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Abstract

Antibody-mediated immunotherapy has gained significant momentum since the first FDA-

approved monoclonal antibody (mAb) in 1997, namely, Rituximab (chimeric anti-CD20 mAb) for 

the treatment of B-NHL cells. Subsequently, over 20 approved mAbs have been in use clinically 

for the treatment of various cancers and several non-cancer related diseases. Further, the 

combination treatment of mAbs with chemotherapy, immunotherapy, proteaosome inhibitors and 

other inhibitors have resulted in synergistic anti-tumor activity with significant objective clinical 

responses. Despite their successful clinical use, the underlying mechanisms of rituximab in vivo 

activities remain elusive. Further, it is not clear why a subset of patients is initially unresponsive 

and many responding patients become refractory and resistant to further treatments; hence, the 

underlying mechanisms of resistance are not known, Attempts have been made to develop model 

systems to investigate resistance to mAb therapy with the hope to apply the findings in both the 

generation of new therapeutics as well as their use as new prognostic biomarkers. This review 

focuses on the development of resistance to Rituximab treatments and discusses possible 

underlying mechanisms of action, postulated mechanisms of resistance in model systems and 

suggested means to overcome resistance. Several prior reviews on the subject of Rituximab 

resistance have been published and the present review both complements as well as adds new 

topics of relevance.

I. Introduction

During the last decade, we have witnessed the emergence of anti-cancer targeted therapies, 

namely, of the use of monoclonal antibodies (mAbs) directed against surface tumor 

associated antigens. A major limitation of both conventional and targeted therapies is that a 

subset of patients does not initially respond to such therapies and another responding subset 
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develops resistance to further treatments. Hence, many malignant cancers exhibit both 

intrinsic and acquired resistance.1 Nevertheless, the introduction of antibody-mediated 

therapy has resulted in significant clinical objective responses and, in many cases, responses 

in cancers that did not respond to conventional chemotherapies.

Historically, several decades ago, antibody-mediated therapy originated by the use of 

polyclonal antibodies derived from mice, rabbits or rats. Treatment of cancer patients with 

such foreign antibodies (antigenic) resulted in the development of a humoral antibody 

response against these foreign antibodies. Hence, the therapeutic antibodies were blocked 

and cleared and, therefore, limited their ability to be effective against the cancer. 

Immunotherapy by antibodies became practical following the milestone discovery of the 

generation of antigen-specific mAbs by Kohler and Milstein in 1975.2

In order to overcome the obstacle of the host response to the administered xenogenic 

antibodies, engineering of chimeric humanized and privatized antibodies were developed by 

linking mouse or primate antibody recognition regions with human back bone fragments.3,4 

For example, humanized antibody is a human antibody consisting of the complementarity-

determining regions (CDR) of non-human origin and human constant regions. The earliest 

clinically approved mAb was in Europe 1994 and consisted of Edrecolomab (Panorex®) for 

the treatment of patients with clororectal cancer. Subsequently, the first mAb approved in 

the USA for cancer therapy was in 1997 by the chimeric anti-CD20 mAb, Rituximab, 

Rituxan® for the treatment of low grade and follicular NHL.5,6 Subsequently, over 20 mAbs 

have been approved for the treatment of various cancers and non-cancer diseases.7

Rituximab is a chimeric anti-CD20 mAb. It is directed against cell surface membrane 

receptors, CD20, expressed on mature B cells but not on pre-B cells or plasma cells. The 

receptor CD20 is a tetramembrane spanning molecule of molecular weight 33–37 kDa and 

the gene is located on chromosome 11q12-q13.1. CD20 is resident in lipid raft domains of 

the plasma membrane.8 In this review, I’ll briefly summarize the findings reported on 

Rituximab treatment regimens both in vivo and in vitro, with emphasis on postulated 

mechanisms of actions, postulated mechanisms of resistance and suggested means to 

overcome resistance. Rituximab has been chosen as a putative prototype for other anti-

cancer mAbs.

II. Rituximab

Rituximab-containing regimens have emerged as current therapeutics for NHLs and other 

lymphomas. Rituximab is routinely incorporated into the conventional treatment of follicular 

NHL, namely, in first line therapy, maintenance and salvage therapy.9–11 The treatment of 

patients with FL and diffuse large B-cell lymphoma (DLBCL), alone or in combination with 

chemotherapy, resulted in significant clinical responses and prolongation of survival.7 

Rituximab off label uses in other malignant and non-malignant diseases were reported.12

Postulated mechanisms of action mediated by rituximab

Several mechanisms of action have been reported including ADCC, CDC, and apoptotic 

activities as well as its cell signaling-mediated effects that are responsible, in part, for its 
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chemo and immuno-sensitizing activities. The combination of Rituximab and chemo-

immuno-therapeutic drugs resulted in reversal of resistance and synergy. Below, a brief 

description of the various mechanisms of action by rituximab

A. Antibody-dependent cellular cytotoxicity (ADCC)—ADCC has been attributed a 

significant role on the in vivo mechanism of action of rituximab. ADCC consists of the 

ligation of the human Fc portion of rituximab in antibody-coated tumor cells to the Fc 

receptors expressed on the surface of NK cells, macrophages and neutrophils and resulting 

in triggering the cytotoxic cells for killing of the bound target cells. For instance, the 

reported depletion of B-CLL in patients-derived PBMCs (which contain circulating effector 

cells) was significantly augmented following treatment with rituximab (even more by 

rituximab combination with GMCSF.13 The treatment of patients with rituximab and low 

dose IL-2 resulted in clinical responses of 55% in patients with a relapsed and refractory 

FL.14

B. Complement-dependent cellular cytotoxicity (CDC)—It has been reported that 

rituximab-coated tumor cells bind C1q and activate the complement cascade for 

cytotoxicity.3 Sensitivity to CDC is dependent on the origin of lymphoma cells. Rituximab 

induces significant CDC killing of FL cells whereas it has only moderate cytotoxicity in 

MCL, DLBCL, and small lymphocytic leukemia (SLC) cells.15 Various agents have been 

shown to induce CDC activity in vitro. For example, dexamethasone enhances rituximab-

mediated CDC but it has no effect on ADCC.16

C. Apoptosis—In certain NHL cell lines, rituximab has been reported to exert moderate 

apoptosis in vitro.17 However, cross linking of rituximab with a secondary anti-human IgG 

results in significant induction of apoptosis in resistant cells. Cross-linking is accompanied 

by the activation of tyrosine-kinases, Plc-2 phosphorylation, calcium influx, and caspase 3 

activation. These various manifestations were inhibited by PP2, a selective inhibitor of the 

Src family kinases.18 Freshly isolated B-CLL coated with rituximab and cross-linked with 

anti-human IgG (Fab’2) resulted in a concentration and time-dependent apoptosis, 

independent of ADCC and CDC.19 The mechanisms of cross-linking induced apoptosis and 

were reported by Pedersen et al.19 and Mathias et al..20 In addition, the role of activation of 

the apoptotic mitochondrial pathway by cross linking was reported.21 These findings show 

the ability of rituximab to kill cells directly if cross-linking takes place.

D. CD20 redistribution to lipid rafts—Lipid rafts are heterogeneous lipid 

microdomains enriched in sphingomyelin, glycosphingo lipids and cholesterol. Lipid rafts 

serve as a platform for cell signaling. The binding of anti-CD20 antibody to B cells results in 

the rapid redistribution of CD20 molecules (up to 98%) to low density detergent insoluble 

lipid rafts.22 It appears that the redistribution of CD20 into membrane lipid rafts regulates 

the efficacy of anti-CD20 antibodies to induce CDC in lymphoma cells.23 The co-existence 

of CD20 and Src family kinases in the lipid rafts following rituximab treatment suggests a 

role of CD20-mediated cell signaling.

E. Cell signaling mediated by Rituximab—The findings that Rituximab inhibits cell 

proliferation and induces apoptosis suggested that it may trigger signal transduction. This 

Bonavida Page 3

Semin Oncol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



was supported by the findings that anti-CD20 antibodies redistribute CD20 into the lipid 

drafts, a cell signaling site.24 The cytotplasmic domain of CD20 is not involved in 

transmembrane signaling and, thus, CD20 may be interacting with other molecules 

associated with signaling. Indeed, Rituximab treatment inhibits a Src kinase present in lipid 

drafts, namely, Lyn, and decreases both phospho-Lyn and phospho-Cbp/PAG.24 Bezombes 

et al.26 reported that treatment with Rituximab resulted in rapid, although transient, increase 

in acid sphingomyelinase activity with concomitant accumulation of cellular ceramide in the 

raft microdomains. Further, Dean et al.27 reported that inhibition of cell growth by 

Rituximab is mediated through a ceramide-triggered pathway in a MAPK-dependent 

mechanism. These findings were corroborated by us with the demonstration that treatment 

of B-NHL cells with Rituximab inhibited several intracellular/anti-apoptotic signaling 

pathways.28

We have initially reported that treatment of AIDS-related lymphoma (ARC) cell lines with 

Rituximab resulted in inhibition of the JAK/STAT pathway and inhibition of the targeted 

gene product IL10 which was, in part, responsible for resistance.29 Vega et al.30 and 

subsequently Jazirehi et al.31 reported that treatment of B-NHL cells with Rituximab 

inhibited the Raf/MEK/ERK pathway and downstream downregulated AP-1-dependent gene 

target transcripts. In addition, Rituximab treatment inhibited the NF-κB pathway.28 The 

PI3K/AKT pathway was also inhibited by Rituximab in B-NHL cells.32

The above findings demonstrated the Rituximab can signal the cells via the CD20 receptor. 

However, the role of the Fc fragment in participating in cell signaling via interaction with 

FcRs on the target membrane was not examined. To address this issue, Rituximab (Fab’2) 

was generated and examined for cell signaling in comparison to wild type Rituximab. The 

findings revealed that treatment with (Fab’2) Rituximab resulted in inhibiting cell signaling 

pathways similar to Rituximab, both qualitatively and quantitatively.33

III. Rituximab-mediated chemo-immuno-sensitization of resistant B-NHL 

cells to apoptosis by chemo-immuno-therapeutic drugs

The above findings on cell signaling inhibition of intracellular survival/anti-apoptotic 

pathways by Rituximab treatment suggested that the treated cells threshold of resistance 

must have been significantly compromised and, thus, may be more sensitive to cytotoxic 

stimuli. This hypothesis was tested by delineating for each of the inhibited pathways by 

Rituximab of its involvement in the regulation of resistance as well as underlying molecular 

mechanisms involved. Rituximab-mediated chemo-sensitization and immuno-sensitization 

are briefly summarized below.

A. Rituximab-mediated chemosensitization

1. Role of p38 MAPK—The role of phospho-STAT3 inhibition by Rituximab in 

sensitization to drugs was examined.29 Inhibition of p-STAT3 resulted in downstream 

inhibition of the IL-10 transcription factor SP-1 and inhibition of the transcription of its 

targeted gene product Bcl-2. The combination of treatment of Rituximab and CDDP resulted 

in the reversal of drug resistance of B-NHL cells and synergy in apoptosis was achieved. 
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The synergistic activity was the result of activation of the type II mitochondrial apoptotic 

pathway. The direct role of Rituximab-mediated inhibition of p38 MAPK activity in 

sensitization was corroborated by the use of specific chemical inhibitors.30,34

2. Role of the Raf/MEK/ERK pathway—The inhibition of the Raf/MEK/ERK pathway 

in B-NHL cells by Rituximab was paralleled by inhibition downstream of the transcription 

factor AP-1 and AP-1 transcription gene products including the anti-apoptotic gene product 

Bcl-xl.35 The direct role each of the Raf/MEK/ERK pathway factors and Bcl-xl in 

chemosensitization was corroborated by the use of specific chemical inhibitors.

3. Role of the NF-κB pathway—The inhibition by Rituximab of the anti-apoptotic gene 

product Bcl-xl expression and the finding that the inhibition of Bcl-xl sensitizes the drug 

resistance B-NHL cells to apoptosis by various chemotherapeutic drugs28 suggested that the 

NF-κB pathway, which also regulates Bcl-xl, might have been involved.36,37 In fact, the 

NF-κB pathway was inhibited by Rituximab and its direct role in chemo-sensitization was 

corroborated by the use of various inhibitors of the pathway, which mimicked the 

Rituximab-mediated chemosensitization.28

4. Role of the PI3K/AKT pathway—In addition to the roles of the JAK/STAT3, 

Raf/MEK/ERK and NF-κB pathways, all of which regulate Bcl-xl, and all are inhibited by 

Rituximab, these findings suggested that, in addition, the PI3K/AKT pathway that also 

regulates Bcl-xl may be inhibited by Rituximab.38 Rituximab treatment mediated inhibition 

of the PI3K/AKT pathway and resulted in the inhibition of p-PI3K, p-PDK1 and p-AKT 

with no inhibition of the unphosphorylated proteins. In addition, downstream of the PI3K 

pathway, Rituximab inhibited phospho-Bad leading to augmentation of the association of 

Bad with Bcl-xl and, thus, resulting in the inhibition of Bcl-xl activity on the mitochondria. 

The direct role of PI3K inhibition by Rituximab in chemosensitization was corroborated by 

the use of specific chemical inhibitors and by the use of small interference RNA (siRNA) 

AKT.32

B. Rituximab-mediated immunosensitization

Immune cells such as CTL and NK mediate their cytotoxic activity by both necrotic and 

apoptotic mechanisms.39–41 Since rituximab treatment alone was shown to regulate the 

apoptotic pathways and leading to chemosensitization, we hypothesized that rituximab may 

also sensitize resistant B-NHL cells to immune-mediated apoptosis, namely, by the death 

ligands Fas-L and TRAIL.

1. Rituximab-mediated sensitization to Fas-L-mediated apoptosis—We have 

reported that treatment of B-NHL with rituximab sensitized the cells to recombinant Fas-L-

induced apoptosis.42 The mechanism underlying sensitization was examined. Previous 

findings demonstrated that the transcription factor, Yin Yang 1 (YY1), negatively regulates 

Fas transcription and expression and inhibition of YY1 resulted in the upregulation of Fas 

expression and sensitization to Fas-L apoptosis.43 Since YY1 is a target gene product of NF-

κB and we have shown that NF-κB is inhibited by rituximab, we expected that inhibition of 

NF-κB by rituximab will be accompanied by inhibition of YY1 and, therefore, sensitization 
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of B-NHL to Fas-L apoptosis. Indeed, the findings corroborated this hypothesis. The 

rituximab-mediated sensitization to Fas-L apoptosis was the result of the activation of type 

II mitochondrial apoptotic pathway.42

2. Rituximab-mediated sensitization to—TRAIL apoptosis Like Fas-L above, we 

have found that treatment of TRAIL-resistant B-NHL cells with rituximab sensitized the 

cells to recombinant TRAIL-induced apoptosis. Based on previous findings demonstrating 

that YY1 negatively regulates the TRAIL receptor DR5 and regulates resistance to TRAIL, 

its inhibition sensitized the cells to TRAIL apoptosis along with upregulation of DR5.44 We 

have also found that rituximab sensitization to TRAIL apoptosis was accompanied by 

upregulation of DR5 along with inhibition of YY1. In addition, treatment of cells with YY1 

siRNA sensitized the cells to TRAIL apoptosis and, thus, mimicking rituximab.45

IV. Resistance to Rituximab

Currently, the combination of Rituximab and chemotherapy (CHOP) is the approved 

protocol for the treatment of B-NHL. While the use of Rituximab for treatment has been 

successful, however, a subset of patients has an innate resistance. In follicular lymphoma 

only about 15% of patients respond to the initial treatment with Rituximab monotherapy.46 

Furthermore, the majority of responders becomes refractory to Rituximab.47 The five year 

overall survival (OS) for patients with low grade follicular lymphoma who fail to respond to 

or develop resistance to Rituximab or Rituximab containing treatment regiments is 58%48, 

which is markedly a decrease compared to survival of all lymphoma patients.49

The mechanisms of resistance in vivo are not clear. Several mechanisms have been reported 

including inhibition of ADCC by deposition of C3 activating fragments50, polymorphism of 

the FcγRIIIa on cytotoxic cells,51,52 inhibition of CDC,53 loss of CD20 expression on the 

surface of subclones,47,54 overexpression of anti-apoptotic gene products (eg Bcl2)55, CD20 

mutations,56 shedding of CD20 Rituximab complexes,57 the tumor micro-environment,58 

distribution of Rituximab in vivo and its pharmacokinetics and failure to respond to 

Rituximab-mediated cell signaling. Briefly (below each) the postulated mechanisms are 

presented.

A. Poor ADCC

ADCC neutralizes the Fc fragment of bound Rituximab to interact with the FcR on cytotoxic 

cells (e.g. NK, macrophages, neutrophils) to initiate the cytotoxic process. Some patients 

showed expression of a variant FcγRIIIa and receptor expressing 158 V and 158 F cell 

types. The homozygosity of the FcγRIIIaA-158 V allotype was the single parameter 

associated with the clinical response of Rituximab at 12 months post treatment.51,59 

Rituximab-resistant clones were also shown to be resistant to ADCC.55 These findings 

established the importance of ADCC in the clinical response to Rituximab.

B. Inhibition of CDC

Rituximab is capable of binding to C1q3 and thus activating the complement cascade. The 

major contributors to CDC resistance consists of CD46 (MCP), CD55 (DAF), and CD59. 

The levels of CD20 and complement inhibitors were determinants in the clinical response of 
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isolated BCLL, prophylactic leukemia (PLC) and MCL. Blocking of the inhibitors enhanced 

CDC.60 However, a controversy exists on the relevance of CDC and inhibitors in response 

to Rituximab.52 Rituximab resistance clones were also resistant to CDC.55

C. Resistance to apoptosis

Rituximab treatment alone poorly displays apoptosis on B-NHL cells. However, cross-

linking with secondary anti-Ig triggers a significant apoptotic response. Treatment of 

Rituximab-resistant clones, however, with Rituximab and secondary anti-Ig did not trigger 

apoptosis.55,61

D. CD20 modulation

The role of CD20 expression levels and response to Rituximab is not clear in vivo. Terner, et 

al.62 reported deletion at the C terminal region of the CD20 gene in a subset of tumor 

samples from patients with NHL. However, it is not clear what was the clinical response in 

those patients. Also, Pederson, et al.63 described a process “shaving” whereby complexes of 

CD20 and Rituximab are shed off from the cells by monocytes and, hence, the cells become 

unresponsive to Rituximab. We have also reported that the in vitro generation of Rituximab-

resistant clones showed a reduction of cell membrane CD20 expression compared to wild 

type.51,61 Treatment of patients (relapsed and refractory) with a combination of Rituximab 

and Bortezomib resulted in ORRs of 49% and 43% respectively, for two different 

regimens.64 The loss of CD20 expression was observed following Rituximab treatment in a 

subset of patients. There were cases of CD20 deficient lymphoma relapses identified 

following treatment with Rituximab containing regimens in DLBCL.54 In addition, Hiraga 

et al.65 reported that 30% of patients with B-cell lymphoma and treated with Rituximab and 

chemotherapy, their tumor CD20 expression was lost. DNA demethylating agents restored 

CD20 expression suggesting an epigenetic mechanism responsible for loss of CD20.

E. Generation of Rituximab-resistant clones

A survey66 of 92 immortalized normal lymphoblastoid cell lines and separated for sensitive 

and resistant lines. The findings were as follows: (1) The level of CD20 protein and surface 

expression was decreased in the resistant lines. (2) The susceptibility was not correlated with 

mRNA that is post-transcriptional. They also have selected resistant cell lines that were 

cultured with Rituximab in various LCL and lymphoma cell lines. They found that levels of 

CD20 expression were reduced in all resistant cell lines. Also, they found CD20 mRNA 

spliced variants associated with resistance. In addition, ofabumumab was more active as 

compared to Rituximab in vitro.

In an effort to recapitulate what might be responsible, in part, for resistance to Rituximab in 

patients, we have generated Rituximab-resistant clones (RR) from several B-NHL cell lines. 

These were developed by exposing wild type cells to increasing concentrations of Rituximab 

in culture and followed by multiple rounds of limiting dilution assays. The resulting RR 

clones were grown and analyzed for their properties compared to wild type cells. Several 

key findings were obtained. In comparison with the wild type cells, the RR clones expressed 

lower surface CD20 expression, resistance to both ADCC and CDC, and did not respond to 

Rituximab-mediated inhibition of cell proliferation, apoptosis by cross-linking and were not 
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chemo- or immuno-sensitized to drug apoptosis. The RR clones were not triggered by 

Rituximab to inhibit intracellular survival/anti-apoptotic pathways and, in contrast, the RR 

clones exhibited hyper activated survival pathways, such as the NF-κB and ERK1/2 

pathways and overexpression of anti-apoptotic gene products, targets of above pathways 

such as Bcl2, Bclxl, and Mcl-1.55,61 Czucman et al.67 developed RR cell lines. They have 

found that the resistant cell lines have had changes in CD20 expression, decreased calcium 

mobilization and redistribution of CD20 in lipid grafts. There was a partial reversion of 

resistance by proteasome inhibitors (CCR 2008; 14156). In a subsequent study, Brem et al.68 

reported that treatment with the BH3 mimetic Obatoclax induced cell death in both 

Rituximab sensitive and Rituximab resistant cell lines and also in primary tumor cells. 

Synergy was achieved by a combination of Obatoclax and chemotherapeutic drugs. Using 

the more selective proteasome inhibitor Carfilzomib, in comparison with the predecessor 

Bortezomib, showed significant augmentation of cytotoxicity in the resistant lines and 

reversed resistance to chemotherapy. There was upregulation of the apoptotic gene product 

Bak.69 Further, studies with the reversible proteasome inhibitor MLN2238 showed that it 

induces caspase independent cell death of the resistant cell lines and potentiated the 

cytotoxic activity of various chemotherapeutic drugs.70

V. Overcoming Rituximab resistance (Schematic diagram-Figure 1)

The development of RR clones and their unresponsiveness to Rituximab alone or in 

combination with drugs allowed the exploration of mechanisms underlying resistance and to 

examine means to overcome resistance. We have reported that the RR clones exhibited 

hyper-activated survival/anti-apoptotic pathways and we also reported that interference with 

the activity of such pathways in the Rituximab sensitive lines by various chemical inhibitors 

resulted in chemo-immuno-sensitization, mimicking Rituximab in combination with 

cytotoxic agents in wild type rituximab-sensitive B-NHL cells.55,61 Therefore, we examined 

if inhibition of intracellular pathways can sensitize RR clones to cytotoxic agents.

The inhibition of NF-κB and downstream Bclxl expressed by Rituximab treatment in 

sensitive lines was corroborated by the use of inhibitors such as the inhibitors of NF-κB 

(DHMEQ and Bay-7805) and impairment of the function of Bclxl (by 2MAM-A3). 

Treatment with these inhibitors sensitized the B-NHL cells to various chemo therapeutic 

drugs. In the RR clones, treatment with the proteasome inhibitor Bortezomib in combination 

with chemotherapeutic drugs sensitized the RR cells to apoptosis. Further, inhibition of NF-

κB by DHMEQ also sensitized the RR cells to apoptosis by various drugs.33 Maiso, et al.71 

have reported that HDAC inhibitors reversed drug resistance in MM. Valproic acid and 

romidepsin were used on B-cell lines and resulted in augmentation of CD20 expression, 

enhancing CDC activity, and in vivo in mice bearing tumor xenografts resulted in response 

to combination of Rituximab and HDAC inhibitors.

The enhancement of CD20 expression in cases where resistance to Rituximab was observed, 

due in part, to downregulation of CD20 expression may be attempted to reverse resistance. 

Shimizu, et al..72 reported that treatment of cells with HDAC inhibitors, valproic acid and 

romidepsin increased the expression of CD20 and enhanced Rituximab-mediated CDC 

cytotoxicity. This finding suggested that the epigenetic regulation of CD20 expression and 
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clinical application of HDAC inhibitors in combination with drugs or Rituximab may be 

effective.

Resistance to Rituximab appears to be due, in part, as a result of the overexpression of anti-

apoptotic gene products and as a consequence overactivation of survival pathways that 

regulate these gene products as has been reported in RR clones.55, 61 Bortezomib50 and 

Temsirolimus73 treatment of lymphoma cells sensitized the cells to Rituximab. Clinical 

trials have been run for the combination of Rituximab and Bortezomib for salvaged 

treatment for B-NHL.64

The Bcl2 pan inhibitor, Oblimersem, was clinically tested in a phase I and demonstrated 

inhibition of Bcl2 levels and an objective clinical response in heavily treated patients.24 In a 

phase II combination of Rituximab and Oblimersem, there was a modest activity in patients 

with residual disease and in patients with DLBCL. A higher RR resistance was eliminated in 

Fl. The combination of Rituximab and Oblimersem was effective in patients refractory to 

Rituximab.75 ADCC has been shown to play an important role in vivo in Rituximab. Thus, 

augmenting ADCC may improve Rituximab effects and may override resistance in a subset 

of resistant patients. In clinical trials, G-CSF and Rituximab produced a responsive rate of 

42% in patients with indolent NHL,76 with a possible longer duration of response compared 

to Rituximab alone. Combination of IL2 and Rituximab in Rituximab-resistant indolent 

NHL did not produce a clinical response.77 Lenalidomide, an immuno-modulating drug, 

enhances ADCC and reverses immune suppression. Single agents have therapeutic activity 

in relapsed/refractory B-cell lymphoma. In a phase 2 trial, in patients resistant to rituximab, 

relapsed or refractory indolent B or mantle cell lymphoma. Lenalidomide in low dose with 

dexamethasone and rituximab were used. The combination achieved a high response rate 

with durable response. The over response rate increased from 29% after 2 cycles of 

lenalidomide and dexamethasone to 58% before the addition of rituximab.78

Combination of Rituximab and anti-CD22 mAb, epratuzumab

The fusion protein anti-CD20-hIFN-α, consists of anti-CD20 and hIFN-α, was engineered 

and shown to have a more potent activity and apoptosis on B-NHL cell lines in vitro and 

anti-tumor response in vivo.79 Preliminary findings indicated that treatment of RR clones 

with anti-CD20-hIFNα, but not with Rituximab-hFNα. or combination, resulted in 

inhibition of cell recovery, induction of apoptosis, and sensitization to chemotherapeutic 

drugs.80

Novel anti-CD20 mAbs

1. Ofatumumab: patients with rituximab resistant follicular—NHL and treated 

with ofatumumab resulted in response rate of 20–22% and patients resistant to single agent 

rituximab with response rate of 9% and patient treated with combination treatment with 

rituximab and chemotherapy.81 Ofatumumab is a fully humanized anti-CD20 mAb approved 

by the FDA.82, 83 Ofatumumab was found to induce signaling for CDC, more potent than 

rituximab. It shows activity in rituximab-refractory lymphoma.7
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2. GA-101 (Type 2) with Fd engineered for higher affinity for FcR.83 There was 
no indication about the response in patients with rituximab resistance—The 

development of novel scaffolds of much smaller sequences and higher stability.85–87 The 

size of the scaffolds (12–15 kDa) is an order of magnitude smaller than the size of IgG (160 

kDa). These scaffolds leads to good penetration, they are more stable in the circulation and 

could be taken orally. Also, they can penetrate the blood brain barrier.

IX. Conclusions

This mini-review described briefly the current status of rituximab and suggested 

mechanisms of innate and developed resistance in patients to both rituximab monotherapy 

and rituximab-containing chemotherapy regimens. There are also suggestions of various 

means to reverse resistance to rituximab treatment based on analysis of rituximab-resistant 

clones investigated in vitro. Clearly, some of the mechanisms of resistance of the rituximab-

resistant clones may or may not be applicable to the mechanisms in vivo; however, they will 

need to be validated. Future directions require the development of various clinical trials to 

address some of the postulated mechanisms and their validation. In addition, further studies 

from patient-derived tumor tissues from unresponsive patients may be useful to examine 

gene products that regulate resistance and validate their prognostic significance as novel 

biomarkers.
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Figure 1. 
Schematic diagram of the molecular mechanisms that regulate resistance to rituximab and 

approaches to overcome resistance. Briefly, the unresponsive B-NHL cells exhibit 

hyperactivated survival/anti-apoptotic pathways which regulate downstream anti-apoptotic 

gene products that result in the development of resistance to both rituximab, chemotherapy 

and combination. The intervention to inhibit the survival pathways may be achieved by 

targeted chemical inhibitors, proteasome inhibitors, selective chemical inhibitors for the 

anti-apoptotic gene products, as well as HDAC inhibitors and microRNAs. In addition, the 

potential application for the development of a new generation of CD20 mABs, alone or 

conjugated with various agents to enhance their activities.
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