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Abstract

Ventricular growth is widely considered to be an important feature in the adverse progression of 

heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to 

be a favorable response to clinical intervention. In recent years, a number of theoretical models 

have been proposed to model the process of ventricular growth while little has been done to model 

its reverse. Based on the framework of volumetric strain-driven finite growth with a homeostatic 

equilibrium range for the elastic myofiber stretch, we propose here a reversible growth model 

capable of describing both ventricular growth and its reversal. We used this model to construct a 

semi-analytical solution based on an idealized cylindrical tube model, as well as numerical 

solutions based on a truncated ellipsoidal model and a human left ventricular model that was 

reconstructed from magnetic resonance images. We show that our model is able to predict key 
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features in the end-diastolic pressure–volume relationship that were observed experimentally and 

clinically during ventricular growth and reverse growth. We also show that the residual stress 

fields generated as a result of differential growth in the cylindrical tube model are similar to those 

in other nonidentical models utilizing the same geometry.
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Remodeling; Reverse remodeling; Growth; End-diastolic pressure–volume relationship; Finite 
element method; Magnetic resonance imaging

1 Introduction

Maladaptive ventricular growth or remodeling1 is widely considered to be an important 

determinant of the clinical course of heart failure (Cohn et al. 2000). In its classical form, 

cardiac remodeling can be categorized into two different types: (1) concentric remodeling 

with a thickening of the ventricular wall that is induced by an overloading of pressure and 

(2) eccentric remodeling with a dilation of the ventricles that is induced by an overloading of 

volume (Grossman et al. 1975). These global geometrical changes in the form of concentric 

and eccentric remodeling of the heart ventricles are induced microscopically by the parallel 

and series addition of sarcomere units in the myocytes, respectively. Yet, these two forms of 

remodeling processes are not mutually exclusive and can coexist in other clinical events 

(e.g., after myocardial infarction) (Opie et al. 2006).

Several theoretical continuum models based on the concept of finite volume growth have 

recently been proposed to describe ventricular geometrical remodeling (Kroon et al. 2009; 

Göktepe et al. 2010 a,b; Rausch et al. 2011; Kerckhoffs et al. 2012). All these models were 

developed based upon the concept of the multiplicative decomposition of the deformation 

gradient tensor into a “growth” and an elastic component. This concept was first applied by 

Rodriguez et al. (1994) to model tissue growth and was originally developed by Lee (1969) 

in the context of finite plasticity. These ventricular growth models were developed with 

either ventricular myofiber stress as the stimulant of growth (as in Göktepe et al. (2010a,b) 

and Rausch et al. (2011) for modeling concentric remodeling) or with ventricular myofiber 

and/or myocrossfiber strain as the primary stimulant of growth (Kroon et al. 2009; 

Kerckhoffs et al. 2012).

Although a sizable number of theoretical models have been developed to model the process 

of ventricular remodeling and to predict the effects clinical treatments have on this process 

(Klepach et al. 2012), there are few (if any) theoretical models that describe its reversal. Due 

to the rapid advancement of clinical devices and treatments, reverse remodeling of the 

ventricles in the form of ventricular size normalization has been observed clinically after 

some interventions. These treatments include implantation of a left ventricular assist device 

(Burkhoff et al. 2006), mitral valve repairs (Brinke et al. 2010) and, more recently, 

bioinjection treatment using calcium-sodium-alginate hydrogel (Lee et al. 2013). All of 

1In this paper, we used the words “growth” and “remodeling” interchangeably although other authors have used “growth” and 
“remodeling” to specifically describe a change in mass and properties, respectively.
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these interventions have been associated with a reduction in ventricular loading due either to 

a reduction in hemodynamics loading (left ventricular assist devices and mitral valve 

repairs) or to the presence of mechanical support in the ventricular wall (bioinjection 

treatment). Besides clinical observations, experiments have also shown that ventricular 

remodeling as a result of aortocaval fistula (Gerdes et al. 1995) and aortic arch banding 

(Zhang et al. 2013) in the rat's heart can be reversed if these initiating stimuli were removed. 

As such, there is mounting evidence suggesting that a reversal of ventricular remodeling can 

occur after sufficient and prolonged unloading of the ventricles.

In this paper, we propose a theoretical constitutive model capable of describing both 

ventricular remodeling and its reversal. The focus here is on pathological ventricular 

remodeling and reverse remodeling, which is a subset of the broad subject of biological 

growth and remodeling (Taber 1995; Ambrosi et al. 2011). Our proposed model is based on 

the generic framework of volumetric strain-driven finite growth described by Göktepe et al. 

(2010b). The constitutive equations describing reversible ventricular remodeling are given in 

Sect. 2. In Sects. 3 and 4, we describe the problem formulations for a semi-analytical 

solution of reversible remodeling in a cylindrical tube model and the numerical solutions of 

reversible remodeling in more realistic left ventricular geometries (a truncated ellipsoidal 

model and a human left ventricular model that was reconstructed from magnetic resonance 

images), respectively. The results from these models are described in Sect. 5, where we 

show the effects of ventricular reverse remodeling (and remodeling) on end-diastolic 

pressure–volume relationship, as well as on the ventricular myofiber stress and strain fields. 

Finally, in Sect. 6, we discuss the compatibility of our results with clinically and 

experimentally observed features of ventricular reverse remodeling and remodeling.

2 Methods

2.1 Kinematics of growth and reversible growth

Following Rodriguez et al. (1994) and Göktepe et al. (2010b), we multiplicatively 

decomposed the deformation gradient F into an elastic part Fe and a growth part Fg, i.e.,

(1)

Given that the focus here is on the formulation of a reversible growth multiplier θ, we 

prescribed (without loss of generality) an isotropic growth tensor Fg that is parameterized by 

a scalar growth multiplier θ, i.e.,

(2)

where I is the identity tensor. We note that other forms of growth tensor have been proposed 

to describe eccentric hypertrophy, e.g., an anisotropic growth tensor Fg = I + (θ − 1) f0 ⊗ f0 

(Göktepe et al. 2010b) and an isochoric growth tensor Fg = (θ) f0 ⊗ f0 +1/√θ(I −f0 ⊗ f0) 

(Klepach et al. 2012) with f0 denoting the myofiber direction. The purpose of using an 

isotropic growth tensor Fg here is to focus on the development of a growth multiplier θ.
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Using the definition of an isotropic growth tensor Fg given in Eq. (2) and the multiplicative 

decomposition of the deformation gradient given in Eq. (1), the elastic deformation gradient 

tensor becomes

(3)

Correspondingly, the elastic part of the right Cauchy stretch tensor and Green-Lagrange 

elastic strain tensor are then:

(4a)

and

(4b)

respectively.

2.2 Elastic constitutive model

The elastic deformation of the myocardial tissue is described using a Fung-type transversely 

isotropic hyperelastic constitutive model with the following strain energy function 

(Guccione et al. 1991):

(5a)

where

(5b)

In Eq. (5), C, bf, bs and bfs are the material parameters and Eij with (i, j) ∊ (f, s, n) are the 

components of the Green-Lagrange strain tensor Ee, which correspond to the material 

coordinates in the fiber f, sheet s and sheet-normal n directions.

The incompressibility of the material is enforced by an augmented strain energy function Ŵ

(6)

where p is a hydrostatic pressure that functions as a Lagrange multiplier for the kinematic 

constraint det Fe = 1.

The resultant second Piola-Kirchkoff stress tensor is defined as
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(7)

and the Cauchy stress tensor is

(8)

The Cauchy stress enters the equilibrium equation

(9)

where div denotes the divergence with respect to the deformed coordinates and body forces 

have been neglected.

2.3 Kinetics of growth

The constitutive model of a reversible growth multiplier is motivated by the strain-driven 

eccentric growth model proposed by Göktepe et al. (2010b):

(10)

In Eq. (10), the evolution of the growth multiplier depends on two scalar functions, namely, 

a rate limiting scalar function k(θ) and a growth driving function ϕ(λe) that depends on the 

elastic myofiber stretch λe.

Consistent with the hypothesis that excessive stretch of the myofiber beyond some 

homeostatic value λh2 can lead to growth and dilation of the ventricles (as in the case when 

the ventricle is “volume-overloaded”), the functions k(θ) and ϕ(λe) have the following forms 

when λe ≥ λh2:

(11a)

(11b)

Equation (11) is similar to the strain-driven eccentric growth model by Göktepe et al. 

(2010b). In this equation, γg, τg, θmax and θmin are the degree of nonlinearity of sarcomere 

deposition, a time-scale associated with tissue growth and the prescribed maximum and 

minimum permissible values of the growth multiplier θ, respectively. The stretching of the 

myofiber as a result of growth (or growth stretch) is . Correspondingly, 

the elastic myofiber stretch is . It is evident from Eq. (11) that growth 

terminates when either criterion θ = θmax or λe = λh2 is met.
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The concept of a homeostatic target value of the myofiber stretch is consistent with the 

experimental results by Omens (1998), who suggested end-diastolic myofiber strain as the 

primary stimulus for myocardial growth in volume-overload hypertrophy (instead of end-

diastolic stress). This concept is also consistent with the growth models of Kroon et al. 

(2009), Kerckhoffs (2012) and Taber (2001), although in the latter, myocardial stress 

(instead of strain) was postulated to be restored to a homeostatic value during growth.

2.4 Kinetics of reversible growth

In contrast to Göktepe et al. (2010b) where growth is irreversible, we hypothesize that 

cardiac growth is reversible in a way that the elastic myocardial stretch λe is always 

normalized to a homeostatic range λh1 ≤ λe ≤ λh2. Consequently, reverse growth occurs 

when the elastic myofiber stretch is less than the prescribed homeostatic myofiber stretch 

λh1. To model reversible growth, we propose the following functional forms for k(θ) and 

ϕ(λe) when λe ≤ λh1

(12a)

(12b)

Similar to Eq. (11), γrg and τrg in Eq. (12) are the degree of nonlinearity of sarcomere 

removal and a time-scale associated with reverse growth, respectively. We also note that 

reversal of growth terminates when either criterion: θ = θmin or λe = λh1 are met. In addition, 

the physical limit requires that θmin > 0.

Last, to ensure that growth does not occur within the homeostatic range of the elastic 

myofiber stretch, we prescribed ϕ = 0 when λh1 ≤ λe ≤ λh2.

3 Growth and reverse growth in a thick-walled cylindrical tube

To demonstrate the effects of our proposed constitutive model, we constructed a semi-

analytical solution of an inflated thick-walled cylindrical tube undergoing reversible growth 

in response to changes in the hemodynamics load.

For a cylindrical tube undergoing homogeneous inflation (Fig. 1), the deformed radial 

position r is a function of only the initial radial position R, i.e., r(R) and the resultant 

deformation gradient tensor is:

(13)

We note the prescribed deformation does not include any shear deformation that may be 

present during actual passive filling of the left ventricle. The values of the undeformed inner 

radius Ri and outer radius Ro were prescribed to be 40 and 50 mm, respectively.
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For an incompressible material, the deformation is isochoric and is subjected to the 

kinematic constraint det Fe = 1. Using Eqs. (3) and (13), this kinematic constraint reduces to

(14)

Integrating this kinematic constraint leads to:

(15)

The fiber direction in the cylindrical tube model was prescribed to be in the circumferential 

direction, i.e., (f, s, n) = (Φ, R, Z), and the material parameters of the Fung's law in Eq. (5) 

were given values C = 0.1 kPa, bf = 20, bs = 3 and bfs = 3.

The shear stresses σrz = σrθ = σϕz = 0 and the normal stresses σrr, σϕϕ, σzz are functions of 

only the radial position r when the cylindrical tube is inflated. Thus, the equilibrium Eq. (9) 

is reduced to a scalar equation:

(16)

With a prescribed internal pressure pi and zero external pressure, the boundary conditions at 

the tube inner and outer radius are

(17a)

(17b)

Integrating the equilibrium Eq. (16) and incorporating the boundary conditions lead to the 

following integral equation for the internal pressure,

(18)

Combining Eqs. (3)–(8) and (13), we can rewrite Eq.(18) in the following form,

(19)

However, integration of (19) requires knowledge of the dependency of r on R. This 

dependency is obtained through the integral form of the kinematic constraint in Eq. (15).
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Equations (15) and (19), together with the kinetics of growth and reverse growth in Eqs. 

(10)–(12) form an initial value problem. We prescribed τg = τrg = 1s, yg = yrg = 1, λh1 = λh2 

= 1.3, θmax = 2 and θmin = 1 for the parameters describing the kinetics of growth and reverse 

growth in the cylindrical tube model. We note that in doing so, we have assumed that the 

timescales of growth and reverse growth are similar. We believe that this is a reasonable 

assumption given that the experiments by Gerdes et al. (1995) showed that the myocytes 

length was normalized between the 2–12 week interval after reversal of an 4-week old 

aortocaval fistula that was created to induce eccentric hypertrophy in rats heart. The 

unknowns for this set of equations are the growth multiplier θ and the inner radius of the 

tube in the current configuration ri. Since the elastic fiber stretch λe is a function of the 

radial coordinate R in the undeformed configuration, the growth multiplier θ depends on the 

radial position and may vary across the thickness.

To mimic the hemodynamic loading of the heart, we prescribed a sawtooth time-periodic 

pressure–time curve for inner pressure pi (t) (Fig. 2).

We assumed that the timescale for growth is significantly larger than the time scale for 

hemodynamic loading, which allows us to separate the time scales between growth and 

hemodynamics. As such, we locally update the growth multiplier θ using explicit-time 

integration only at the end of each loading cycle. Within each cycle, Eqs. (15) and (19), with 

θ treated as a constant, are recast into a nonlinear root finding problem for a scalar function 

defined as

(20)

Where

(21)

The explicit-time integration of Eq. (3) is implemented in MATLAB (The MathWorks, Inc) 

to solve the initial value problem. The MATLAB functions “fsolve” and “quad” are used to 

solve Eqs. (20) and (21), and evaluate the integrals, respectively.

4 Growth and reverse growth in realistic left ventricular geometries

After testing our model on an idealized cylindrical tube model, we applied our model to 

more realistic geometries of the left ventricle, namely, (1) a truncated ellipsoid model 

(ELLIPSOID) and (2) a normal human left ventricular model (HUMAN).

The construction of the HUMAN model is shown in Fig. 3. Specifically, the left ventricular 

epicardial and endocardial surfaces were reconstructed from magnetic resonance images 

(MRI) by manual segmentation using MeVisLab (MeVis Medical Solutions AG, Bremen, 

Germany) (Fig. 3a,b). A hexahedral mesh consisting of 3,456 trilinear elements was 

generated in the ventricular wall bounded by the epicardial and endocardial surfaces using 
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the meshing software True-Grid (XYZ Scientific Application, Livermore, CA, USA) (Fig. 

3c). Following Legrice et al. (1997), we prescribed a rule-based local myofiber orientation 

field in the ventricular wall, where the myofiber helix angle (measured with respect to the 

counterclockwise circumferential direction) varies linearly from −60° at the epicardial wall 

to 60° at the endocardial wall (see Fig. 3d). The same myofiber helix angle distribution was 

also prescribed to the ELLIPSOID model

Similar to the cylindrical tube model, the elastic deformations in both models are described 

using Fung's constitutive equation given in Eq. (5). The material parameters are C = 

0.195kPa, bf = 24.63, bs = 9.63 and bfs = 8.92, which correspond to the values defined in the 

human modeling study by Wenk et al. (2012). For the growth parameters, we chose τg = τrg 

= 1 s and γg = γrg = 1.

The homeostatic range of the elastic stretch at which neither growth nor reverse growth 

occurs λh1 ≥ λh2 was chosen as the range of elastic stretch in the HUMAN model when a 

nominal end-diastolic pressureP̄ = 10 mmHg was applied to the model's endocardial surface.

Figure 4 shows the prescribed pressure-time variation to simulate growth and reverse growth 

in both ELLIPSOID and HUMAN models. A cyclical high end-diastolic pressure P+̄ = 30 

mmHg was applied successively to induce stretch-driven growth in both models. Thereafter, 

a low end-diastolic pressure P̄− = 1 mmHg and P̄− = 2 mmHg was applied cyclically to 

induce reverse growth in the ELLISPOID and HUMAN models, respectively.

Similar to the idealized cylindrical tube model, we hypothesize that the timescale of a 

cardiac cycle and the timescales of growth or reverse growth are separable. This implies that 

we update the growth multiplier θ only at peak pressure in each cycle.

5 Results

5.1 Growth and reverse growth in a cylindrical tube

Figure 5 shows the evolution of the growth multiplier θ at the inner and outer surfaces Ri 

and Ro under the imposed hemodynamic pressure loading (Fig. 2). For the first 200 cycles at 

which the pressure pi was elevated, the growth multiplier θ increased monotonically at a 

decreasing rate and approached steady state with different values at the inner and outer 

surfaces of the tube. In the cylindrical tube model, the larger value of θ found at the inner 

wall is due to the larger fiber (circumferential) stretch found in the inner wall when 

compared to that at the outer wall. Because the steady-state values lay between the 

maximum and minimum permissible values of the growth multiplier, i.e., θmin = 1 and θmax 

= 2, the vanishing growth rates at steady state at both inner and outer surfaces are the 

outcome of λe → λh2 as the elastic stretch approached its homeostatic value. In a similar 

fashion, the growth multiplier θ decreased after 200 cycles in response to the reduced 

pressure pi, and approached a steady-state value as λe → λh1.

Figure 6 shows the effects of (a) growth and (b) reverse growth on the relationship between 

pressure pi and the tube internal radius ri. During growth, both the internal radius of the 

unloaded tube (i.e., ri at pi = 0) and the entire pi - ri relationship shifted to the right and 

asymptotically approached the first equilibrium state at which λe = λh2. During reverse 
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growth, the inner radius and the pi - ri relationship shifted to the left and asymptotically 

approached the second equilibrium state at which λe = λh1.

We note that the pi−ri relationship at the equilibrium state after reverse growth (N = 400) is 

different from the original one before the onset of growth, i.e., at cycle = 1 (dotted line). 

This is because of the existence of differential growth across the cylindrical tube wall. 

Therefore, residual stresses, i.e., internal stresses in the unloaded tube, were generated as a 

result.

Figure 7 shows the variation of normal residual stresses σrr, σϕϕ and σzz across the tube wall 

at (a) the “fully grown” steady state, and at (b) the “fully shrunk” steady state. Although 

residual stresses in the “fully shrunk” steady state are substantially smaller than that in the 

“fully grown” steady state, they all share the same features. Specifically, the circumferential 

normal stress σϕϕ varies from negative at the inner wall indicating compression to positive at 

the outer wall indicating tension. By comparison, the longitudinal normal stress σzz is 

negative across the entire tube wall. A compressive σzz arises largely because the prescribed 

plane deformation of the model in Eq. (13) is not compatible with the isotropic growth 

deformation prescribed in Eq. (2). Therefore, in order to maintain the plane deformation 

prescribed in Eq. (13), the tube must be elastically compressed in its longitudinal direction 

when growth occurs. On the other hand, the normal radial stress σrr satisfies the boundary 

conditions in Eq. (17) with pi = 0 and is relatively small when compared to the other two 

stress components.

5.2 Growth and reverse growth in realistic left ventricular geometries

For the nominal pressure P̄ = 10 mmHg, the range of elastic stretch in the HUMAN model 

lay between the lower and upper limits of 1.05 and 1.15, respectively. These limits were 

used to set the homeostatic range of elastic stretch, i.e., λh1 = 1.05 and λh2 = 1.15 in the 

reversible growth constitutive law for both HUMAN and ELLIPSOID models (see Sects. 

2.3 and 2.4).

Figure 8 shows the pressure-volume relationship of the HUMAN model under the 

prescribed loading given in Fig. 4. The pressure–volume relationship of the ELLISPOID 

model behaved similarly to that of the HUMAN model and is not shown here. In the figure, 

the curves display similar features as the pressure–radius relationship of the idealized 

cylindrical tube model in Fig. 6, where the entire pressure–volume relationship shifted to the 

right under a high end-diastolic pressure loading of P̄+ = 30 mmHg (Fig. 8a), and shifted to 

the left under a low end-diastolic pressure of P̄− = 2 mmHg (Fig. 8b). Correspondingly, the 

unloaded LV cavity volume also increased and decreased (both by ∼5 ml) in response to the 

high and low end-diastolic pressure loading, respectively. Similar to the cylindrical tube 

model, the pressure–volume relationship in the final cycle of reverse growth is not identical 

to the initial one before the onset of growth although their unloaded left ventricular cavity 

volume are close to one another.

Figure 9 shows the evolution of the left ventricular geometry color coded with the growth 

multiplier θ field as a result of growth and subsequent reverse growth in both ELLIPSOID 

and HUMAN models.
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Both models increased in size with growth (Fig. 9b) that corresponded to a 20% increase in 

the left ventricular wall volume, and shrank longitudinally as a result of reverse growth (Fig. 

9d) that corresponded to a recovery of the initial ventricular volume. In the ELLIPSOID 

model, growth is axisymmetric with larger growth occurring half-way between the apex and 

base at the ventricular mid-wall. Contrastingly, growth is largely heterogeneous in the 

HUMAN model where the endocardial (inner) wall exhibits larger growth when compared 

to the epicardial (outer) wall. This result is consistent with observations from the cylindrical 

tube model (see Fig. 5).

Similar features of growth can be found in the ELLIPSOID and HUMAN models. 

Specifically, the apical region in both models exhibits a little shrinkage (i.e., θ < 1) during 

growth (Fig. 9b) and more substantial shrinkage during reverse growth (Fig. 9d). This is in 

agreement with clinical observations during eccentric hypertrophic growth and implies that 

the apex is mechanically unloaded. The reduced apical stretch initiates negative growth or 

shrinkage in the apical region even during a global overload. Both models also became more 

spherical after growth. Defining the end-diastolic sphericity index as the maximum short-to-

long-axis dimension ratio of the endocardial surface, the (ELLIPSOID, HUMAN) end-

diastolic sphericity index was (0.70, 0.65) before growth, (0.71, 0.66) after growth and 

(0.70, 0.63) after reverse growth.

Figure 10 shows the evolution of the elastic myofiber stretch λe field as a result of growth 

and reverse growth in both ELLIPSOID and HUMAN models. The regional profiles of the 

elastic fiber stretch are similar to the respective profiles of the growth multiplier (Fig. 9) as 

elastic fiber stretch is the driving mechanism for growth. During growth and reverse growth, 

the elastic fiber stretch also became more homogeneous across the ventricular wall in both 

models. Specifically, the range of elastic fiber stretch (λe,min, λe,max) was reduced from 

(1.02, 1.22) to (1.04, 1.18) in the HUMAN model and from (1.04, 1.21) to (1.01, 1.18) in the 

ELLIPSOID model during growth (cycle 1–5). During reverse growth (cycle 6– 10), this 

range was reduced from (0.97, 1.08) to (1.01, 1.07) in the HUMAN model and from (0.92, 

1.09) to (1.00, 1.07) in the ELLIPSOID model.

6 Discussion

We have established a constitutive model for reversible growth based on the frameworks of 

irreversible stretch-driven growth by Göktepe et al. (2010b) and the multiplicative 

decomposition of deformation gradient into an elastic and “growth” component by 

Rodriguez et al. (1994). Specifically, we have established the first model with a homeostatic 

equilibrium range for soft tissue growth that is analogous to hard tissue growth in bone. This 

homeostatic equilibrium zone is often referred to as a “lazy” zone in bone (Frost 2003).

Using this constitutive model, we have constructed a semi-analytical solution based on an 

idealized cylindrical tube model and numerical solutions based on a truncated ellipsoidal left 

ventricular model as well as an MRI-reconstructed human left ventricular model. We 

showed that though common features exist between the ELLIPSOID and HUMAN models 

(e.g., negative growth or shrinkage at the apical regions), differences in the models' 

geometry can have a significant impact on the myofiber stretch distribution in the left 
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ventricle, and consequentially, on the left ventricular growth distribution. The sensitivity of 

the myofiber stretch distribution to the left ventricular geometry exists even for the case of 

an axisymmetric left ventricle. As demonstrated by Choi et al. (2010), the myofiber strain 

distribution in a truncated ellipsoidal left ventricle varies depending on its sphericity. The 

myofiber stretch distribution in our ELLIPSOID model (Fig. 10) is consistent with that 

shown in Figure 5 of Choi et al. (2010).

Notwithstanding the fine-detail differences between the models' predictions of the left 

ventricular growth distribution, the models' predictions have been consistent at a larger 

scale. Specifically, all three models share the following predictions: (1) growth was induced 

by an increase in peak hemodynamic load that resulted in a rightward shift of the entire 

pressure–volume relationship (Fig. 6), (2) reverse growth was induced by a subsequent 

decrease in peak hemodynamic load that resulted in a leftward shift of the entire pressure–

volume relationship (Fig. 8) and (3) differential growth-induced residual stresses in left 

ventricular wall. We now compare these three predictions of our models to the results of 

experimental studies.

6.1 Compatibility with experimental studies and clinical observations of ventricular 
remodeling

In terms of ventricular remodeling, the model predictions are consistent with the classical 

concept of eccentric hypertrophy arising from volume overload (e.g., mitral regurgitation). 

The global effects of an increase in preload associated with volume-overload hypertrophy 

are observed clinically in the form of a rightward shifting of the pressure– volume 

relationship (Gaasch and Meyer 2008), as well as an enlargement and increase in the 

sphericity of the heart (Cohn et al. 2000). Although the magnitude of growth in the HUMAN 

and ELLIPSOID models appears to be relatively small (because only 5 growth cycles were 

computed), especially when compared to hearts with end-stage dilated cardiomyopathy, our 

model predictions are consistent with all of these observations.

On the cellular level, myocytes in patients with ischemic cardiomyopathy were found to be 

lengthened through the serial addition of sarcomeres (Gerdes et al. 1992). Though end-

diastolic myofiber stress was originally proposed as the growth stimulant during volume 

overload by Grossman et al. (1975), recent evidence from the experiments by Omens (1998) 

has pointed to end-diastolic myofiber strain as the growth stimulant. Specifically, Omens 

(1998) showed that the end-diastolic myofiber strain in rats induced with volume overload 

was normalized by 6 weeks during volume-overload hypertrophy whereas end-diastolic 

myofiber stress remained elevated during this time period. These experimental results form 

the basis for the construction of our model.

6.2 Compatibility with experimental studies and clinical observations of ventricular reverse 
remodeling

In contrast to myocardial growth and remodeling, which has been the subject of intense 

mathematical model development (Göktepe et al. 2010b; Kerckhoffs et al. 2012; Kroon et 

al. 2009), there are few, if any, mathematical models that describe the reverse of growth and 

remodeling. However, the phenomenon of reverse growth has increasingly been observed 
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both experimentally and clinically. These observations form the basis of our proposed 

constitutive model for reversible strain-driven growth.

The original concept of reverse remodeling was spawned by the effects of left ventricular 

assist devices in normalizing end-diastolic pressure–volume relationship in patients with 

end-stage cardiomyopathy (Levin et al. 1995) that have been frequently observed in clinical 

practice (Burkhoff et al. 2006; Drakos et al. 2007; Ambardekar and Buttrick 2011). In 

particular, prolonged unloading of the left ventricular pressure (and volume) after left 

ventricular assist device implantation (Figure 1 in Burkhoff et al. (2006)) led to two key 

global features, namely, a decrease in left ventricular volume and a concurrent leftward shift 

in the end-diastolic pressure– volume relationship (Figure 2 in Levin et al. (1995)). These 

two clinical observations are consistent with our model prediction (Figs. 6 and 8).

Microscopically, reverse remodeling after left ventricular assist device implantation was 

accompanied by a decrease in myocyte size (Figure 2 in Madigan et al. (2001)). In the 

experiment by Gerdes et al. (1995), reversal of eccentric hypertrophic growth in rats was 

attributed to the removal of sarcomeres because the measured sarcomere length (∼1.90 μm) 

remained unchanged even though the myocyte length decreased after growth was reversed.

The mechanism behind reverse remodeling is likely a decrease in hemodynamics load—the 

basis of our model— as evidenced by a number of experiments, e.g., (Gerdes et al. 1995) 

and (Zhang et al. 2013). Moreover, reverse remodeling was also observed in clinical 

interventions other than the left ventricular assist device, which are associated with a 

reduction in ventricular loading. For example, a significant reduction in the left ventricular 

size (up to 50 %) was observed in patients who underwent bioinjection treatment with 

Algiysl-LVR, a calcium-sodium-alginate hydrogel proprietary to Lonestar Heart, Inc (Lee et 

al. 2013). This treatment was associated with a decrease in end-diastolic myofiber stress 

(Wenk et al. 2011) and a leftward shift in end-diastolic pressure–volume relationship (Wall 

et al. 2006). Reverse geometrical remodeling of the left ventricle was also observed after 

mitral valve repair, which decreases preload (Brinke et al. 2010). Given that the experiment 

by Omens (1998) strongly suggests an elevated elastic myofiber strain as the stimulant of 

ventricular remodeling, it is also very plausible that the reverse holds, i.e., a reduction in 

elastic myofiber strain initiates reverse ventricular remodeling.

6.3 Compatibility with experimental studies and clinical observations on growth-induced 
residual stress

Since non-homogeneous growth generates incompatibility that must be accommodated 

elastically, differential growth in the left ventricle in response to a non-homogeneous strain 

field will generate residual stresses, i.e., stresses in the unloaded state. The residual stress 

fields generated through our constitutive model in the idealized cylindrical model at 

maximal growth (Fig. 7) are consistent with other models utilizing the same cylindrical 

geometry (Rodriguez et al. 1994; Guccione et al. 1991). In Guccione et al. (1991), the 

residual stress field was the result from prescribing a “cut” cylindrical model as a stress-free 

reference configuration whereas in Rodriguez et al. (1994), the residual stress field was the 

result of stress-modulated differential growth. Consistent with these models, the 

circumferential stress varies transmurally from compressive (at the endocardial wall) to 
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tensile (at the epicardial wall). In fact, the HUMAN model also exhibits such a transmural 

variation of circumferential stress (see Supplementary Material) that is consistent with that 

found in the mouse left ventricle (Omens et al. 2003). We also showed that our model 

predicts an increase in residual stresses during ventricular remodeling and a subsequent 

decrease in residual stresses during reverse ventricular remodeling (Fig. 7).

The effects of pathological and physiological remodeling on residual stress and strain have 

been studied widely in the arteries. For example, Fung and Liu (1989) showed that the 

residual strain in rat artery changes as a result of hypertrophy, whereas Wells and Walter 

(2010) showed that the residual strain in bovine aorta increases during fetal development. 

Unlike in arteries, the effects of pathological ventricular remodeling and reverse remodeling 

on residual stress and strain are still unclear given the paucity of experiments that studied 

these effects. To the best of our knowledge, there are few studies on the effects of residual 

stresses and strain due to ventricular remodeling. Some of these include the study by Omens 

et al. (1998) on the aging rat heart (i.e., physiological remodeling), by Taber and Chabert 

(2002) on the developing embryonic chick heart and by Weis et al. (2000) on extracellular 

matrix remodeling in mouse models. In Omens et al. (1998), the opening angle of the left 

ventricular equatorial ring after a radial cut was found to decrease during aging, while in 

Taber and Chabert (2002), the opening angle in the embryonic chick heart was found to 

decrease as a result of pressure overload. It is not entirely clear whether the reduction in 

opening angle in the experiment by Omens et al. (1998) was accompanied by a change in 

tissue stiffness, as besides differential growth, a change in tissue stiffness will also have an 

effect on the opening angle (Taber and Chabert 2002). The impact on the opening angle as a 

result of a change in tissue stiffness can be illustrated by considering a hypothetical case in 

which the tissue becomes infinitely compliant (i.e., have zero stiffness) during ventricular 

remodeling. In this limiting state, the left ventricle will be in a “stress-free” state even with 

finite growth and correspondingly, the opening angle will be zero. As such, future 

experiments to test our model prediction on the effects on residual stresses and strain due to 

ventricular remodeling and reverse remodeling should separate the effects arising from 

differential growth and a change in material properties.

6.4 Limitations of the model

Our proposed model of reversible growth and remodeling has the following limitations. 

First, we have neglected the effects on myocardial material properties due to remodeling and 

reverse remodeling. In the experiments by Omens (1998), volume-overload ventricular 

remodeling in rats was found to be associated with an increase in the mechanical stiffness of 

the myocardial tissues. A change in mechanical properties would not only have a 

confounding effect on the residual strain measured using the “opening angle” of radially cut 

slices of the left ventricle (as expounded in the previous paragraph), but also on the end-

diastolic pressure–volume relationship. Specifically, a concurrent change in the mechanical 

stiffness of the myocardial tissues during the remodeling and reverse remodeling processes 

may affect the ability of the left ventricle to reach a steady state in our model.
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Second, our model (as with other existing volumetric growth models) cannot distinguish a 

change in the number of myocytes (i.e., hyperplasia or dysplasia) from a change in cell size 

(i.e., hypertrophy or atrophy) (Taber 2001).

Third, we have not considered the effects of systolic contraction in our model as we 

hypothesized that the maximal fiber stretch occurs only at end-of-diastole. While this 

hypothesis is reasonable in normal hearts, it may not be true in abnormal hearts. For 

example, strain abnormality during systole was observed in human hearts with myocardial 

infarction (Rutz et al. 2008).

7 Conclusions

In conclusion, we have established a reversible strain-driven growth model and have shown 

that the proposed model can qualitatively reproduce a number of experimental and clinical 

observations of ventricular remodeling and reverse remodeling. Specifically, we have shown 

that our model prediction on the effects of end-diastolic pressure–volume relationship due to 

growth and reverse growth are compatible with clinical and experimental observations. We 

have also shown that our model predictions on the residual stress fields in an idealized 

cylindrical model are similar to those in other nonidentical models, namely, a model with 

stress-modulated growth and a model using a longitudinally cut cylinder as a stress-free 

configuration. The key limitation of our proposed growth model is that it does not take into 

account changes in the mechanical properties that may have occurred during both 

remodeling and reverse remodeling. We believe that such changes would have an effect on 

the ability of the heart ventricle to reach a steady state in our model.
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Fig. 1. Inflation of cylindrical tube. The base vectors ez and eZ point out of the page
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Fig. 2. Prescribed cyclical hemodynamics load pi of the cylindrical tube model

Lee et al. Page 19

Biomech Model Mechanobiol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Construction of the HUMAN finite element model: (a) segmentation of the MRI, (b) 

reconstruction the endocardial (red) and epicardial (green), (c) construction of the finite 

element mesh and (d) assignment of rule-based myofiber orientation—streamlines follow 

fiber direction and are color coded with fiber helix angle
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Fig. 4. 
Cyclical loading in the ELLISPOID and HUMAN models consisting of five high pressure 

cycles and five low pressure cycles. Every growth step lasts one characteristic time of the 

growth model
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Fig. 5. 
Growth multiplier θ at the inner and outer surfaces as a function of the cycle number. Cross 

section of the unloaded cylindrical tube are shown in the inset at cycles 0, 200 and 400. 

Color denotes growth multiplier θ in cycles 200 and 400
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Fig. 6. 
Internal pressure pi versus inner radius ri at every 10th cycle in (a): cycles 1–200 during 

growth (inset: unloaded cylindrical cross section at cycles 1, 20, 200) and (b) cycles 200–

400 during reverse growth (inset: unloaded cylindrical cross section at cycles 200, 220, 

400). Dotted line: pi versus ri at first cycle
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Fig. 7. 
Residual normal stresses in the circumferential (σϕϕ), radial (σrr) and longitudinal (σzz) 

directions versus referential radial position R at the beginning of (a) cycle 201 and (b) cycle 

400 with pi = 0
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Fig. 8. 
Evolution of the pressure–volume relationship of the HUMAN model during (a) growth and 

(b) reverse growth. The first and last cycle of the pressure–volume relationship in (a) is also 

shown in (b) as solid and dotted lines, respectively. Refer to text for definition of P̄−, P̄ and 

P̄+
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Fig. 9. 
Evolution of the unloaded geometry and growth multiplier θ field of the ELLIPSOID (top) 

and HUMAN (bottom) models as a result of growth and reverse growth. Geometries are of 

the same scale in each model. Black and red line in (a) correspond to the geometry outline 

of (b) and (d), respectively. Note (b) and (c) are identical since no growth or reverse growth 

occurred between these 2 time points. a Before growth (Cycle 1). b After growth (Cycle 5). 

c Before reverse growth (Cycle 6). d After reverse growth (Cycle 10)
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Fig. 10. 
Evolution of elastic myofiber stretch λe in the ELLIPSOID (top) and HUMAN (bottom) 

models as a result of growth and its reversal. Geometries are of the same scale in each 

model. a Before growth (Cycle 1). b After growth (Cycle 5). c Before reverse growth (Cycle 

6). d After reverse growth (Cycle 10)
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