
RESEARCH ARTICLE

Bioactive Copper-Doped Glass Scaffolds
Can Stimulate Endothelial Cells in Co-
Culture in Combination with Mesenchymal
Stem Cells
Subha N. Rath1,2, Andreas Brandl1, Daniel Hiller1, Alexander Hoppe3, Uwe
Gbureck4, Raymund E. Horch1, Aldo R. Boccaccini3, Ulrich Kneser1,5*

1. Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, Germany,
2. Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram,
Telangana, India, 3. Institute of Biomaterials, Department of Materials Science and Engineering, University of
Erlangen- Nürnberg, Erlangen, Germany, 4. Department for Functional Materials in Medicine and Dentistry,
Universtiy of Würzburg, Würzburg, Germany, 5. Department of Hand, Plastic and Reconstructive Surgery -
Burn Center, University of Heidelberg, Ludwigshafen, Germany

*Ulrich.kneser@bgu-ludwigshafen.de

Abstract

Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering

applications because of their osteoconductive and angiogenic nature. However, to

increase the in vivo performance of the scaffold, including enhancing the

angiogenetic growth into the scaffolds, some researchers use different

modifications of the scaffold including addition of inorganic ionic components to the

basic BG composition. In this study, we investigated the in vitro biocompatibility and

bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow

derived mesenchymal stem cells)-only culture or co-culture of BMSC and human

dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were

seeded either directly on the scaffolds (3D or direct culture) or were exposed to

ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts

(2D or indirect culture). Though we did not observe any direct osteoinduction of

BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased

vascular endothelial growth factor (VEGF) expression, observed by PCR and

ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there

were healthy live cells found throughout the scaffold. To analyze further the reasons

behind the increased VEGF expression and to exploit the benefits of the finding, we

used the indirect method with HDMECs in culture plastic and Cu2+-doped BG

scaffolds with or without BMSCs in cell culture inserts. There was clear observation

of increased endothelial markers by both FACS analysis and acetylated LDL

(acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs,
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a high VEGF secretion was demonstrated by ELISA; and typical tubular structures

were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds

release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of

significance for the application of BG scaffolds in bone tissue engineering

approaches.

Introduction

Bone tissue engineering requires application of suitable biomaterials and cells,

which can effectively produce a bone-like tissue matrix in them and, which can

substitute the bone defect site [1]. However, the cells cannot survive in vivo, when

they are placed 200–500 mm from any capillary [2]. Without proper nutrition

from a vascular channel, the cells become necrosed and the whole system as a

bone replacement product fails to replace the lost tissue. The vascularized bone is

crucial for weight-bearing lost bone, substantial bone loss, and for precise healing

of the defect site. Therefore, not only the choice of the biomaterial itself, but also

the achievement of an effective way to vascularize it, are equally important.

Bioactive glass (BG) is an important biomaterial for scaffold-based bone tissue

engineering applications, as it has shown high osteo-inductive and angio-

inductive properties compared to other biomaterials [3, 4]. Calcium phosphate-

based apatite is produced on the surface of BG in contact with body fluids, and

thus BG represents a suitable substrate to promote bone formation both in vitro

and in vivo. In addition, the release of inorganic ions in the media affects the cell

behavior for osteogenesis [5, 6].

Though BG scaffolds have been successfully tested for bone defect in small

animal models, a patent vascularization is mandatory for the survival of the

seeded cells in the scaffold at the defect site. A number of approaches are

advocated for the vascularization, including the seeding with endothelial cells

(EC), vasculogenic growth factors, and induction of angiogenesis using surgical

techniques such as the arterio-venous loop concept [7–9]. A novel intelligent

approach would be by modification of scaffold components to increase its

intrinsic angiogenic potential. As bone is composed of hydroxyapatite (HA)

matrix along with a number of microelements, biomolecules, and cells: materials

with complex chemical composition and not simple pure materials are more

relevant for bone replacement [10]. Usual elements tested as the addendum to

bone replacement materials are copper (Cu2+), zinc (Zn2+), magnesium (Mg2+),

and strontium (Sr2+) [11–13]. Among them, Cu2+ is considered an important

component for osteogenesis and angiogenesis [14] [15].

Compared to growth factor application, the use of inorganic elements (ions)

such as Cu2+ has multifold advantage. First, they are not degraded by the usual

processing of the scaffold and prove stable in harsh conditions involved in scaffold

fabrication (e.g. high temperatures). Second, within a limit there is no toxicity as
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observed with strong bioactive growth factors, and they can be usually excreted

through body fluids. Third, inorganic elements are very cost-effective and the

additive effect of minimal amounts of growth factors (VEGF, FGF-2) could be

highly relevant to the physiological characteristics of the bone environment.

Therefore, there is a current need to generate such novel intelligent biomaterials

with added inorganic ions to mimic the bone micro-milieu environment.

The aim of the study is two-fold: firstly to investigate the additional osteo- or

angio-inductive role of Cu2+ by considering copper-doped BG-2D (two

dimensional) scaffolds. Secondly to assess the effect of released Cu2+ from Cu2+-

doped BG scaffolds on phenotype and functionality of 2D cultured human dermal

microvascular endothelial cells (HDMEC).

Materials and Methods

Scaffold fabrication

The BG with different CuO contents were produced by mixing silicon (Si) oxide,

sodium carbonate (Na2CO3), calcium carbonate (CaCO3), tri-calcium phosphate

(Ca3(PO4)2) and basic Copper carbonate (CuCO3*Cu(OH)2) as described

elsewhere [16]. The raw materials were melted at 1450 C̊ for 45 min. The glass was

then milled to the final particles size of d5055 mm. Cu2+ containing BG derived

scaffolds were produced using the foam replica technique as initially reported

[17]. In this method, a sacrificial template is used, namely polyurethane foam (45

ppi, Recticel, UK), which is immersed in a slurry containing BG particles. In the

present investigation, a slurry containing 60 wt.-% BG-particles and 1.1 wt.-%

PVA (poly-vinyl alcohol) as the binder was used. After coating, the PU foams were

dried at 60 C̊ for 24 h. To densify the struts of the scaffolds the dried bodies were

sintered at 1050 C̊ for 2 h. During the sintering heat treatment crystallization of

the silicate structure occurred, as discussed elsewhere [16] and the scaffolds

achieved suitable mechanical stability to be handled for cell culture studies. Cu2+

contents of 0.1 wt% and 1 wt% were assessed using plain 45S5 BG scaffolds as

control material.

Common methods for the experiments

a. Bone-marrow mesenchymal stem cell (BMSC) procurement and culture

Human BMSCs were purchased from PromoCell GmbH, Heidelberg, Germany at

passage two. They were cultured in flasks (COSTAR, Cambridge, USA) by using

MSC growth medium with supplemented cytokines (PromoCell GmbH,

Heidelberg, Germany), in an incubator with a humidified atmosphere maintained

at 37 C̊ and 5% CO2. The media were changed twice weekly. At 80–90%

confluence, cells were trypsinized (Trypsin/EDTA, PAA, Pasching, Austria) and

cultured further as per the recommendation of the company. They were sub-

cultured at 80% confluence until passage 5. For all the experimental protocols,

passage 5 cells were trypsinized and used directly. Tri-lineage differentiation
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(osteogenic, adipogenic, chondrogenic) was demonstrated in 2D conditions for

BMSCs prior to their use (Figure S1). The cells are found to be highly positive for

CD73, CD90, CD105 and negative for CD14, CD20, CD34, CD45 after passage 5

[10] using flow cytometry (FACS Calibur, BD biosciences, Heidelberg, Germany)

using a human MSC phenotyping kit (Miltenyi Biotec GmbH, Bergisch Gladbach,

Germany), as recommended by the International Society for Cellular Therapy

(ISCT).

The scaffold-cell constructs and MSCs in 2D were cultured in basal media

(DMEM/Ham’s F-12 (1:1) with 10% fetal calf serum, 2 mg/L of L-glutamine -all

purchased from Biochrom AG, Berlin, Germany).

b. Human dermal microvascular endothelial cells (HDMEC) procurement and

culture

HDMEC and the specialized endothelial cell growth media (EGM) were obtained

from PromoCell GmbH, Heidelberg, Germany. Only passage 5 cells were used for

this experiment.

c. Copper quantification

Cu2+ concentration in the cell culture medium was quantified by inductively

coupled plasma - mass spectroscopy (ICP-MS, Varian, Darmstadt, Germany)

against standard solutions of 50 and 100 mg/l.

d. Experimental design

The scaffold samples were divided into three groups based on the amount of

copper in them (Table 1): group A for pure BG scaffolds, group B for 0.1%

copper-doped BG, and group C for 1% copper-doped BG scaffolds. Similar

groupings were done both for the 2D (indirect) and 3-dimensional (3D, direct

seeding) experiments.

Table 1. Groups and study design for experiments with bone-marrow derived stem cells (BMSCs) in Bioglass scaffolds.

Method
Scaffold
type

Group
names

Alamar
Blue ALP

Live-dead
assay

Actin
staining SEM

RNA
collection

Time
Points

Indirect- 2D BG A-2D (3) 4 2 0 0 4 Week 2, Week 4

BG with
0.1% Cu2+

B-2D (3) 4 2 0 0 4 Week 2, Week 4

BG with
1% Cu2+

C-2D (3) 4 2 0 0 4 Week 2, Week 4

Direct- 3D BG A (3) 4 2 2 2 4 Week 2, Week 4

BG with
0.1% Cu2+

B (3) 4 2 2 2 4 Week 2, Week 4

BG with
1% Cu2+

C (3) 4 2 2 2 4 Week 2, Week 4

Three types of scaffolds were used: only bioactive glass (BG)(Group A), BG with 0.1% Cu2+ (Group B), or BG with 1% Cu2+ (Group C). The BMSCs are
either places on culture plastic keeping the scaffolds in inserts (Indirect) or directly seeded on the scaffolds (Direct). For each time point, 14 scaffolds were
used as per the distribution shown below.

doi:10.1371/journal.pone.0113319.t001
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Only passage 5 cells were trypsinized and used directly. In 2D experiments, the

scaffolds were suspended by cell culture inserts (BD Falcon, Durham, NC, USA)

and MSCs are seeded at approximately 20,000 cells per well of 12-well culture

plate (BD Falcon, Durham, NC, USA). In 3D experiments, all scaffolds were

seeded with 105 cells per scaffold and cultured with basal culture media without

any supplements for 4 weeks. The samples were evaluated after 2 and 4 weeks.

To investigate the effect of BMSC-seeded scaffolds on ECs, passage 5 HDMECs

(105 cells) were seeded into each well of 12-well culture plastics (BD Falcon,

Durham, NC, USA). BG or BG with 1% Cu2+ scaffolds were either seeded with

BMSCs or kept unseeded. The constructs were taken in cell culture inserts (BD

Falcon, Durham, NC, USA) and placed above the HDMECs. For this, we used a

cocktail media consisting of one part of basal media and one part of EGM without

added VEGF component. HDMECs cultured in only cocktail media served as

control. The detail groupings and the analysis experiments were shown in Table 2.

The cultured media were later collected to estimate VEGF by ELISA and Cu2+

quantification.

Evaluation techniques of 2D or 3D experiments with mesenchymal

stem cells

a. AlamarBlue assay

Each week, the cell-seeded scaffolds or the cells in 12-well plates were analyzed by

alamarBlue (Biosource Int., Camarillo, CA, USA) assay, as described previously by

our group [18]. The absorbance of the reduced dye was measured by a plate

reader (SPECTRAmax 190, Molecular Devices, Sunnyvale, CA, USA) and was

subsequently calculated as advised by the manufacturer.

b. Alkaline phosphatase (ALP) assay

To analyze the ALP content, the samples were washed with 1x PBS and then

treated by lysis buffer (10 mM Tris -pH 7.0, 1 mM EDTA, and 0.2% v/v triton X-

100; all from Sigma Aldrich GmbH, Steinheim, Germany). The ALP content was

assessed by the measurement of the colored complex produced by the hydrolysis

Table 2. Groups and study design for experiments with human dermal microvascular endothelial cells (EC) and bone-marrow derived stem cells (BMSCs)
co-culture in bioactive glass (BG) scaffolds.

Scaffold
type

Cells in
scaffold

Group
names Microscopy

acLDL uptake
assay

Tube
formation assay

FACS
analysis

Time
Points

– – I (All) 2 2 6 Week 1, Week 2

BG – II (All) 2 2 6 Week 1, Week 2

BG with 1% Cu2+ – III (All) 2 2 6 Week 1, Week 2

BG BMSCs IV (All) 2 2 6 Week 1, Week 2

BG with 1% Cu2+ BMSCs V (All) 2 2 6 Week 1, Week 2

The ECs were always seeded on bottom, while the scaffolds with or without BMSCs are in the cell culture insert. For this experiment, we used a cocktail
media consisting of one part of basal culture media and one part of endothelial growth media (EGM) without added VEGF component. For each type, 10
wells were used as per the distribution shown below. The collected media were used to estimate VEGF by ELISA and Cu2+ content.

doi:10.1371/journal.pone.0113319.t002
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of para-nitrophenyl phosphate (p-NPP) (Sigma Aldrich GmbH, Steinheim,

Germany), as described previously [18].

c. FDA/PI staining for live-dead assay

The cell-seeded scaffolds were washed with 16PBS and incubated with 2 mg/ml

fluorescein diacetate (FDA) (Molecular Probes Inc., Eugene, US) in 16 PBS, for

15 min at 37 C̊. They were then gently rinsed twice in 1x PBS and placed in 20 mg/

ml propidium iodide (PI) solution (Invitrogen GmbH, Karlsruhe, Germany) for

two minutes at room temperature. After thorough rinsing in 1x PBS, the

specimens were kept in PBS and viewed under a fluorescent microscope (Axiovert

25, Carl-Zeiss AG, Goettingen, Germany). The viable-cell cytoplasms were labeled

green, while non-viable cell nuclei were labeled red.

d. Scanning electron microscopic (SEM) analysis

After cell culture experiments, the scaffolds were washed with PBS, fixed with a

solution containing 3 vol.% glutaraldehyde (Sigma, Germany) and 3 vol.%

paraformaldehyde (Sigma, Germany) in 0.2 M sodium cacodylate buffer (pH 7.4)

and finally rinsed three times with PBS. All samples were dehydrated in a graded

ethanol series (30, 50, 75, 90, 95 and 99.8 vol. %). Samples were maintained at

99.8 vol. % ethanol and critical-point dried. The samples were sputtered with

gold, prior to analysis by SEM (ESEM, Quanta 200, FEI, Netherlands).

e. Real time RT-PCR

Total RNA was isolated from the 2D cultured MSCs (n54) using TRIzol Reagent

(Invitrogen, Carlsbad, CA, US) followed by RNeasy Mini Kit (Qiagen, Hilden,

Germany) as described previously [18]. Total RNA was converted to cDNA

(QuantiTect reverse transcription kit, Qiagen, Hilden, Germany). The amount of

cDNA corresponding to 20 ng of total RNA was then analyzed by semi-

quantitative real-time PCR (iQ SYBR green, Bio-Rad, Munich, Germany) for

selected genes with primers as shown in Table 3 (CFX 96 real time systems, Bio-

Rad, Munich, Germany). The gene expressions were normalized to internal

GAPDH expression, and the relative fold change was expressed by comparing to

that of the group A-2D at week 2.

f. Cell spreading assay by fluorescent staining of actin

At 2 and 4 weeks, the cell spreading was observed by staining of the cell actin

content by a dye (Alexa Fluor 488 Phalloidin, Life Technologies GmbH,

Darmstadt, Germany) at 5 units/ml concentration to see the cell spreading on the

Table 3. The primers used for real time RT-PCR.

Gene Forward primer Reverse primer

GAPDH ATCAAGTGGGGCGATGCTGG CCATGACGAACATGGGGGCA

RUNX-2 TTACCCCTCCTACCTGAGCCAG TTCTGAAGCACCTGAAATGCGC

VEGF AGGAGGAGGGCAGAATCATCA CTCGATTGGATGGCAGTAGCT

doi:10.1371/journal.pone.0113319.t003

Endothelial Cell Stimulation by Copper in Co-Culture Model

PLOS ONE | DOI:10.1371/journal.pone.0113319 December 3, 2014 6 / 24



BG scaffold. The nuclei of the cells are counterstained by 300 nM DAPI (SelectFX,

Life Technologies GmbH, Darmstadt, Germany).

Evaluation techniques of 2D experiments with HDMEC

a. Flow Cytometry analysis

The human EC surface markers (CD31, vWF, VEGFR2) were stained at 56104

cells for each antigen. CD31 was stained by mouse anti-human CD31-Biotin

followed by a second staining step with Streptavidin PerCP-eFluor 710 (both from

eBioscience, San Diego, CA, USA). Von Willebrand Factor (vWF) was stained by

sheep anti-human vWF-FITC (Abcam, Cambridge, UK). Vascular Endothelial

Growth Factor Receptor-2 (VEGFR2) was stained by mouse anti-human CD309

(VEGFR2)-Alexa Fluor 647 (Biolegend, San Diego, CA, USA). All staining steps

were performed on ice for 30 minutes in dark. Stained cells were analyzed by

FACS-Calibur (BD Biosciences, San Diego, CA, USA) and Cell Quest software

(Beckton Dickinson, Heidelberg, Germany). Raw data were analysed by FlowJo

software (Tree Star, Inc., Ashland, OR, USA).

b. Matrigel 2D assay

For analysis of capillary tube formation, 75 ml of Matrigel (Becton Dickinson,

Heidelberg, Germany), an extracellular mouse sarcoma matrix known to produce

pro-angiogenic stimulus both in vitro and in vivo, was pipetted into each well of a

96-well plate (Falcon, Heidelberg, Germany) and incubated at 37 C̊ for 60

minutes. HDMECs were harvested at week 1 or week 2 and suspended at 50,000

cells per 150 ml of EGM MV2 media. 150 ml of this media were added to the

Matrigel coated 96-well plates and incubated for 24 h at 37 C̊. Capillary tube

formation on Matrigel was observed at the end under an inverted Leica DMIL

microscope and photos were taken using the Leica application suite software

(Leica GmbH, Wetzlar, Germany).

c. Alexa Fluor 488-Ac-LDL-staining

At end time points, the media were removed and the cells were washed once with

PBS to remove non-adherent cells. The wells were incubated with 2.5 mg/ml ac-

LDL-Alexa Fluor 488 (Life Technologies GmbH, Darmstadt, Germany) for 4 h at

37 C̊. Afterwards cells were washed twice with PBS and further analyzed by a

fluorescence microscope (Olympus iX81, Centre Valley, PA, USA.) concerning

successful uptake of the dye.

d. VEGF quantification ELISA

At each time point, the cultured media were collected from 3 different samples,

pooled together, labeled and frozen at 220 C̊. At the end of all experiments, the

frozen media were thawed overnight at 4 C̊ and the VEGF content of the media

was quantified by using an ELISA kit (Thermo Fisher Scientific GmbH, Schwerte,

Germany).

Endothelial Cell Stimulation by Copper in Co-Culture Model
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Statistical analysis

All statistical comparisons were performed using a one-way ANOVA test followed

by Bonferroni’s post-test (Sigmastat v3.5, Chicago, IL) considering a significant

difference at the 95% confidence interval. The results were expressed as means ¡

standard deviation and considered significant at p,0.05 level. For all pair-wise

comparisons of quantitative results, the Student’s t-test was used with a

confidence level of 95% (p,0.05). In all figures, the significant results among

different samples (time points) in the same group is marked by { and among same

time point samples in different groups is marked by *.

Results

The Cu2+-45S5 derived scaffolds exhibit high porosity of ,90% and highly

interconnected pore system with pore sizes ranging from 200 to 450 mm. The

structural properties and the acellular bioactivity of the scaffolds used in this study

have been investigated previously [16]. The summary of different assays obtained

by different tests are summarized in Table 4.

Indirect-2D analysis with MSCs

The alamarBlue reduction test shows progressive increased reduction of the dye

from day 1 to week 4 (Figure 1A). At each time point the dye reduction is not

Table 4. Summary of different assays performed in the experiment and the results obtained in each of the groups.

Experimental set-up Tests Gr. A Gr. B Gr. C MSC only

2D or indirect culture Alamar blue, ALP assay, RT-PCR
of osteogenic markers

No difference

RT-PCR of VEGF No difference Increased No difference

3D or direct culture Alamar blue, ALP assay, SEM or
cell attachment

No difference

Cu2+ quantification – + +++ –

Group I Group II Group III Group IV Group V

2D indirect assay with
both MSCs and ECs

Matrigel assay with the end-of-time
cells

All shows positive tube formation.

Light microscopy Tube-like formation

Flow cytometry for VWF Wk 1:77%;
Wk 2:60.3%

Wk 1:92.5%,
Wk 2:95.1%

Flow cytometry for KDR Wk 1:34%,
Wk 2:16.5%

Wk 1:66%,
Wk 2:47%

Flow cytometry for CD 31 Wk 1:90%,
Wk 2:97.3%

Wk 1:95.5%,
Wk 2:98%

Acetylated LDL uptake + + + + +

VEGF in media – – – ++ ++

Cu2+ quantification – – + – +

(Kindly refer the text for details).

doi:10.1371/journal.pone.0113319.t004
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different among other groups and only MSCs. However, the dye reduction values

at week 3 and week 4 are significantly higher than day 1 and week 1 values in most

of the groups (Figure 1A). There is a basal expression of ALP in all cells without

any difference among each other and compared to MSC-only samples (Figure 1B).

The real time PCR was expressed as the fold expression of the gene of interest

compared to the expression in MSC-only samples at week 2, all normalized to

their Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression.

Interestingly, only group C-2D samples show multifold higher VEGF expression

compared to any other sample (Figure 1C). The osteogenic gene RUNX-2

expression was not significantly different among each other (Figure 1D).

Figure 1. The MSCs in 2D were analyzed by (A) alamar blue dye reduction assay, (B) alkaline phosphatase quantification; (C) real time PCR for
VEGF expression and (D) RUNX2 expression. The scaffolds were suspended in cell culture inserts as described in materials and method section. The
significant results among different samples (time points) in same group is marked by { and among same time point samples in different groups is marked
by *.

doi:10.1371/journal.pone.0113319.g001
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Direct-3D analysis of bioglass-MSC constructs

The alamarBlue reduction test shows a sudden increased reduction of the dye at

week 2, which remains stable up to week 4 (Figure 2A). At each time point the dye

reduction is not different among all groups. However, all groups show a

significant reduction at week 4 compared to their day 1 values. Similar to 2D

experiment, there is a basal expression of ALP in all cells without any difference

among all groups (Figure 2B). As demonstrated in the 2D experiments, copper-

containing specimens displayed increased VEGF expression (Figure S2).

Additionally, the Cu2+ estimated from all respective media shows significantly

increased values in group C than group B and increased values in group B than

group A samples (Figure 2C). In groups B and C, the estimated Cu2+ is

significantly increased at week 3, though maintaining high values throughout all

time points.

The live-dead assay shows all cells are alive without any significant dead cells

attached to the scaffold (Figure 3 A, B, C). The cells spread well and closely attach

Figure 2. The MSCs in bioactive glass scaffolds were analyzed for (A) alamar blue dye reduction assay, (B) alkaline phosphatase quantification,
and (C) copper measurement of the supernatant media. The significant results among different samples (time points) in same group is marked by { and
among same time point samples in different groups is marked by *.

doi:10.1371/journal.pone.0113319.g002
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to the struts of BG scaffolds as shown by actin staining (Figure 3 D, E, F). The

cells were directly observed by SEM analysis attaching nicely on the scaffolds

(Figure 3 G, H, I).

EC analysis under the influence of Cu
2+
-45S5 scaffolds

Under the influence of different constructs as depicted in Table 2, the ECs were

observed to retain most of their phenotype. They were observed to produce the

typical EC property forming tubes in Matrigel, both at week 1 and week 2

(Figure 4).

Figure 3. Fluorescent staining of live cells as green and dead cells as red (A, B, C) and the cyto-skeletal staining of actin showing the cell
spreading (D, E, F), and scanning electron microscope pictures (G, H, I) for group A5only bioglass scaffolds (A, D, G), group B5scaffolds with
0.1% Cu2+ (B, E, H), and group C5scaffolds with 1% Cu2+ (C, F, I). All samples are shown at week 4, though similar pictures were observed also at week
2. In SEM pictures, the cells are shown by arrows. Note the magnification is different in (I).

doi:10.1371/journal.pone.0113319.g003
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To analyze their detailed EC phenotype the flow cytometric analyses were done

for different EC markers from pooled HDMECs. It was observed under the

influence of BG-MSC (group IV) that, around 77% and 60.3% cells were positive

for vWF at week 1 and week 2 respectively. However, the values were 92.5% and

95.1% due to Cu2+-BG-MSC (group V) scaffolds (Figure 5). Similarly, it was

observed that, under the influence of group IV scaffolds around 34% and 16.5%

cells were positive for VEGFR2 at week 1 and week 2 respectively. The values were

66% and 47% due to Cu2+-BG-MSC (group V) scaffolds (Figure 6). It was also

observed that, under the influence of group IV scaffolds, around 90% and 97.3%

cells were positive for CD 31 at week 1 and week 2 respectively. However, the

values were 95.5% and 98% due to Cu2+-BG-MSC (group V) scaffolds (Figure 7).

It is interesting to note that the EC phenotype is better retained in all samples with

MSC-added scaffolds than their non-MSC counterparts.

Light microscopic images show some interesting features. Only after week 2,

under the effect of Cu2+-BG-MSC, the cells were seen to exhibit endothelial tube

formation (without the influence of Matrigel), which was absent in all other

groups (figure 8E, arrows). The HDMECs are characterized by uptake of

acetylated LDL, which was positive in almost all the cells (figure 9). However, only

in group V specimens, the endothelial tube-like cell clusters were observed (

Figure 9 E, F). At week 2, there is significantly increased amount of VEGF released

into the media in group IV and group V (Figure 10). It is interesting to note that

VEGF is increasingly secreted in presence of both Cu2+ and MSC. However, in

Figure 4. At the end of week 2, HDMECs were trypsinized and assayed for tube formation in Matrigel. (A) group I, (B) group II, (C) group III, (D) group
IV, and (E) group V. Similar pictures were observed also at week 1. (F) Schematic diagram showing the scaffold seeded with cells in culture inserts and one
layer of HDMECs at the bottom as in groups IV and V.

doi:10.1371/journal.pone.0113319.g004
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presence of only Cu2+ there is no increased VEGF secretion (Figure 10A, group

III). Without the effect of Cu2+, the presence of MSCs in BG is enough to secrete

VEGF (Figure 10A, group IV). However, only in the presence of both the EC

phenotype is better retained.

Discussion

We have successfully shown that the Cu2+-doped BG scaffolds exhibit no toxicity

even up to 1 wt% Cu2+ concentration. Both the MSCs and HDMECs were

cultured and grown up to week 4 in this scaffold. Moreover, MSCs secrete

increased VEGF into media most likely in presence of Cu2+. Only in the presence

Figure 5. FACS analysis for vWF antigen on surface of HDMECs at week 1 (A,C) and week 2 (B, D). The colors are depicted as black: negative control;
blue: cells in cocktail media5group I; red: group II (A, B) or, group III (C, D); green: group IV (A, B) or, group V (C, D). The percentages of total cells positive
for the dye in group IV (MSC-bioglass) are indicated in A and B; those in group V (MSC-Cu-bioglass) are in C and D.

doi:10.1371/journal.pone.0113319.g005
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of both Cu2+ and MSCs, the HDMECs exhibit strong EC phenotype and the

media show high VEGF amount.

In our previous work, we have shown that Cu2+-doped 45S5 BG scaffolds

exhibit high acellular bioactivity as proven by rapid formation (after 3 days of

immersion in simulated body fluid) of a carbonated HA layer on BG scaffolds

surface [16]. Moreover, the released Cu2+ levels in the simulated body fluid are in

the therapeutic range, indicating a potential angiogenic effect of such Cu2+-

releasing scaffolds. In this study, we expanded the evaluation of Cu2+-45S5 BG

Figure 6. FACS analysis for VEGFR2 on the surface of HDMECs at week 1 (A,C) and week 2 (B, D). The colors are depicted as black: negative control;
blue: cells in cocktail media5group I; red: group II (A, B) or, group III (C, D); green: group IV (A, B) or, group V (C, D). The percentages of total cells positive
for the dye in group IV (MSC-bioglass) are indicated in A and B; those in group V (MSC-Cu-bioglass) are in C and D.

doi:10.1371/journal.pone.0113319.g006
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scaffolds in cell culture in order to confirm potential stimulating effects of Cu2+

on MSC and MSC/HDMEC co-culture.

The results show that in the presence of BG and Cu2+-BG scaffolds, BMSCs

grow abundantly up to week 4. Though there is no significant difference in

AlamarBlue reduction value at each time point, there is significantly increased

VEGF mRNA expressed in presence of 1% Cu2+ doped scaffolds (Figure 1C).

Regarding the cell number, vitality, and cell spreading no significant difference

was observed among the different Cu2+-doped scaffolds (Figure 3). Our

Figure 7. FACS analysis for CD 31 on the surface of HDMECs at week 1 (A,C) and week 2 (B, D). The colors are depicted as black: negative control;
blue: cells in cocktail media5group I; red: group II (A, B) or, group III (C, D); green: group IV (A, B) or, group V (C, D). The percentages of total cells positive
for the dye in group IV (MSC-bioglass) are indicated in A and B; those in group V (MSC-Cu-bioglass) are in C and D.

doi:10.1371/journal.pone.0113319.g007
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Figure 8. At the end of week 2, light microscopic pictures of HDMECs show tube formation only in group V containing both MSC-seeded Cu2+-
bioglass inserts (arrows). (A) group I, (B) group II, (C) group III, (D) group IV, and (E) group V.

doi:10.1371/journal.pone.0113319.g008

Figure 9. At the end of week 2, acetylated LDL uptake assay is performed in one well seeded with HDMECs. Though all cells uptake the dye, only in
group V cells containing MSC-seeded Cu2+-bioglass inserts show tube like forms even in 2D cultures (arrows). (A) group I, (B) group II, (C) group III, (D)
group IV, and (E) group V. For comparison, a light microscopic picture of the same well is shown in figure F.

doi:10.1371/journal.pone.0113319.g009
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observations are in good accordance with the literature: most likely, Cu2+ ions

stabilize and upregulate hypoxia-inducible factor 1 (HIF-1) [19] which, in turn,

regulates the VEGF expression in MSCs [20]. Although the VEGF response was

seen at a later time point, the current data cannot be extrapolated for in vivo data,

where the cells and scaffolds are applied in 3D environment. This is a limitation of

this study.

The possible change of solubility of the BG with incorporation of Cu2+ should

not lead to major biological effects, based on previous results of their surface

reactivity [16]. In particular, the dissolution behavior and the bioactivity of the

Cu2+-doped BG in comparison with the un-doped 45S5 BG was comprehensively

investigated in simulated body fluid [16]. It was found that there was no

significant effect due to Cu2+ addition (up to 2.5 wt. % CuO) on the reactivity of

the un-doped BG, which was measured by the formation of HA on the surface of

the material. This fact was confirmed by Fourier transformed infrared spectro-

scopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis

(XRD). Since HA formation depends on the dissolution of Na, Ca, Si, and P ions

from the BG, the formation of similar level of HA directly confirms the fact that

Cu2+ addition did not affect the surface reactivity of the glass scaffolds.

Nevertheless, it is not expected that the dissolution of Si, Na, Ca and P ions from

the glass would be affected by the rather low addition of Cu2+ (up to 1wt.% in the

present study). Moreover, by detailed elemental composition analysis using

Particle Induced X-ray Emission/Rutherford Backscattering Spectrometry, it was

concluded that the global dissolution of the 45S5 BG is independent of Cu2+

doping. No major differences were observed in FT-IR and Raman spectroscopy

results confirming that the SiO2 network dominates the behavior of the BG,

which was not significantly affected by the Cu2+-doping under static conditions,

similar to the cell culture conditions of this present study. It was also shown that

Si ion release was not affected by Cu2+ addition [16].

Figure 10. The supernatant media were collected from the EC-MSCs in bioactive glass scaffold experiment and were analyzed for (A) VEGF
concentration measured by ELISA and (B) Copper content measured for the same media to correlate with the VEGF data. The significant results
among different samples (time points) in same group is marked by { and among same time point samples in different groups is marked by *.

doi:10.1371/journal.pone.0113319.g010
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Functional role of VEGF in the scaffold-cell constructs

To prove the functional aspects of secreted VEGF, we have tested HDMECs in

culture plastics in presence/absence of 45S5- Cu2+ BG scaffolds seeded with MSC

in permeable cell culture inserts. Interestingly, only in presence of MSCs, we have

observed a high VEGF amount in media. The presence of Cu2+ alone is not

sufficient to make HDMECs secrete VEGF (Figure 10). Additionally, only with

MSCs and Cu2+-45S5 scaffolds, a higher number of ECs shows positive markers

such as CD 31, vWF, and VEGFR2 (KDR, VEGF receptor 2). We have also

observed the EC tube formed only in these samples. Though the tube formation in

ECs is not typical as found in a strong stimulus medium as Matrigel, we observe

this significant morphological response consistently in copper doped scaffolds.

They indicate the presence of Cu2+ in this system is favorable for the HDMECs for

their EC-phenotype, even though the VEGF content in the culture media is

comparable for HDMECs seeded in contact with MSCs on 45S5 scaffolds and

Cu2+-containing 45S5 scaffolds (groups IV and V in Fig. 10A). As our control

specimens are undoped 45S5 bioglass scaffolds, it is suggested that the observed

effects on cell behavior are based on the presence and effect of the Cu2+ ions, and

might not be due to any other ions. However, a potential synergetic effect of Cu2+

in combination with other relevant ions being released such as Calcium,

Phosphorous, and Si should not be ruled out. This implies that in addition to the

increased VEGF, there must be other mechanisms by Cu2+ leading to proper

functional retention of HDMECs. It is most likely the Cu2+ acting on MSCs

produces such a high VEGF expression. Therefore, we conclude that it is a

synergistic action by both Cu2+ and MSCs for the retention of functionality of

HDMECs. Though Cu2+ doped specimens show tube-like formation by ECs, but

they could not substitute completely for growth factor added EGM. This is a valid

limitation of our study. We assume there might be a beneficial role of Cu2+ on

ECs, but the EGM might not be completely substituted by copper-doped scaffolds.

Bio-functional role of Copper on angiogenetic/vasculogenic

applications

Cu2+ ions regulate EC proliferation, migration, and they can enhance vascular

permeability, as shown by Li et al. [21]. Additionally, Cu2+ has been shown to

activate angiogenic growth factors such as VEGF and FGF (fibroblast growth

factor) due to activation of hypoxia-VEGF secretion, MAPK, tyrosine kinase

pathways [14, 22]. It has already been reported that VEGF expression can be

induced by copper ions and this property may be exploited to accelerate dermal

wound healing [14]. However, the VEGF secretion is helpful due to the presence

of other cell types such as MSC in our study or keratinocytes, as reported in the

literature [14]. Additionally, lysyl oxidase, a Cu2+ containing enzyme, cross-links

the lysine-derived aldehyde and plays a crucial role in collagen maturation during

tissue regeneration [14].

In another study, when 3D printed bioceramic scaffolds were investigated

in vivo in mice for their angiogenic ability, there were similar results observed
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with Cu2+-loaded scaffolds to those with VEGF-loaded scaffolds [23]. The tissue

ingrowth was observed to be dose-related to Cu2+ concentration up to a level and

additive with VEGF. It was also shown that Cu2+ was released during the long

degradation process of the scaffold and hence a sustained release was possible,

which is similar to the one observed in our study. The burst release of Cu2+ might

have caused toxicity. VEGF or FGF-2 has been reported to have synergistic effects

on the angiogenic effect of CuSO4 in vivo [24]. Cu2+ ions are also involved in the

activity of some transcription factors via Hypoxia Inducible Factor-1a and proline

hydroxylase, facilitating the release of GFs and cytokines from producing cells

[24]. There is also direct evidence of the usefulness of Cu2+ in increased flap

survival in rats due to enhanced VEGF expression [25]. This action is again due to

the action of Cu2+ on nearby cells in the random flap in inducing VEGF.

Additional value of Cu
2+

in MSC-EC co-culture setting

There is a recent trend of using co-cultures of MSCs and ECs (HDMECs or

human umbilical cord derived ECs) in tissue engineering applications [26, 27].

Hereby, the idea is to stimulate MSCs to differentiate in osteoblast lineage, and

ECs to induce the necessary vascularization for nutrition supply to MSCs.

However, to make this scenario possible, an additional high amount of VEGF is

added to make the best use of ECs and facilitate an early vascularization [28]. In

our current study, we have shown that Cu2+-doped BG scaffolds can act on MSCs

to secrete high amount of VEGF. Therefore, such scaffolds could prevent the cost

and potential disadvantage of growth factor dependent models. Currently, we are

investigating the effect of this scaffold with MSCs in vivo for successful bone

generation. It was also recently reported that there exists a synergistic effect of

Cu2+ and Si ions (released from BG) on stimulation of vascularization [29].

Bio-functional role of Copper on osteogenic applications

The osteoinduction action of Cu2+ on MSCs has been also reported [12, 15]. For

example, Cu2+ was shown to modify both the differentiation and proliferation of

BMSCs obtained from post-menopausal women. 50 mM of Cu2+ diminished the

MSC proliferation but increases their ability to differentiate into both osteo- and

adipogenic lineages [12]. In their study, Cu2+ caused a two-fold increase in

calcium deposition. Interestingly, both 5 and 50 mM of Cu2+ induced diminished

ALP expression but provoked a shift in its expression to earlier time points [12].

However, in those cases the cells were induced with osteoinducing media and

Cu2+ showed only an additive action on osteoinduction. Interestingly, in our

study we did not find any significant effect of Cu2+ on MSC differentiation. The

reason could be due to the fact that BG scaffolds have inherent osteoinduction

ability [30] and thus Cu2+ ions might not lead to enhanced osteoinduction above

the intrinsic osteoinductivity of BG scaffolds. In addition, in this study no

osteoinduction medium was applied, which has been used in previous studies

[12]. In this investigation, we considered only the effect of Cu2+ on MSCs without
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any additional promoting factors in osteoinduction. Supporting our results,

previous studies have been reported, where calcium phosphate minerals were used

with different trace elements, such as Cu2+ and Zn2+.It has been shown that Cu2+

and Zn2+ not only inhibit osteoblast proliferation, but also prevent their

differentiation [31]. In addition to Cu2+, also cobalt (Co2+) has been tested for its

angiogenetic properties using Co2+ doped BG scaffolds [32].

Importance of finding of optimum dosage of copper for specific

applications

It was shown that the copper content of 24 mg per gm (wt./wt.) in a hydrogel

scaffold stimulated EC growth in cultures and 75 mg per gm wt./wt. in scaffold

had an angiogenic potential upon implantation [23]. The lower limit was 56 ng

per scaffold, facilitating angiogenesis during tissue ingrowth; whereas a 10-fold

increase in Cu2+ dose (560 ng per scaffold) caused enhanced wound healing. The

limit for would healing was successfully lowered when VEGF was combined to

copper sulfate [23]. In a fibrin glue system, a dose-dependent increase of the

extension of ECs into tiny cord and tube-like structures was observed, which was

measured to reach a peak at 50 ng/ml. The observed bell-shaped curve response at

higher doses of CuSO4 was explained considering that, with increased Cu2+, there

was also an increase in reactive oxygen species, therefore, leading to cytotoxicity

[24].

A similar study to ours was reported by Wu et al. [15], in which Cu2+-doped

BG scaffolds as multifunctional scaffolds were investigated, having combined

angiogenic, osteo-stimulative, and antibacterial properties. It was shown that both

the scaffolds and their ionic extracts could stimulate HIF-1a and VEGF

expression. Though they have reported that Cu2+ has added osteogenic ability

only at very high concentrations, the ALP concentration did not show significant

difference among cells in different Cu2+-BG scaffolds [33]. Similarly only with

very high Cu2+ concentrations the osteogenic genes are multi-fold expressed,

which was not seen at lower doses. The authors explained the results of increased

angiogenesis attributed to hypoxia-like tissue reaction. However, it was shown

that with the highest Cu2+ concentration, there was increased cytotoxicity and

hence decreased cell viability [33]. In the present study, it was considered

impractical to use high Cu2+ concentrations and the study was limited to 1% Cu2+

in BG scaffolds. The present results showed the additional effect of Cu2+ on MSC

to secrete VEGF and it was expanded to investigate also the effect on EC

phenotype and functions. However, we found our Cu2+ concentration is different

from those already reported. As we specifically measured the free released

elemental Cu2+ ions in the media by highly sensitive inductively coupled plasma-

mass spectroscopy and used a different manufacturing process, we assume these

variations and the special composition of our material affect the released pattern

of copper ions differently.
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Possible cytotoxicity of higher dosage of Cupper

In another study, Copper (both cuprous and cupric) was found to be cytotoxic

[34]. This cytotoxic effect was not due to apoptosis, but by necrotic cell death.

Therefore, the minimal dosage was investigated here to determine the effect

without entering the toxic concentration level. We have found that MSCs at 1%

Cu2+ grow normally up to 4 weeks without any significant dead cells. Hydrogen

peroxide toxicity in osteoblasts has been reported to be significantly enhanced in

the presence of metal ions such as Cu2+ ions. They produce the toxic hydroxyl

radical by specific reaction, which causes cell necrosis [35].

Advantage of copper over other modalities to induce

angiogenesis

Copper doped BG scaffolds pose a special advantage over other modalities to

enhance angiogenesis. Though the growth factors such as VEGF induce strong

angiogenesis, incorporating them before scaffold processing could reduce their

potency, whereas applying them at end stage could produce non-desired side

effects, including cancer outside the scaffold area [36]. In addition, these scaffolds

could be highly expensive. EC is applied with MSCs in a number of other studies.

Though the reports point out vascularization with these two types of cells, they

usually require added growth factors for proper effectiveness of the constructs.

Cu2+ could make the best use of the two-cell system by producing VEGF from

MSCs as shown in this study [14, 21]. In addition, the whole system is cost-

effective for tissue engineering applications.

In this study, we have shown that the Cu2+ ions in BG scaffold act on MSCs to

have high VEGF secretion into the media. The secreted VEGF and the Cu2+ ions

have influence on EC functional properties. The HDMECs retained their surface

antigens and produced tube-like structure even in cell culture only in presence of

Cu2+ and MSCs. Thus, by stimulating MSCs to release increased VEGF, which in

turn stimulated ECs, the current Cu2+-BG scaffolds act as an ‘‘indirect’’

angiogenic growth factor delivery system [37]. This indirect approach is

advantageous, since it enables controlled VEGF release mediated by cells, which

can be adopted physiologically to the local needed conditions, avoiding growth

factor overdose. This knowledge could be used in EC-MSC co-culture systems

with this Cu2+-doped BG scaffolds for successful application in bone regenerative

medicine.

Conclusions

We have reported the usefulness of Cu2+ ions in a minimal amount to the benefit

of available cells, especially MSCs for bone tissue engineering application. The

attractiveness of BG scaffolds for bone tissue engineering can be enhanced by the

addition of Cu2+ and in the presence of other cell types to harness the VEGF

production machinery of cells in a cost-effective and relevant manner for proper
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angiogenesis in vivo. Hence, Cu2+-doped BG scaffolds in combination with MSCs

are superior candidates for bone tissue engineering application with enhanced

angiogenic potential. The combined approach should be further evaluated for

in vivo cell-based tissue engineering applications.

Supporting Information

Figure S1. BMSCs are seeded in two-dimensional way in culture plastics. They

are grown until 70% confluency and later differentiated into different lineages.

After osteo-induction for 4 weeks, the cells are stained by alkaline phosphatase

(A); after adipo-induction for 2 weeks, the cells are stained by oil red O (B); after

chondrogenic induction for 2 weeks in a pellet culture, they are stained by alcian

blue (C).

doi:10.1371/journal.pone.0113319.s001 (TIF)

Figure S2. The supernatant media were collected from the MSC-BG (bio-active

glass) constructs and were analyzed for VEGF concentration measured by

ELISA. The significant results among different samples (time points) in same

group is marked by { and among same time point samples in different groups is

marked by *. There was no adequate samples from Group C, for which the data

for Group C are not presented.

doi:10.1371/journal.pone.0113319.s001 (TIF)
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