gastric acid-suppressive agents and the risk of 

community-acquired Clostridium difficile-associated disease. JAMA. Dec 21 2005;294(23):

2989–2995.
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Figure 3. 
Bacteria that may be affected by proton pump inhibitors (PPIs) are shown by anatomical 

area; small arrows indicate directionality of changes with PPIs.
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