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Abstract

Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance 

between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor 

protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic 

amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup 

occurs over an extended time-frame, and the early detection and modulation of plaque formation 

are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils 

in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and 

differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. 

Tritium-labeled (E,E)-1-[3H]-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene possesses an 

improved level of chemical stability relative to a previously reported radioiodinated analog for 

radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with 

synthetic Aβ and tau fibrils.

Accumulation of extracellular Aβ senile plaques in brain tissue and tangles of 

hyperphosphorylated tau protein inside brain neurons are the classical histopathological 

signs of Alzheimer’s disease (AD).1,2 According to the AD β-amyloid hypothesis,3,4 the 

imbalance between the production and clearance of Aβ from brains of AD patients results 

from the alternative processing of the amyloid precursor protein5,6 (APP) by β- and γ-
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secretases resulting in the generation of soluble APP fragments:7 amyloid Aβ38, Aβ40, and 

Aβ42, which assemble into plaques.8 Tau protein hyperphosphorylation is induced by Aβ 

leading to neurofibrillary tangle formation.9,10 The soluble oligomers of Aβ42 that result 

from the assembly of monomer produced by the sequential proteolytic cleavage of APP by 

β- and γ-secretase are neurotoxic,11 cause neuroinflammation and neuronal death, and 

ultimately result in cognitive impairment, irreversible memory loss, and disorientation in 

AD.

Because Aβ plaque formation occurs over a lengthy time period, methods for the early and 

conclusive detection12, monitoring, and prevention13–16 of Aβ deposition are of 

considerable importance. The development of probes for amyloid plaques and tangles17,18 

provides one avenue for the noninvasive diagnosis and evaluation of AD progression in 

living subjects and its differentiation from age-related cognitive decline in AD patients.19,20 

We report the synthesis of a radiolabeled Congo Red analog, (E,E)-1-[3H]-2,5-bis(4’-

hydroxy-3’-carboxystyryl)benzene (1a), which has not been reported previously, and its 

non-radiolabeled counterpart21 1b, which is commonly known as X-34 (Fig. 1). Both 

ligands bind to fibrillar forms of both Aβ and tau, and we demonstrate the utility of 1a in 

studies of synthetic Aβ40 and Aβ42 fibrils. We also report a cautionary note regarding the 

oxidative sensitivity of an intermediate in this route, namely 2,5-bis(4’-hydroxy-3’-

carbomethoxystyryl)-1-iodobenzene (2) (Fig. 1) and by analogy, a radioiodinated version of 

2, which has also been reported22 as a probe for Aβ deposition.

Plans for the synthesis of 1a or 1b focused on the regioselective, catalytic hydrogenolysis of 

a suitable iodinated 4-styrylstilbene, namely (E,E)-2,5-bis(4’-hydroxy-3’-

carbomethoxystyryl)-1-iodobenzene (2) (Fig. 2), using tritium gas and a palladium catalyst 

or sodium borohydride and a palladium catalyst, respectively. Initial efforts, as a 

consequence, focused on the synthesis of 2. Following the procedure of Zhuang,22 the 

benzylic bromination of 2-bromo-para-xylene (3) and Arbusov reaction with triethyl 

phosphite provided tetraethyl (2-bromo-1,4-phenylene)bis(methylene)-diphosphonate. 

Wadsworth-Emmons condensation of this phosphonate with 3-carbomethoxy-4-

methoxybenzaldehyde and demethylation of the intermediate bisanisole 4 secured the 

bisphenol 5 (Fig. 2). Efforts, however, to effect the tri-nbutylstannylation of 5 were 

unsuccessful, contrary to a report22 claiming a 25% yield. Suspecting that this failure was a 

consequence of the phenolic hydroxyl groups in 5, we converted 5 to the bisacetate 6 and 

were successful in converting 6 to the arylstannane 7, albeit only in 18–23% yields. 

Iodination of 7 using sodium iodide and hydrogen peroxide, and saponification of 8 
furnished the iodinated 4-styrylstilbene 2 in very poor yield. The low yield in the iodination 

reaction was unexpected until subsequent work, as discussed below, brought to our attention 

the oxidative sensitivity of 2.

The poor yields in the stannylation and iodination reactions led us to explore an alternate 

route to the iodinated 4-styrylstilbene 2. Elaboration of 2-iodo-p-xylene (9) to the iodinated 

bisphenol 11 followed a similar sequence to that described earlier (Fig. 2). The acetylation 

of 11 afforded the bisacetate 8 that was identical to material prepared from the route 

originating with 2-bromo-p-xylene (3). The saponification of 8 and subsequent acidification 
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gave a precipitate that was unambiguously identified as the iodinated 4-styrylstilbene 2 
according to NMR and mass spectral data. Efforts, however, to purify 2 by recrystallization 

or chromatography were complicated by the apparent instability of 2 on exposure to air. For 

example, the 1H NMR of a chromatographed sample of the iodinated 4-styrylstilbene 2 did 

not display the sharp signals seen in either the non-chromatographed sample of 2 or in the 

brominated analog, 2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)-1-bromobenzene (12). 

Oxidative cyclization23–25 of other 1,4-bis(styryl)benzenes to 3-styrylphenanthrenes 

suggested at least one avenue for the oxidation of 2, and indeed, the treatment of non-

chromatographed, well characterized 2 with hydrogen peroxide alone led to a plethora of 

products. In summary, we developed an unambiguous route to 2,5-bis(4’-hydroxy-3’-

carbomethoxystyryl)-2-iodobenzene (2) that did not involve an oxidative process, and we 

utilized 2, without further purification, in the synthesis of the desired 1a and 1b, as 

discussed below. In our opinion, investigators opting to use the radioiodinated [125I]-

version22 of 2 as a probe for Aβ deposition should be aware of this chemical instability, 

avoid chromatographic purification on silica gel, and consider the tritiated ligand 1a (Fig. 1) 

as a preferable alternative. It should also be noted that the “cold” ligand 1b is sufficiently 

fluorescent to find application in its own right as a probe for Aβ deposition.26

Catalytic hydrogenolysis27 of iodinated 4-styrylstilbene 2 using sodium borohydride and a 

catalytic amount of tetrakis(triphenylphosphine)palladium(0) furnished 2,5-bis(4’-

hydroxy-3’-carbomethoxystyryl)benzene (1b) or X-34,26,28 as it is commonly known in the 

literature (Fig. 3). The “cold” 4-styrylstilbene (1b) was also synthesized independently using 

the Horner-Emmons condensation of 5-formylsalicylic acid with p-xylenediphosphonic acid 

tetraethyl ester.28 In order to achieve high specific activity, hydrogenolysis of 2 was 

performed using tritium gas and a palladium catalyst to provide radiolabeled (E,E)-1-

[3H]-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene (1a) at 23 Ci/mmole. Tritiated 

sodium borohydride and the palladium catalyst could be used to secure 1a, albeit at lower 

specific activities than those reported here.

The binding of tritiated 1a was selective for the Congo Red-binding site on Aβ40 and Aβ42 

fibrils and was displaced only by those unlabeled ligands, including the “cold” 1b that 

mimicked Congo Red (Table 1). Non-specific retention of 1a on the GF/B filter material 

was very low, and as expected, ligands with structures similar to Congo Red (i.e., possess 

extended π systems) vied for binding against 1a with efficacy values (EC50, Table 1) for 

either Aβ40 or Aβ42 fibrils (i.e., displayed varied EC50 values) that varied with substitution 

patterns. In contrast, benzothiazole ligands, such as Thioflavine T, Pittsburgh Compound B 

(PIB), or 2-(4´-methylaminophenyl)benzothiazole (BTA-1), were ineffective in displacing 

1a as were several other molecules reported to bind to Aβ fibrils but with structures unlike 

the Congo Red structure. From the Scatchard analysis, the binding stoichiometry of tritiated 

1a approached one ligand per two peptides. The similarity of the Scatchard Kd to the EC50 

for “cold” 1b competition against tritiated 1a suggested that the EC50’s were equivalent to 

Kd values, namely for Aβ40, Kd = 0.60 µM and the ratio of molecules of 1b/molecules of 

Aβ40 (as monomers) = 0.43 and for Aβ42, Kd = 0.25 µM and the ratio of molecules of 1b/ 

molecules of Aβ42 (as monomers) = 0.63.
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The structure and conformation of amyloid fibrils reflects the conditions under which they 

are assembled. This polymorphism is most evident in comparing the Aβ deposits from 

animal models of AD and human AD brain. A large amount of high affinity PIB binding is 

found in AD brain, but binding of this ligand is virtually undetectable in brain tissue of 

transgenic mouse models29 or non-human primate brains30 with similar amounts of Aβ 

deposition, as judged by immunohistochemistry or Congo Red binding. Since (E,E)-1-

[3H]-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene possesses an extended π system 

like the panfibrillar amyloid, Congo Red ligand, tritiated 1a will be useful for standardizing 

the quantitative assessment of relationships between chemical structures of existing and 

future amyloid probes with the ligand binding site types present on amyloid deposits.31,32 

Ligands, like the one reported here, will be important for understanding the molecular 

mechanisms of deposition linked to AD and other neurodegenerative diseases with 

misfolded protein pathology.
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Figure 1. Iodinated and tritiated (E,E)-bis-1,4-styrylbenzenes required as imaging agents
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Figure 2. Synthesis of (E,E)-2,5-bis(4’-hydroxy-3’-carboxystyryl)-1-iodobenzene (2)
a, NBS (recrystallized), AIBN (cat), CCl4; b, P(OCH2CH3)3; c, NaOCH3, 3-

carbomethoxy-4-methoxybenzaldehyde, CH3OH; d, BBr3, CH2Cl2, −78°C; e, Ac2O, Py; f, 

Pd(PPh3)4, (n-Bu)3SnSn(n-Bu)3; g, NaI, H2O2; h, NaOH, aq CH3OH.
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Figure 3. Synthesis of (E,E)-1-[3H]-2,5-bis(4’-methoxy-3’-carboxystyryl)benzene (1a) and its 
“cold” analog (1b or X-34)
a, NaOCH3, p-xylenediphosphonic acid tetraethyl ester; b, tritium gas, proprietary palladium 

catalyst (ViTrax, Placentia, CA) or [3H]-NaBH4, Pd(PPh3)4 to give 1a; c, NaBH4, 

Pd(PPh3)4 to give 1b.
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Table 1

Displacement of 5 nM of (E,E)-1-[3H]-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene 
(1a) from synthetic Aβ fibrils by unlabeled compounds

[3H]-X-34 is another name for (E,E)-1-[3H]-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene (1a); X-34 is 

another name for (E,E)-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene (1b); BSB, (E,E)-1-bromo-2,5-

bis(4’-hydroxy-3’-carbomethoxystyryl)benzene; ISB, (E,E)-1-iodo-2,5-bis(4’-hydroxy-3’-

carbomethoxystyryl)benzene; K114, (E,E)-1-bromo-2,5-bis(4’-hydroxystyryl)benzene; BMB, (E,E)-1-

methoxy-2,5-bis(4’-aminostyryl)benzene or as it also known 1,4-bis(4-aminophenylethenyl)-2-

methoxybenzene; PIB, Pittsburgh Compound B; BTA-1, 2-(4´-methylaminophenyl)benzothiazole; IMPY, 2-

(4'-dimethylaminophenyl)-6-iodoimidazo[1,2-a]pyridine; ThT, Thioflavine T; ThS, Thioflavin S.

Compound Aβ(1–40)
EC50, µM

Aβ(1–42)
EC50, µM

Chrysamine G 9 0.9

Congo Red 2.3 0.7

1b or X-34 0.53 0.2

BSB 0.23 0.12

ISB 0.2 0.15

K114 >10 3

BMB >10 3

PIB >10 >10

BTA-1 >10 >10

IMPY >10 >10

ThT >10 >10

ThS >10 >10

primulin >10 >10

curcumin >10 4

resveratrol >10 >10

resorufin >10 >10

naproxen >10 >10

ibuprofen >10 >10
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