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A hierarchical approach to learn from visual field data was adopted to identify glaucomatous 

visual field defect patterns and to detect glaucomatous progression. The analysis pipeline included 

three stages, namely, clustering, glaucoma boundary limit detection, and glaucoma progression 

detection testing. First, cross-sectional visual field tests collected from each subject were clustered 

using a mixture of Gaussians and model parameters were estimated using expectation 

maximization. The visual field clusters were further estimated to recognize glaucomatous visual 

field defect patterns by decomposing each cluster into several axes. The glaucoma visual field 

defect patterns along each axis then were identified. To derive a definition of progression, the 

longitudinal visual fields of stable glaucoma eyes on the abnormal cluster axes were projected and 

the slope was approximated using linear regression (LR) to determine the confidence limit of each 

axis. For glaucoma progression detection, the longitudinal visual fields of each eye on the 

abnormal cluster axes were projected and the slope was approximated by LR. Progression was 

assigned if the progression rate was greater than the boundary limit of the stable eyes; otherwise, 

stability was assumed. The proposed method was compared to a recently developed progression 

detection method and to clinically available glaucoma progression detection software. The clinical 

accuracy of the proposed pipeline was as good as or better than the currently available methods.

Index Terms

Data analysis; glaucoma; machine learning; progression detection; visual field

I. Introduction

Machine learning techniques have been widely used in biomedical applications [1]–[14]. 

Recent advances in data analysis and a significant growth in available database size have 

promoted classification methods that are capable of identifying previously hidden clusters 

and patterns in available datasets. In particular, unsupervised machine learning techniques 

can mathematically describe patterns in data without the use of prior class knowledge or 

heuristics [15]–[17]. Revealing these patterns can serve as a fundamental step toward more 

specific mining and learning tasks [18]. Such learning tasks recently have been applied to 

the detection and monitoring of glaucoma [9], [19]–[21].

Glaucoma is an optic neuropathy that is the second leading cause of blindness in the world 

[22]–[24]. Glaucoma management is dependent on identifying disease-related functional or 

structural defects and monitoring their progression over time. Recognition of glaucoma-

related visual field defects (i.e., functional defects) is an aspect on which clinicians have 

relied since the mid-1800s [25]–[28]. For over a century, glaucoma specialists have 

accumulated knowledge to describe patterns of glaucoma-related visual field defects [29], 

[30]. Increased acceptance of Standard Automated Perimetry (SAP) testing about 25 years 

ago standardized visual field testing for glaucoma. Current SAP software includes a 

statistical analysis package and provides the clinician with information about visual function 

in the form of measurements of retinal sensitivity to light at 52 different test points (for 24-2 

stimuli) across the central 24° of the visual field [25], [31]. Individual patient results also are 

compared to a normative database that provides the clinician an age-adjusted probability of 

abnormality for each test point.
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A number of commercially available progression detection algorithms are included in the 

SAP software, such as progression by visual field index (VFI) [32] and guided progression 

analysis (GPA) [33]. These are statistical methods that use linear classification methods to 

represent the rate and magnitude of change (for VFI) or use variance analysis to identify 

change outside normal limits (for GPA), to classify eyes as progressing or stable. Recent 

advances in unsupervised classification techniques provide an alternative approach for 

glaucoma-related progression detection from SAP. For instance, machine learning and data 

mining techniques have been used to recognize glaucoma-related SAP visual field defect 

patterns and detect progression of glaucoma-related visual field defects [9], [19], [20], [34].

In the current study, we describe the performance of a Gaussian mixture model [35], [36] 

and expectation maximization (GEM) methods for 1) clustering eyes as glaucomatous or 

healthy and 2) discriminating between eyes with known glaucomatous progression and 

stable eyes. We compare the progression-detection performance of GEM to that of several 

other algorithms, including SAP software-based commercially available techniques (e.g., 

VFI and GPA). Results also are compared to those from a previously described 

unsupervised learning-based progression detection algorithm, progression of patterns (POP), 

which is based on change over time of patterns revealed using the variational Bayesian 

independent component analysis mixture model (VIM) [34], [37], [38]. We hypothesize that 

change in GEM-defined patterns of defect would perform as well as or better at detecting 

known glaucomatous change than other techniques. If our hypothesis is confirmed, change 

in GEM-defined patterns might be a better candidate for glaucoma progression detection 

from SAP data than change in VIM-defined patterns, because computational requirements to 

identify patterns are significantly less using GEM than VIM, and tracking change in VIM-

defined patterns (i.e., POP) already has been shown to outperform some commercially 

available progression algorithms [19].

II. Methods

In this section, we first describe the instruments used to collect data, data acquisition, and 

the assessment of study participants. We then explain the mathematical derivations for 

modeling the data using GEM. We elaborate on the framework and implementation of the 

glaucoma progression-detection pipeline and the performance metrics employed. Next, we 

describe the clustering, boundary limit detection, and progression-detection testing steps. 

Finally, we report and discuss our results.

A. Instruments

Color photograph pairs were simultaneously obtained through maximally dilated pupils 

using a stereoscopic camera (Kowa nonmyd WX3D, software version VK27E, Kowa 

Optimed Europe Ltd.). SAP-measured visual field sensitivity was tested at 52 points [54 

points, with 2 blind-spot points excluded; see Fig. 1(b)] using the 24-2 SITA test strategy 

(Humphrey Field Analyzer II, Carl Zeiss Meditec Inc., Dublin, CA, USA). Fig. 1 (left) 

shows the optic disk region and peripapillary retina of a glaucomatous eye. Fig. 1 (right) 

displays the 24-2 SAP visual field measurements as absolute sensitivities in decibels at the 

available 52 test points that are uniquely specified by their angular location from fixation in 

the superior, inferior, nasal, or temporal zones.
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B. Data Acquisition and Assessment

All participant eyes were recruited from the University of California San Diego (UCSD)-

based Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and 

Glaucoma Evaluation Study (ADAGES) [39]. ADAGES is a multicenter study that includes 

UCSD, University of Alabama at Birmingham, and New York Eye and Ear Infirmary. Both 

studies follow the tenets of the Declaration of Helsinki, Health Insurance Portability and 

Accountability Act guidelines and the study site Human Research Protection Programs have 

approved all methodology. Written informed consent was obtained from all study 

participants.

Each study participant underwent a comprehensive ophthalmic evaluation, including review 

of medical history, best corrected visual acuity, slit-lamp biomicroscopy, intraocular 

pressure measurement with Goldmann applanation tonometry, gonioscopy, dilated slit-lamp 

fundus examination, simultaneous stereoscopic optic disk photography, and SAP visual field 

exam at each visit.

The current overall goals are to cluster glaucomatous visual fields into recognizable defect 

patterns, to establish a method of data representation, and to detect glaucomatous 

progression. Here, we explain how we created the reference standards for the clustering 

assessment and progression-detection steps. To create a gold standard for clustering 

assessment, all eyes were classified as abnormal (glaucomatous) or healthy based on the 

SAP software-provided glaucoma hemifield test (GHT) and pattern standard deviation 

(PSD). Eyes were considered abnormal if the instrument software defined GHT was outside 

of normal limits or if PSD ≤ 5% of normal, on two consecutive tests [40]. Healthy eyes had 

both GHT and PSD within normal limits. 939 eyes from 677 subjects were classified as 

abnormal and 1 146 eyes from 721 subjects were classified as healthy.

To create a reference standard for progression assessment, all eyes were classified as 

progressed or stable by evaluation of images of the optic disk. Optic disk images were 

chosen because they differed from the visual measurements being analyzed for progression. 

Hence, glaucomatous progression was based on structural evidence so as not to bias the 

detection of SAP-related visual field progression. Eyes showed progression or stability 

based on serial analysis of optic disk stereoscopic photographs. The baseline and each 

follow-up photograph were assessed for progressive glaucomatous optic neuropathy 

(PGON) by two expert-trained observers viewing digitized image pair on a 21-in or larger 

computer monitor. PGON was defined as a decrease in the neuroretinal rim width, or the 

appearance of a new or enlarged retinal nerve fiber layer defect in paired stereoscopic 

images. Observers were masked to the patient identification and diagnosis. A third observer 

adjudicated any disagreement in assessment between the first two observers [41]. 76 eyes 

from 70 subjects were identified as progressed by PGON (24 eyes also were labeled “likely 

progression” by SAP GPA). A total of 414 SAP visual field measurements were collected 

from this group. The mean number of follow-up visits was 5.5, and the mean follow-up time 

was 3 years.

Stable eyes were tested using SAP over a short period of time with the assumption that any 

change in measurements was due to variability in function of diseased ganglion cells or in 
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attentiveness of the patient and not due to disease-related progression (this is because 

disease-related progression in adequately treated glaucoma eyes generally occurs over years, 

not weeks).

Stable glaucoma was simulated in a set of 91 eyes from 48 subjects that had been identified 

as glaucomatous at baseline with repeatable SAP defects, as defined earlier. Stable eyes 

were tested once a week, providing an average of 4.5 consecutive tests for each eye over an 

average of 4.3 weeks. A total of 428 SAP visual field measurements were collected from 

eyes in this group.

Table I shows the demographic information of the subjects in the abnormal and healthy 

visual field groups. Table II shows the demographic information of the subjects in the 

progressed and stable groups. The mean deviation (MD) and PSD of each group, global 

indices that indicate the deviation of a visual field from a mean of normal visual field, also 

are listed in both Tables.

C. Data Modeling Using Gaussian Mixture Model-Expectation Maximization

Assume we have n samples of data and that each sample has d dimensions. The goal is to 

model the given data with a c-component Gaussian mixture model. Let Y = [Y1, …, Yd]T 

represent the d-dimensional Gaussian random variable and let y = [y1, …, yd]T represent a 

particular outcome of Y. Then, the probability distribution function of a c-component finite 

Gaussian mixture model can be written as [35], [36]

(1)

where α1, …, αc are weights of each mixing distribution, and each θm is the set of 

parameters defining the mth mixing distribution component. Therefore, the complete set of 

model parameters can be written as {θ1, …, θc, α1, …, αc}.

Assume the data samples,  = {y(1), …, y(n)} are independent and identically distributed. 

Then, we can write the log-likelihood of the c-component Gaussian mixture model as

(2)

with constraints on the weighting coefficients as αm ≥ 0, m = 1, …, c and .

The main approaches below can be followed to find the parameters of this model. The 

maximum likelihood (ML) estimate can be written as

(3)

The maximum a Posteriori (MAP) criterion can be written as
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(4)

where p(θ) is the prior on the parameters.

It is well known that neither ML nor MAP estimates can be found analytically. The 

expectation maximization (EM) is the proper choice for computing the parameters in ML or 

MAP. Using EM in an iterative procedure, the local maximum of ML or MAP can be found. 

Assume that  = {z(1), …, z(n)} indicate which Gaussian mixture component produced each 

data sample. Therefore, each label is a binary vector , where  and 

 for q ≠ m, means that the sample y(i) was generated by the mth Gaussian mixture 

component. Adding membership data to the model, we can write

(5)

Then, the Expectation step can be written as [42]

(6)

where  = E[ | θ̂(t)] and {t = 0, 1, 2, …} represents a time sequence.

Because the elements of  are binary, we can write

(7)

In the case of MAP, the maximization step can be written as

(8)

The EM algorithm is iterated until reaching a convergence criterion.

III. Glaucoma Progression Detection Pipeline

The pipeline used for glaucoma progression detection is composed of three stages: 

clustering, glaucoma boundary limit detection, and glaucoma progression detection testing 

(see Fig. 2). In Fig. 2, the clustering stage is shown at the top, the boundary limit detection 

in the middle, and the progression detection testing at the bottom. The axes, which make up 

the output of the top stage, are the input to the second stage. A different dataset was used to 

complete each stage. We used a dataset of abnormal and within normal limits (i.e., healthy) 

SAP visual fields (refer to Table I) for the clustering stage, a dataset of stable glaucoma 

visual fields (refer to Table II, column 2) for the boundary limit detection stage, and we used 

Yousefi et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



a dataset containing time sequences of SAP visual fields of PGON eyes (i.e., those 

designated as progressing by optic disc assessment) in the progression-detection testing 

stage (refer to Table II, column 3). We will explain each stage in more detail in the 

subsequent sections.

A. Implementation and Performance Metrics

The GEM data modeling introduced in the previous section essentially combined 

multivariate Gaussian components to model the visual field data points. Number of samples, 

n, was 2 085 and the number of dimensions, d, was 53 (52 SAP absolute sensitivity values 

and age). Clusters were assigned by selecting the component that maximized the MAP based 

on the EM-estimated parameters. Principal component analysis (PCA) was utilized to 

decompose each cluster into several axes. To identify a globally optimal GEM model that 

represents glaucoma category and visual field defect patterns, we generated several GEM 

models and selected a model that provided the best sensitivity at near 95% specificity. We 

chose the number of clusters in our GEM models, c, as three to reflect the three broad 

categories of visual field namely, normal, early, and advanced glaucoma. All stages of the 

model were implemented in MATLAB (Mathworks, Natick, MA, USA). The following 

performance metrics were utilized to assess the accuracy of the clustering stage.

1) True Positives (TP), which are positive instances correctly classified as positive, 2) False 

Positives (FP), which are negative instances incorrectly classified as positive, 3) True 

Negatives (TN), which are negative instances correctly classified as negatives, and 4) False 

Negatives (FN), which are positive instances incorrectly classified as negatives.

Specificity is defined as the proportion of all those without disease correctly identified as 

negative.

Sensitivity is defined as the proportion of all those with diseases correctly identified as 

positive.

We assessed the performance of the clustering stage using the reference standard dataset 

(abnormal and normal SAP visual fields) and the sensitivity/specificity performance metrics 

defined previously. To assess the relative performance of the entire pipeline, we compared 

the outcome of our method to GPA [33], linear regression (LR) of the VFI, and LR of the 

MD. GPA indicates visual field change from baseline by evaluating all test points and 

indicates “likely progression” for the full field if visual field change (greater than the 

variability observed in two baseline measurements) in three or more of the same points is 

repeatable in three consecutive exams [33]. The VFI and MD are global indices provided for 
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each individual test. We also compared the performance of GEM with that of the previously 

described VIM-based method [19]. We will provide the details of the assessments in the 

subsequent sections.

B. Clustering Stage

The absolute visual field sensitivity values from the 52 perimetric locations (54, excluding 2 

blind spot locations) and age were used as input to GEM for data modeling. Age was 

included because both glaucomatous and normal visual fields expressed as absolute 

sensitivity are affected by age, and age was used in the previous unsupervised learning 

studies [10], [34], [43]. The unsupervised clustering was performed using the GEM model to 

detect glaucomatous visual field defects. Using the 2 085 SAP visual fields (cross sectional) 

as input, GEM modeled c categories of glaucoma stages (i.e., c clusters) from the data and 

assigned each of these visual fields to the best fitting cluster. The initiating variable for the 

learning process was the number of mixing Gaussians, their mean and variance, and the 

number of clusters, c, which ranged from c = 2–5. Validation was done after learning the 

clusters by observing the distribution of abnormal and normal fields in each cluster and the 

GEM model with nearly 95% specificity and the highest sensitivity was selected from 600 

trained GEM models. Fig. 3 shows the specificity versus sensitivity for 600 trained GEM 

models.

From our assessment of sensitivity-specificity tradeoff among the 600 training GEM 

models, we found that three clusters provided a better separation of glaucoma and healthy 

fields. These three clusters were categorized into normal cluster N, moderate glaucoma 

cluster G1, and advanced glaucoma cluster G2 depending on the centroid of the raw 

threshold sensitivities of these clusters (normal fields have higher threshold values than 

glaucomatous fields). In Fig. 4, we show 2-D scatterplots of these 53-D clusters for 

visualization. Fig. 4 (top) shows the scatter plot of the superior hemifield (i.e., all visual 

field locations above the middle horizontal meridian shown in Fig. 1) average threshold 

versus the inferior hemifield (all visual field locations below the middle horizontal line as in 

Fig. 1) average threshold for all eyes.

As can be seen from this figure, the eyes in different clusters are organized from top right to 

the bottom left. The clinical interpretation of this organization is discussed in Results and 

Discussion section. Fig. 4 (bottom) shows the scatter plot of MD versus PSD (two global 

clinical indices of visual function) for all eyes. As can be seen from this figure, three clusters 

have been organized from high to low MD and PSD values.

We decomposed all of the visual fields comprising each cluster into different axes using 

PCA. The visual fields associated with each axis define the patterns of visual defect that we 

are seeking. Within each cluster, the relative contribution of each axis was assessed based on 

its respective eigenvalue. Only axes with significant contributions (high eigenvalues) were 

retained in a cluster. The number of axes in clusters N and G1 was 2 each, and the number of 

axes in cluster G2 was 5.

To organize the visual field loss patterns from mild to advanced, the visual field patterns are 

represented as axes through each cluster centroid. Clinicians typically rely on the total 
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deviation (TD) or pattern deviation (PD) plots supplied by the HFA Statpac analysis (Carl 

Zeiss Meditec, Inc., Dublin, CA, USA). We used simulated TD plots in our analysis to 

display the patterns of visual defects in relation to normal eyes. The simulated TD plot is a 

52-D vector obtained by subtracting absolute sensitivities at the centroid of the normal 

cluster N from the absolute sensitivities at the centroid of the glaucomatous clusters, and 

then, representing field defects as plots at −2, 0 (cluster centroid), and +2 standard deviation 

(SD) along each of the axes. The numerical TD-like plots were further converted into color 

representations to aid in visualization. The −26 to +26 values were displayed in equal steps 

of color from red to green, with −26 as pure red and +26 as pure green.

Fig. 5 (first row) shows the generated mean patterns of each cluster after TD simulation.

The centroid of the first cluster (see Fig. 5 left) has zero dB MD at all points and is 

composed mostly of normal visual fields (cluster N), the centroid of the second cluster (see 

Fig. 5 middle) deviates −2.6 dB on average from the normal mean and is composed mostly 

of abnormal visual fields (cluster G1), and the centroid of the third cluster deviates −9 dB on 

average from the normal mean (see Fig. 5 right) and is composed only of abnormal visual 

fields (cluster G2). The color coded legend used to display the TD simulated plot patterns is 

shown in Fig. 5 (second row).

We created the patterns along each axis by adding to or subtracting from the cluster 

centroid, 2 standard deviations along that axis direction (i.e., ± 2 SD). Fig. 6 shows the 

visual field patterns at +/−2 SD along each cluster axis within each cluster. Using the 

distance between each 52-D visual field and each of the axes within each of the three 

clusters, we assigned each visual field to its closest axis within the closest cluster.

For further examination, the visual fields were projected on to their respective assigned axes 

and the visual fields assigned to each axis were sorted depending on their projection 

magnitudes from the cluster centroid.

Sorting the visual fields from negative to positive depicts the earliest visual field defects to 

the most advanced ones. The visual fields were noted for their resemblance to the generated 

fields on the axis, to the similarity of other visual fields assigned to the same axis, and for 

the consistency in increasing severity as the visual fields were located further in the positive 

direction along the axis. This procedure will be discussed in Section IV.

C. Glaucoma Boundary Limit Detection Stage

We performed glaucoma boundary limit detection by projecting the longitudinal sequence of 

visual fields of each stable eye in the 53-D space onto each of the seven predefined GEM 

glaucoma axes as identified by the clustering stage (refer to Section II-B and Table II to 

recall stable group definition and demographic information). We then permuted the visual 

field sequence of each stable eye to maximize the number of slopes used to determine the 

percentile limit (PL) for stable eyes on each axis. For an eye with five consecutive visits, we 

generated 5!(= 120) longitudinal sequences of VFs, and then, we projected each sequence on 

the axis. The temporal interval between visits for each stable eye was about one week; 

however, we reset this interval to one year to approximate the limits of stability of eyes and 
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to be in agreement with the convention that glaucoma patients are commonly followed at 

intervals between six months to one year. Next, we approximated the slope of each 

longitudinal series of projected visual fields by a LR. Due to the intervisit variability of the 

visual fields, the longitudinal sequence of visual fields from some stable eyes have a positive 

slope, indicating improvement, while others have a negative slope, suggesting deterioration.

The 95th single tail percentiles toward the direction of deterioration for all seven axes for 

detecting glaucoma progression were then calculated. Single tail was used, because we were 

interested only in significant deterioration and were not interested in significant 

improvement. Because eyes in the stable group presumably showed no disease related 

progression, the variability in this group was used to define the maximum variability that 

indicated no change. Fig. 7 demonstrates the histograms of all the approximated slopes after 

projecting the longitudinal visual fields of the stable eyes on each axis of clusters G1 and G2.

Table III lists the 95th PL for glaucoma progression detection after projecting the 

longitudinal visual field of stable eyes on axes of clusters G1 and G2 (identified at the 

clustering stage), and then, approximating the slopes by an LR model. The 95th PL of the 

empirical histogram of the slopes for each axis alone indicates that if we project the visual 

field of an eye and it falls above this limit, the eye is stable, otherwise, the eye is classified 

as progressed at 5% level of significance.

D. Glaucoma Progression Detection Testing Stage

For progression detection, we projected the longitudinal series of visual fields on to each 

glaucoma axis (axes determined at the clustering stage), and then, we approximated the 

average progression rate (slope) of each sequence along the glaucoma axes using an LR 

model. For each eye, if the approximated slope passes the 95% PL of that axis (the line falls 

below the stable cutoff limit), the eye was classified as progressed; otherwise, the eye was 

classified as stable. The progression detection stage essentially uses GEM to detect POP 

during glaucoma progression, therefore, we call the entire pipeline GEM-POP. We have 

shown the outcome of the proposed GEM-POP for four example eyes in Fig. 8. The eye in 

Fig. 8 (top left) provided ten visual field tests collected from 2000 to 2006, the eye in Fig. 8 

(top right) provided seven visual field tests collected from 2003 to 2007, the eye in Fig. 8 

(bottom left) provided 11 visual field tests collected from 2000 to 2007, and the eye in Fig. 8 

(bottom right) provided ten visual field tests collected from 2001 to 2007. The orange circles 

indicate the severity after projecting the 53-D data onto the first axis of cluster G2. The blues 

circles indicate the estimated mean slope of projected values by LR (through the orange 

circles). Note that the y-intercept of all severity lines is zero for these comparisons. We also 

adjusted the curve of actual projected values accordingly, to start from zero severity at 

baseline. The gray line indicates the 95% PL for the slopes of the first axis of cluster G2. 

This cutoff limit was determined using the percentile boundary limit detection stage utilizing 

the stable eyes described in the previous step. If the linear model approximating the slope 

fell below the gray line (progression zone), then the eye was classified as progressed, 

otherwise, the eye was classified as stable. Therefore, the eyes in Fig. 8 (top row) are 

classified as progressed, because the blue line for both falls in the progression zone and the 
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eyes in Fig. 8 (bottom row) are classified as stable, because the blue line for both falls in the 

stable zone.

Even though the slope of the blue line that indicates the change in severity of glaucoma is 

negative (suggests deterioration) in the two eyes displayed at the bottom Fig. 8, the change 

is not significantly negative; hence, the eyes are classified as stable. This indicates that the 

rate of deterioration is the factor indicative of progression. For assessing the GEM-POP 

performance, we used longitudinal SAP visual fields from eyes with known progressing 

glaucoma, which will be discussed in more detail in the next section.

IV. Results and Discussion

We selected the best model out of 600 models, generated by the clustering stage, which 

contained three clusters. The MD value (global index of deviation from normal visual field) 

of each cluster approximates the clinical assessment of disease severity. Cluster N was 

mostly composed of normal visual fields with an average mean defect (MD) of −0.53 ± 1.3 

SD, Cluster G1 was mostly composed of early glaucoma visual fields with an average MD 

of −2.3 ± 1.6 SD and Cluster G2 was composed of mild to advanced glaucoma visual fields 

with an average MD of −8.7 ± 6.4 SD.

Cluster N was composed of 1 237 visual fields (1102 normal and 135 abnormal fields), 

Cluster G1 was composed of 530 visual fields (44 normal and 486 abnormal), and Cluster 

G2 was composed of 318 visual fields (0 normal and 318 abnormal). The specificity was 

96% for placing normal fields in Cluster N, and the sensitivity was 87% for placing 

abnormal visual fields in either Cluster G1 or G2. Because the structures of Cluster N and 

Cluster G1 were represented by two axes, and the structure of Cluster G2 was represented by 

five axes, all visual fields patterns were characterized by a total of nine principal axes.

We characterized the patterns at points on an axis on the positive and negative sides (± 2 

SD) of the cluster mean, generating 18 patterns.

Most of the normal fields were represented by two axes in Cluster N, and most of the 

glaucomatous fields were represented by seven axes in Clusters G1 and G2; resulting in 14 

patterns of abnormal visual fields. As can be seen in Fig. 5 (left), the simulated TD plot for 

the first cluster’s (N) centroid resulted in 0 dB at all test locations, and the generated fields 

at −2 and +2 SD on axis 1 (see Fig. 6, first and second rows) were uniformly mildly 

depressed (−2 dB) or above normal (+2 dB), respectively. The generated fields at −2 SD and 

+2 SD of axis 2 were within ±1 dB at each hemifield. The simulated TD plot for the second 

cluster’s (G1) centroid (From Fig. 5 middle) resulted in average −2.6 dB, and the generated 

fields at all locations on both axes were between 0 and −7 dB (see Fig. 6, third and fourth 

rows). From Fig. 5 (right), the simulated TD plot for the third cluster’s (G2) centroid 

resulted in about −9 dB, and the generated fields at all locations on all five axes were 

between −1 and −22 dB (see Fig. 6, fifth and sixth rows).

The clustering stage assigned most of the normal eyes to axes 1 and 2 of cluster N based on 

the minimum distance of the visual field from each axis. From the total eyes in the normal 

cluster, 849 eyes were assigned to the first axis and 139 eyes were assigned to the second 
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axis of the normal cluster. From the total eyes in cluster G1, 76 eyes were assigned to the 

first axis and 31 eyes were assigned to the second axis. From the total eyes in cluster G2, 

158 eyes were assigned to the first axis, 5 eyes to the second axis, 44 eyes to the third axis, 

41 eyes to the fourth axis, and 40 eyes were assigned to the fifth axis.

In addition to the fact that age is a significant risk factor for glaucoma, baseline age in this 

study was also significantly different between normal and abnormal eyes (p < 0.01; Table I). 

There is a possibility that age might affect the clustering outcome significantly. To evaluate 

the effects of age on the clustering outcome, we also assessed the performance of the 

clustering step excluding age. The best clustering model without age was 96% specific and 

86.4% sensitive (versus 96% and 87% with age, respectively). Therefore, it is evident that 

the clustering outcome is not significantly affected by age. From machine learning 

perspective, this indicates that the spatial VF data without age information contains 

sufficient diagnostic information to maintain a high discriminative/diagnostic power.

To examine the individual visual fields associated with each axis, we projected the visual 

fields associated with an axis and sorted them by their projection on (i.e., distance along) 

that axis. The sorted visual fields from negative to positive indicated the earliest field defects 

to most advanced field defects. Fig. 9 shows the visual field patterns of sample eyes along 

the first axis of each cluster. Fields are shown as absolute sensitivities (top) and simulated 

TD plots (bottom) from three sample eyes (from left to right) from the first axis of each 

cluster. Note that the GEM clustering stage generates seven glaucoma axes, as explained 

earlier. If we define progression detection based on any one axis that indicates progression, 

GEM-POP has seven chances to detect progression; in contrast, GPA, MD, and VFI each 

have only one chance to detect progression.

To compensate for this advantage for GEM-POP, we adjusted the specificity of each axis 

upwards to achieve an overall specificity of 95%. This compensation resulted in larger 

cutoff values for stability for the individual axes than those listed in Table III. We 

minimized the effect of differences among the algorithms by equating for specificity prior to 

determining progression. Table IV lists the adjusted 95th PL for each axis to reach overall 

95% specificity on stable eyes.

To test the performance of our proposed framework, we analyzed 76 progressed eyes (refer 

to the progressed column of Table II). We projected the longitudinal SAP visual fields of all 

eyes on all seven axes of clusters G1 and G2, and we then, computed the approximated 

slopes by LR for each axis. Then, for each eye, we compared the slope of the linear fit to the 

95th percentile limit for stable eyes (refer to Table IV) on each axis. If at least one of the 

axes showed progression, we classified the eye as progressed; otherwise, we classified the 

eye as stable. To further analyze the effectiveness of GEM-POP, we compared its 

performance for identifying known progressing eyes to LR of three available visual field 

diagnostic indices, MD, and VFI. Table V lists the progression detection outcomes of GEM-

POP, GPA, MD, and PSD.

Similar to GEM-POP, we defined the 95th percentile limits of stability based on the 

permutation distribution of the stable eyes and defined progression by MD and VF.
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We also compared the GEM-POP outcome to the recently developed VIM progression of 

patterns (VIM-POP) method [19], for the same eyes and for the same follow-up duration, 

and found that GEM-POP performed slightly but not significantly better than VIM-POP 

(sensitivity for VIM-POP was 26.6% compared to 28.9% for GEM-POP).

The percentage of correctly identified known progressing eyes (sensitivity) is somewhat low 

for all methods. There are several explanations for this finding. First, structural change (used 

as the reference standard for progression in this study) and functional change (based on 

SAP) do not necessarily occur at the same time [44]. Second, it is often difficult to detect 

actual change in VFs from noise due measurement error and random variation. This can be 

alleviated partly by modeling spatial correlation within visual fields, while considering the 

relationship between the spatial arrangements of the visual fields and the anatomy of the 

eye. We have not considered spatial dependence in this paper; however, it could be 

investigated in future work. Third, progression detection may be less than ideal due to the 

lack of a ground truth reference standard.

In GEM-POP, the clustering stage uses a mixture of Gaussians to model the data, to identify 

the clusters and to decompose each cluster to several axes based on PCA. In VIM-POP, 

cluster identification and ICA axis decomposition is performed within a single step, making 

implementation very complex and creating a computationally complex model. Creating a 

progression detection environment using GEM-POP takes minutes on a standard PC, while 

creating such an environment using VIM-POP takes several days. It is worth mentioning 

that GPA and LR of MD and VFI all use linear statistical methods to detect progression that 

lack the inherent benefits of machine learning-based methods.

In addition, we have shown that the clustering stage capable of effectively extracting useful 

features from high-dimension data space (e.g., pointwise visual thresholds) can improve the 

sensitivity of detecting progression compared to selective 1-D global indices such as MD 

and VFI. In contrast to global indices, GPA uses high-dimensional data for analysis. 

Therefore, the comparison of GEM-POP with GPA further emphasizes the strengths of 

GEM-POP including its strengths of extracting useful features in the clustering stage.

The future direction of this study can be devoted to assessing the glaucoma progression 

detection rate using other ophthalmic data.

V. Conclusion

A pipeline for recognizing glaucomatous visual field defect patterns and identifying 

glaucomatous progression was demonstrated. The visual field data were modeled using a 

mixture of Gaussians and the model parameters were estimated using expectation 

maximization. Then, the visual field data were clustered successfully into one normal and 

two glaucoma clusters (each representing disease severities). The relatively good 

performance of our clustering stage confirms its relative effectiveness in structuring data. 

Each cluster was decomposed to several axes using PCA to identify glaucomatous 

progression. Glaucoma cutoff limits were calculated on all identified glaucoma axes and 

were used to detect progression. A dataset of progressing glaucomatous eyes was used to 

assess the performance of the entire glaucoma progression pipeline and the outcome of our 
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method was compared to commercially available glaucoma progression detection software 

algorithms and a recently published algorithm for progression detection. Overall, 

progression detection based on the Gaussian mixture model using expectation maximization 

identified significantly more known progressing eyes than all but one commercially 

available SAP progression detection method. Progression detection based on change in 

GEM-POP defined axes performed slightly better than progression detection using VIM-

POP, while being far less computationally complex. The run time for clustering and axis 

identification using GEM-POP is a small fraction of the run time required to perform the 

same tasks using the methodology on which VIM-POP is based.
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Fig. 1. 
(Left) sample optic disk photograph image, (right) absolute sensitivities (in dB) of SAP 

visual points tested using the 24-2 system.
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Fig. 2. 
Glaucoma progression detection pipeline.
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Fig. 3. 
Performance of all trained GEM models.
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Fig. 4. 
2-D Scatter plot of features. (Top) average of superior hemifield versus average of inferior 

hemifield. (Bottom) MD versus PSD.
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Fig. 5. 
VF patterns represented by the centroid of each GEM cluster. Increased red saturation 

indicates increased deterioration of the visual field. The top left pattern represents the visual 

fields the cluster N, the top middle showing early visual field deterioration represents cluster 

G1, and the top right showing mild to advanced visual field deterioration represents cluster 

G2. The bottom figure is the color-coding legend.
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Fig. 6. 
VF patterns (axes and +/−2SD) in three clusters N, G1, and G2 generated by GEM. The 

representation simulates total deviation plots generated at −2/+2 standard deviation units on 

each axis. Increased red saturation indicates increased deterioration of the visual field.
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Fig. 7. 
Histogram of the projected slopes. Top row shows the histogram of the slopes after 

projecting the stable group’s longitudinal visual fields on axis 1 and 2 of the cluster G1, 

middle row represents the histogram of the slopes after projecting the stable group’s 

longitudinal visual fields on axis 1, 2, and 3 of cluster G2, and bottom row shows the 

histogram of the slopes after projecting the stable group’s longitudinal visual fields on axis 4 

and 5 of cluster G2.

Yousefi et al. Page 26

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8. 
gray line indicates the 95th percentile limit for progression rate, the orange circles represent 

the actual projected visual field values on the first axis of cluster G2, and the blue circles are 

the linear regressed line approximating the projected visual field values on the first axis of 

cluster G2.
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Fig. 9. 
VF absolute sensitivity values and TD simulated patterns for three eyes in abnormal clusters 

assigned to the first axis of that cluster. Projecting the VF of each eye on the first axis, and 

then, sorting the values from the most negative to the most positive, calculated the severity. 

The VF thresholds and TD simulated values for eyes corresponding to the most negative, 

mid, and most positive projected severities are placed from left to right, respectively.
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TABLE I

Demographic Information of Subjects Used for Clustering

Parameter Abnormal Visual Field Normal Visual Field p-value

Number of eyes 939 1146 -

Number of subjects 677 721 -

Age at baseline in years (SD) 58.6 (14) 46.8 (14.5) <0.01

Gender (percent female) 40 46 -

SAP Mean Deviation (MD) in dB (SD) −4.3 (4.9) −0.46 (1.3) <0.01

SAP Pattern Standard Deviation (PSD) in dB (SD) 4.4 (3.2) 1.5 (0.24) <0.01
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TABLE II

Demographic Information of Subjects and Follow-up Visits Used for Progression Detection

Parameter Progressed based on photo Stable p-value

Number of eyes 76 91 -

Number of subjects 70 48 -

Number of Follow-ups (SD) 5.5 (4.2) 4.7 (0.80) <0.01

Length of Follow-up (SD) 2.7 years (2.1) 4.2 weeks (1.4) <0.01

Age at baseline in years (SD) 62.6 (12.6) 71.0 (9.5) <0.01

Gender (percent female) 53 45 0.14

Baseline SAP Mean Defect (MD) in dB (SD) −4.1 (4.8) −7.4 (8.2) <0.01

Baseline Pattern Standard Deviation (PSD) in dB (SD) 5.1 (4.2) 6 (4.2) 0.14
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TABLE V

Progression Detection Performance Comparison

Progression detection method Percent of eyes identified as progressed p-value compared to GEM_POP

GEM-POP 28.9% -

GPA 19.7% 0.05

MD 16.9% 0.02

VFI 14.1% <0.01
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