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Abstract

Protein-carbohydrate interactions play significant role in modulating cell-cell and cell-

extracellular matrix interactions, which, in turn, mediate various biological processes such as 

growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of 

the β-galactoside-binding protein family, is found multifunctional and is involved in normal 

growth development as well as cancer progression and metastasis, but the detailed mechanisms of 

its functions are not well understood. This review discusses its structure, binding properties, 

transcriptional regulation and roles in homotypic/heterotypic cell adhesion, angiogenesis and 

apoptosis.
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Introduction

Interactions between cells, between cells and the extracellular matrix (ECM) are pivotal for 

proper cellular function. In recent years, protein-carbohydrate interactions have been 

considered as very important for modulation cell-cell and cell-ECM interactions, which, in 

turn, mediate various biological processes such as cell activation, growth regulation, cancer 

metastasis, and apoptosis. Thus, the identification of carbohydrate-binding proteins (lectins) 

and their partners (carbohydrate ligands), and the detailed understanding of the molecular 

mechanisms and downstream effects of these protein-carbohydrate interactions are subjects 

of current intense research. Galectins (gal), a family of β-galactoside-binding proteins, are 

involved in growth development as well as cancer progression and metastasis1–5. However, 

the detailed mechanisms of these functions remain largely unknown. Of the fifteen members 

of the galectin family identified so far, gal1, 2, 5, 7, 10, 11, 13, 14, and 15 are examples of 

the “proto” type galectins (one carbohydrate-recognition domain [CRD] per subunit), while 

gal4, 6, 8, 9, and 12 are “tandem-repeat” type galectins, which contain two CRDs6 (Fig. 1). 

Gal-3 is the only representative of the “chimera” galectin type and probably the most studied 

member of the galectin family2, 7–10. As a multifunctional protein with increased or 
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decreased expression in many types of human cancers, it has generated significant interest in 

cancer research over the past decades. Here we describe its structure and roles in various 

aspects of tumorigenesis.

Structure of gal-3

Primary structure

Gal-3 (previously known as Mac-2, L-29, L-31, L-34, IgE binding-protein, CBP35, and 

CBP30) contains three structurally distinct domains: a 12-amino acid short N-terminal 

domain (ND), proline and glycine rich long ND, and a C-terminal CRD11 (Fig. 2). Gal-3 is a 

monomer, but can form multimer at certain circumstances such as at high concentration12. 

The short ND is highly conserved in all mammalian gal-38 and may have at least two roles; 

its deletion blocks secretion of gal-39, while mutation of the conserved Ser6 affects gal-3 

anti-apoptotic signaling activity13. The long ND is responsible for multimerization of gal-3 

and shows positive cooperativity in carbohydrate binding12. For example, matrix 

metalloproteinases, MMP-2 and MMP-9 cleave gal-3 at the position Ala62Tyr63 resulting 

in 22 kDa fragment that fails to self associate14. The C-terminal domain of gal-3 is 

composed of about 130 amino acids that form a globular structure like other galectins8. It 

accommodates whole carbohydrate-binding site, which is responsible for lectin activity15–16. 

Within the CRD particularly interesting amino acid sequence is NWGR. This motif is highly 

conserved within the BH1 domain of the Bcl-2 family proteins, and is responsible for the 

anti-apoptotic activity of both Bcl-2 and gal-317. The NWGR motif is also involved in self-

association of gal-3 molecules through the CRDs in the absence of saccharide ligands18.

Genomic structure

The human gal-3 gene (LGALS3), located on chromosome 14, locus q21q2219, is about 17 

kb long and is composed of six exons and five introns20 (see Fig. 2). Exon I contains the 

major part of the 5′ untranslated sequence of mRNA; while exon II encodes the remaining 

part of the 5′ untranslated region, the translation initiation site and codon sequence for the 

first six amino acids including the initial methionine. The N-terminal domain of the gal-3 is 

located in exon III; while the CRD is in exon V. Interestingly, the intron II of LGALS3 

contains an internal promoter that drives production of alternative transcripts preferentially 

in peripheral blood leukocytes21, 22. These transcripts arise from an internal gene embedded 

within LGALS3, named galig (galectin-3 internal gene)22. Galig’s CRD is incapable of 

binding carbohydrates as it contains two overlapping open-reading frames within the lectin 

coding sequence. However, the galig protein promotes cytochrome c release upon direct 

interaction with the mitochondria23.

Carbohydrate-binding properties of gal-3 and its ligands

Although all galectins bind β-galactoside, their ability to discriminate among carbohydrate 

structures is striking. For most galectins, N-acetyllactosamine (Galβ1,4GlcNAc) is 5–10 

times more active than lactose24–28 and so N-glycans are good ligands. Interestingly, the TF-

disaccharide (Galβ1,3GalNAc) present in O-glycans is also a good ligand for gal-3, but not 

for gal125, 26. The basis for the variable binding profiles of these galectins has been 

explained by their 3-D structures29, 30. Although galectins lack a typical secretory signal 
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peptide31, they are present not only in the cytosol but also in the ECM32, 33. In the 

extracellular space, galectins bind to β-galactoside-containing glycoproteins of ECM and 

cell surface. Extracellular gal-3 binds laminin34, 35, fibronectin36, CD2937, CD6638, α1β1 

integrin36, and Mac-2 binding protein39. Intracellularly, gal-3 binds gemin 440, Bcl-241, 

nucling42, synexin43, and β-catenin44, 45 via protein-carbohydrate or protein-protein 

interactions.

Transcriptional regulation

Although a large body of data about gal-3 expression is available in the literature, the 

mechanisms of regulation of gal-3 expression are not well understood. However, the 

expression of gal-3 depends on cell type, external stimuli and environmental conditions and 

involves numerous transcription factors and signaling pathways8. Gal-3 expression may 

serve as differentiation marker for certain cell types. For example, the differentiation of the 

human monocytes or promyelocytic cell line HL-60 tomacrophage-like cells induced by 

phorbol ester is accompanied by increased expression of gal-346. Gal-3 expression is up-

regulated in phagocytic macrophages and thus considered as a “macrophage activation 

marker” 47. Gal-3 expression is also elevated in microglia and macrophages activated by 

phagocytosis of myelin or when exposed to granulocyte-macrophage colony-stimulating 

factor48. In contrast, activation of human monocytes by lipopolysaccharide and interferon-γ 

is accompanied by decrease of gal-3 expression49. The reduced expression of gal-3 was also 

observed in monocytic THP-1 cells treated with non-steroidal50 or cortico-steroidal anti-

inflammatory drugs51. Interestingly, gal-3 expression is absent or barely detected in the 

resting lymphocytes52, 53, but the activated B and T cells induce gal-3expression53. Gal-3 

could be considered also as a transformation marker since the gal-3 expression is increased 

in fully ras-transformed fibroblasts, when cells have lost their anchorage-dependent 

growth54.

In the promoter region of the gal-3 gene, several regulatory elements such as five putative 

Sp1 binding sites (GC boxes), five cAMP-dependent response element (CRE) motifs, four 

AP-1- and one AP-4-like sites, two NF-κB-like sites, one sis-inducible element (SIE) and a 

consensus basic helixloophelix (bHLH) core sequence are found20. The presenceof multiple 

GC box motifs for binding ubiquitous expressed Sp1 transcription factor is a characteristic 

of constitutively expressed “housekeeping” genes. The activation of the Sp1 binding 

transcription factor is responsible for gal-3 induction by Tat protein of HIV55. The SIE that 

binds sis-inducible factors was suggested to be a possible candidate for the growth-induced 

activation of gal-3 gene expression, caused by the addition of serum. The presence of CRE 

and NF-κB-like site in the gal-3 promoter suggests that the activation of gal-3 expression 

could be regulated through the signaling pathways involving the cAMP-response element-

binding protein (CREB) or the NF-κB transcription factor. The CREB/ATF and the NF-

κB/Rel transcription factors pathways may be involved in the regulation of gal-3 expression 

by the Tax protein during HTLV-I infection of T cells56. The involvement of the NF-κB 

transcription factorin regulation of gal-3 expression, as well as the Jun protein, a component 

of AP-1 transcription factor has recently been confirmed57. The regulation of gal-3 

expression through the NF-κB transcription factor was shown to be mediated by nucling, a 

novel apoptosis-associated protein, which interferes with NF-κB via the nuclear 
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translocation process of NF-κB/p65, thus inhibiting galectin-3 expression on both protein 

and mRNA level58, 59. In skeletal tissues, the regulation of gal-3 expression is mediated by 

the transcription factor Runx27. Very recently, gal-3 expression is found to be regulated in 

pituitary and prostate tumors by methylation of CpG islands in promoter region60–63. Gal-3 

was shown highly expressed in androgen independent PC-3 and DU-145 cells, but weakly 

expressed in androgen dependent LNCaP cells62. Treatment of LNCaP cells with 

azacytidine (DNA methyltransferase inhibitor) showed restored expression of gal-3 

indicating that the promoter methylation is responsible for gal-3 gene silencing62. We have 

also demonstrated DNA methylation on the gal-3 promoter in LNCaP cells following PCR 

amplification of the bisulfate treated DNA and cloning and sequencing of the PCR 

product60.

Role of gal-3 in cell-cell and cell-ECM interactions

Gal-3 plays an important role in normal development and tumorigenesis through regulating 

cell proliferation, apoptosis, cell adhesion, invasion, angiogenesis and metastasis by binding 

to the cell surface β-galactose-containing glycoconjugates or glycolipids. Gal-3 may exert its 

multiple biological roles intracellularly within the nucleus or the cytoplasm, or after its 

secretion, at the cell surface and/or the extracellular space, mediating interactions between 

cells and the extracellular matrix3, 4, 6.

Gal-3 expression in normal tissues: Role of gal-3 in growth development

Gal-3 is developmentally regulated and expressed in many tissues of adults64, 65. During 

mouse embryogenesis, gal-3 first appears at fourth day of gestation in the trophectoderm of 

blastocyst, followed by its expression in the notochord cells between 8.5 and 11.5 days of 

gestation64. In later stages of mouse development, gal-3 is expressed in the cartilage, ribs, 

facial bones, suprabasal layer of epidermis, endodermallining of the bladder, larynx and 

oesophagus8. In adult, gal-3 is mainly expressed in the epithelial cells such as small 

intestine66, colon67, cornea68, 69, kidney70, lung71, thymus72, breast73, and prostate74. The 

expression of gal-3 is also detected in ductal cells of salivary glands75, pancreas76, kidney77, 

and eye78 and in intrahepaticbile ducts79. Regarding cell type, gal-3 expression is observed 

in fibroblasts80, chondrocytes and osteoblasts41, osteoclasts81, keratinocytes82, Schwann 

cells83 and gastric mucosa84, endothelial cells85, and also immune related cells such as 

neutrophils86, eosinophils 87, basophils and mast cells88, Langerhans cells82, 89, dendritic 

cells90, as well as monocytes49 and macrophages from different tissues3, 7, 91, 92.

Gal-3 promotes tumor progression and metastasis: Changes in cellular localization of 
gal-3

Gal-3 is expressed in many tumors and possibly plays an important role in tumor 

progression and metastasis7, 8, 10, 41, 73, 74, 92, 93. However, theintensity of the gal-3 

expression in tumors depends on the type of tumor, its invasiveness and metastatic 

potential42, 43. For example, increased expression of gal-3 is observed in colon, head and 

neck, gastric, endometrial, thyroid, liver, bladder cancers and breast 

carcinomas44, 45, 73, 93–95. Gal-3 transfected human breast cancer cells BT549, which is 

gal-3 null, after intrasplenic injection, formed metastatic colonies in the liver, while gal-3 
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null BT549 cells did not96. Change in cellular localization of gal-3 is also observed during 

progression of various cancers. For example, down-regulation of gal-3 expression has been 

demonstrated in colorectal cancer, with increased cytoplasmic expression of gal-3 at more 

advanced stages42, 43, 97. In tongue cancer, nuclear gal-3 is decreased, but cytoplasmic gal-3 

is increased during progression from normal to cancer42, 43. The decreased expression of 

gal-3 was also observed in prostate62, 74, 98, kidney99, and pituitary cancers61. In PCa, 

although gal-3 is down-regulated, its nuclear exclusion and cytoplasmic localization are 

correlated with disease progression62, 74, 100. Phosphorylation of gal-3 at Ser6 regulates its 

nuclear export101. Recent data by us and others indicated that decreased expression of gal-3 

in pituitary and prostate tumors is, in part, due to its gal-3 promoter methylation60–63. Gal-3 

expression in gastric, liver, lung, bladder, and head and neck cancers was significantly 

increased compared to the normal tissues, and correlated with the progression of clinical 

stages and metastases95–99.

Cytoplasmic gal-3 inhibits apoptosis

Intracellular gal-3 inhibits apoptosis by various mechanisms7. For example, gal-3 acts as a 

specific binding partner for activated K-Ras, which promotes strong activation of PI3K 

(phosphoinositide 3-kinase) 102. Gal-3 is the only member of its family that contains the 

NWGR anti-death domain. Bcl-2 translocation to the mitochondrial membrane blocks 

apoptosis and cytochrome c release103. Cytochrome c release and nitric oxide-induced 

apoptosis were blocked in gal-3 transfected BT549 human breast carcinoma cells104. 

Moreover, gal-3 binds Bcl-2 protein in vitro and inhibits mitochondrial- apoptotic response. 

Interestingly, synexin (annexin 7) is required for gal-3-prevention of mitochondrial 

damage105.

Extracellular gal-3 secreted from tumor cells induces apoptosis of cancer-

infiltrating T-cells: Role of gal-3 in the immune escape mechanism during 

tumor progression

Recent studies revealed that gal-3 can induce apoptosis of activated T-cells37, 106, 107. 

Interestingly, gal-3-null T-cell lines such as Jurkat, CEM, and MOLT-4 cells were 

significantly more sensitive to exogenous gal-3 than gal-3-expressing lines SKW6.4 and H9. 

For example, gal-3 transfectedJurkat cells were found more resistant to apoptosis induced by 

anti-Fas antibodies or staurosporine (protein kinase inhibitor) compared to the non-

transfected control cells17, 108. These differences are probably due to a balance between the 

anti-apoptotic activity of intracellular gal-3 and pro-apoptotic activity of extracellular gal-3. 

Extra-cellular gal-3 can also induce apoptosis in human T cells including human peripheral 

blood mononuclear cells (PBMCs) and activated mouse T-cells37. This would imply that 

tumor cells defend themselves against infiltrating T-cells by secreting gal-3. Two major 

signaling pathways, one via death receptors Fas (apo-1/CD95) and the other using TRAIL 

(TNF related apoptosis inducing ligand or Apo2-L), are known for extrinsic apoptotic 

signals109, 110.
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Cell surface glycoproteins such as CD29, CD7, CD95, CD98, and T-cell receptor (TCR) 

have been shown to associate with gal-3, which may mediate induction of apoptosis by 

extracellular gal-3111–113. For example, extracellular gal-3 binds to the CD29/CD7 complex, 

which triggers the activation of an intracellular apoptotic signaling cascade followed by 

mitochondrial cytochrome c release and activation of caspase-3106.

Gal-3 mediates homotypic and heterotypic aggregation and promotes 

tumor cells endothelial interactions, angiogenesis, and tumor metastasis: 

Role of TF antigen in cancer metastasis

The formation of secondary tumors by circulating cancer cells requires embolization by 

aggregating with other tumor cells in micro capillaries followed by extravasation at 

secondary sites. In the first step of extravasation, cells bind to endothelial cells through 

protein-carbohydrate interactions and penetrate through the layers of endothelial cells and 

basement membrane. It was shown that cell surface gal-3 mediates homotypic cell adhesion 

by binding to soluble complementary glycoconjugates114, 115. Interactions of metastatic 

cancer cells with vasculatory endothelium are critical during early stages of cancer 

metastasis116. Gal-3 mediates homotypic and heterotypic aggregation and promotes 

interactions between tumor cells and endothelial cells, angiogenesis, and tumor 

metastasis2, 4, 7. It has been shown that gal-3 expressed in endothelium participates in 

docking of cancer cells including breast and prostate cancers on capillary endothelium by 

specifically interacting with cancer cells-associated TF-disaccharide (TFD, 

Galβ1,3GalNAc)117–119. The TFD, present in the core I structure of mucin-type O-linked 

glycan, is generally masked by sialic acid in normal cells, but is exposed or non-sialylated in 

malignant and premalignant epithelia118, 119. Circulating gal-3 has been shown to increase 

cancer cell homotypic aggregation by interaction with TFD on the cancer-associated 

transmembrane mucin protein MUC1120, 121. Significance of gal-3 in homotypic and 

heterotypic cell-cell interactions was also demonstrated by using three-dimensional co-

cultures of endothelial and epithelial cells73. Gal-3 was shown to stimulate capillary tube 

formation of human umbilical vein endothelial cells (HUVEC) in vitro and angiogenesis in 

vivo, which was inhibited by specific sugars and antibodies. Overexpression of gal-3 in gal-3 

non-expressing prostate cancer cell line LNCaP induced in vivo tumor growth and 

angiogenesis122.

Natural carbohydrate compounds to prevent gal-3-mediated tumorigenesis

There have been a few attempts to use naturally occurring substances to control and prevent 

cancer metastasis. Modified citrus pectin (MCP), a pH-modified soluble β-galactosyl-

containing polysaccharide obtained from the peel of citrus fruits has been claimed to be an 

effective anti-metastatic drug for many cancers123. The MCP was shown to inhibit in vitro 

tumor cell adhesion to endothelium124 and homotypic aggregation as well as in vivo 

formation of metastatic deposits of human breast and prostate carcinoma cells in lungs and 

bones125.
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As TFD is found exposed mostly on tumor cell surface (masked in normal cells) and also 

tumor-endothelial cell interactions required for metastasis are mediated by endothelium-

associated gal-3 and cancer cell associated TFD, we reasoned that exogenous TFD would be 

more effective and specific to block gal-3-mediated tumorigenesis. We purified TFD-

containing glycopeptide from cod fish and showed that TFD compound could inhibit tumor-

endothelial cell interactions and angiogenesis126. Moreover, the purified TFD compound 

blocked gal-3 mediated T cell apoptosis126.

Concluding remarks

During cancer progression and metastasis, gal-3 renders anti-cancer activities in several 

ways. First, the intracellular (cytoplasmic) gal-3 is anti-apoptotic. Second, gal-3 promotes 

angiogenesis. Third, the extracellular gal-3 is involved in homotypic aggregation. Fourth, 

tumor-endothelial cell interactions required for metastasis are mediated by endothelium 

associated gal-3 and cancer cell-associated TFD. Fifth, tumor cell secreted gal-3 induces 

apoptosis of cancer-infiltrating T cells, thus, to promote immune escape and tumor 

progression. Thus, gal-3 plays multiple crucial roles in cancer progression and metastasis 

and so perturbation of gal-3 function either by blocking its expression with siRNA or by 

inhibiting its activity with external carbohydrates such as pectin or TFD would prevent 

tumorigenesis.
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prevents galectin-3-mediated tumor-endothelial cell adhesion, angiogenesis, and T-cell apoptosis. 
Submitted. 
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Fig 1. Classification of galectins
Schematic representation of proto-, chimera, and tandem-repeat type galectins. They are 

numbered according to the order of their discovery.
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Fig 2. Structure of galectin-3
Schematic representation of nucleotide (genomic and cDNA) and protein (primary and 

tertiary) structures.
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Fig 3. Function of galectin-3
Schematic representation of (A) intracellular and (B–D) extracellular function of gal-3. A. 

Nuclear gal-3 is apoptotic, while cytoplasmic gal-3 is shown anti-apoptotic. B. Gal-3 

promotes tumor-endothelial cell interactions. C. Gal-3 promotes apoptosis of T-cells. D. 

Gal-3 promotes tumor cell angiogenesis.
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