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Abstract Intensive muscular activity can trigger oxidative
stress, and free radicals may hence be generated by working
skeletal muscle. The role of the enzyme xanthine oxidase as a
generating source of free radicals is well documented and
therefore is involved in the skeletal muscle damage as well
as in the potential transient cardiovascular damage induced by
high-intensity physical exercise. Allopurinol is a purine
hypoxanthine-based structural analog and a well-known in-
hibitor of xanthine oxidase. The administration of the xanthine
oxidase inhibitor allopurinol may hence be regarded as

promising, safe, and an economic strategy to decrease tran-
sient skeletal muscle damage (as well as heart damage, when
occurring) in top-level athletes when administered before a
competition or a particularly high-intensity training session.
Although continuous administration of allopurinol in high-
level athletes is not recommended due to its possible role in
hampering training-induced adaptations, the drug might be
useful in non-athletes. Exertional rhabdomyolysis is the most
common form of rhabdomyolysis and affects individuals par-
ticipating in a type of intense exercise to which they are not
accustomed. This condition can cause exercise-related
myoglobinuria, thus increasing the risk of acute renal failure
and is also associated with sickle cell trait. In this manuscript,
we have reviewed the recent evidence about the effects of
allopurinol on exercise-induced muscle damage. More re-
search is needed to determine whether allopurinol may be
useful for preventing not only exertional rhabdomyolysis
and acute renal damage but also skeletal muscle wasting in
critical illness as well as in immobilized, bedridden,
sarcopenic or cachectic patients.
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AST Aspartate aminotransferase
ATP Adenosine triphosphate
CK Creatine kinase
CK-MB Creatine kinase, myocardic isoenzyme
CoP Copeptin
CRP C-reactive protein
FRs Free radicals
GDF15 Growth differentiation factor 15
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HSP Heat-shock protein
HO Heme oxygenase
Hs-TnT Highly sensitive troponin T
IL-6 Interleukin-6
IMP Inositol monophosphate
LDH Lactate dehydrogenase
MDA Malondialdehyde
MR-proADM Midregional part of proadrenomedullin
Myo Myoglobin
NAD Nicotinamide adenine dinucleotide
OS Oxidative stress
PCT Procalcitonin
PlGF Placental growth factor
ROS Reactive oxygen species
suPAR Soluble urokinase plasminogen

activator receptor
sVEGFR-1/sFLT-1 Vascular endothelial growth factor

receptor-1
VEGF Vascular endothelial growth factor
XDH Xanthine dehydrogenase
XO Xanthine oxidase
XOR Xanthine oxide-reductase

Introduction

Over half a century ago, it was discovered that free radicals
(FRs) may be effectively produced by the skeletal muscle
(Commoner et al. 1954). Several lines of evidence then con-
firmed that intensive muscular activity can trigger oxidative
stress (OS), mainly mirrored by increased glutathione oxida-
tion and oxidation of proteins, lipids, and DNA (Gomez-
Cabrera et al. 2003, 2005). In 1992, it was also demonstrated
that physical exercise practiced until the point of exhaustion
may be a cause of OS. In line with this evidence, a linear
correlation was found between the reduced and oxidized
glutathione quotient and the lactate–pyruvate quotient
(Sastre et al. 1992), a finding that was corroborated in subse-
quent studies (Heunks et al. 1999; Viña et al. 1996).

There are several sources of FRs in skeletal muscle. The
role of the enzyme xanthine oxidase (XO) as a generating
source of FRs is well documented. XO and xanthine
dehydrogenase (XDH) are isoenzymes of xanthine oxide-
reductase (XOR). The former enzyme is prevalently found
in smooth muscle cells of vessel walls, as well as in endothe-
lial cells of skeletal muscles. Conversion of XDH into XO is
catalyzed by vascular proteases. Hypoxanthine is formed in
working muscles during intensive physical exercise or at the
end stages of long-lasting physical exercise. XO easily crosses
the cell membrane, and XOR catalyzes the enzymatic step that
catalyzes the conversion of hypoxanthine to xanthine and of
xanthine to the final end-product, uric acid (Lippi et al.

2008a). Although XDH preferentially transfers the electrons
resulting from NAD oxidation, XO uses molecular oxygen,
which implies superoxide radical production (Harris et al.
1999), which, in turn, may cause exertional muscle damage.

Therefore, in accordance with the principle of hormesis,
exercise leads to an acute OS that up-regulates endogenous
antioxidant defenses (Radak et al. 2008). To put it simply, the
hormetic zone, also known as the “Goldilocks” zone, is a
biological set point which is neither too comfortable, but even
not too harsh (Nunn et al. 2009). It may hence be reflected by
an intermediate degree of stress (i.e., moderate physical exer-
cise) which would help the organism to enhance its anti-
stressor mechanisms and improve the ability to resist to OS
but contextually limit the deleterious effects of excessive
stress (i.e., strenuous exercise) on cardiac, renal, and muscle
integrity (Garatachea et al. 2014; Lippi et al. 2012a; Sanchis-
Gomar et al. 2014b), although such effects do not seem to
impair longevity (Garatachea et al. 2014). This appealing
concept has gained widespread popularity during the past
decade, so it seems conceivable that lifestyle interventions,
foods, nutritional supplements, or other compounds that help
maintain the organism in hormesis would generate relevant
benefits on health and fitness.

Exercise, particularly the eccentric type, can provoke mus-
cle damage (Armstrong et al. 1983; Kyparos et al. 2001)
through excess tension in the sarcomere, which is hence the
leading source of muscular lesion from membrane disruption,
then triggering structural protein hydrolysis and causing the
habitually observed myofibril deformation (Lieber and Friden
1999) and permanent muscle injury (Lippi et al. 2010). The
subsequent inflammatory phenomenon helps degrade and
repair tissue (see Fig. 1). Soccer as a sport presents a high
eccentric component while being played. Given the numerous
competitions throughout the year, the frequent episodes of
muscle damage that players suffer may increase the risk of
injuries, especially among professional soccer players.
Although physical exercise is recommended to prevent a wide
range of chronic conditions, such as cardiovascular diseases,
cancer, osteoporosis, or diabetes (Viña et al. 2012), some
sports like cycling or long-distance running (i.e., marathon,
ultramarathon, and mountain running) have been associated
with a transient post-exercise increase in biomarkers of skel-
etal muscle and cardiac damage, as reflected by the substantial
increase of biomarkers of myocardiocyte necrosis, including
cardiac troponins (Brancaccio et al. 2010; Eijsvogels et al.
2011; Lippi et al. 2008b, 2011a, b, c, 2012b; Sanchis-Gomar
and Lippi 2014). Radiological findings suggestive of fibrosis
and myocardial damage have also been reported (Yared and
Wood 2009), along with an increased concentration of bio-
markers of cardiac stress and fibrosis (Salvagno et al. 2014).
As previously mentioned, several cell sources of reactive
oxygen species (ROS) production exist in the skeletal muscle,
including XO. Exhaustive or acute physical exercise increases
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ROS generation and therefore OS in skeletal muscle and other
organs, which may finally result in cell injury (Davies et al.
1982; Gomez-Cabrera et al. 2005, 2008). OS is hence in-
volved in remodeling and heart failure physiopathology and
also in skeletal muscle damage induced by exhaustive exer-
cise (Tsutsui et al. 2011).

In this regard, it has been shown that antioxidants such as
vitamins C and E may hamper training-induced adaptations
such as skeletal muscle mitochondrial biogenesis both in
animals and humans, thus decreasing performance (Gomez-
Cabrera et al. 2008; Khassaf et al. 2003; Marshall et al. 2002;
Paulsen et al. 2014; Ristow et al. 2009; Sharman et al. 1971;
Strobel et al. 2010) or even reducing heat-shock protein 70
(HSP 70), increasing apoptosis (Hooper and Hooper 2004) as
well as the risk of heart failure and death (Bjelakovic et al.
2007; Lonn et al. 2005; Wray et al. 2009), although these
findings were not confirmed in all studies (Gey et al. 1970;
Higashida et al. 2011; Keren and Epstein 1980; Maughan
1999; Theodorou et al. 2011; Yfanti et al. 2010).

Allopurinol is a purine hypoxanthine-based structural ana-
log and a well-known inhibitor of XO frequently employed in
clinical practice (Moorhouse et al. 1987) and a promising drug
to prevent oxidative muscle damage while practicing exhaus-
tive physical exercise (Gomez-Cabrera et al. 2006). In human
(Viña et al. 2000b; c) and animal models (Viña et al. 2000a),
our research group demonstrated that allopurinol prevents

glutathione oxidation, protein oxidation, and lipoperoxidation
associated with exertional exhaustion. In professional cyclists
participating in the Tour de France, administration of a daily
300-mg oral dose of allopurinol prevented the increases in
serum activity of both creatine kinase (CK) and aspartate
aminotransferase (AST) (i.e., two biomarkers of muscle dam-
age) at the stage (team time trial) at which all the studied
cyclists had undertaken maximum-intensity exercise for more
than 1 h (Gomez-Cabrera et al. 2003). Similarly, the plasma
levels of malondialdehyde (MDA) increased in all study par-
ticipants once the race had finished. However, this increase
was significantly greater in the placebo group compared with
the allopurinol group. These results suggest that XO may be
involved in muscle damage associated with performing phys-
ical exercise to the point of exhaustion. These findings were
confirmed in a later study conducted in marathon runners. In
this case, the plasma levels of MDA significantly increased
after a running test until exhaustion, with allopurinol admin-
istration preventing this increase (Gomez-Cabrera et al. 2006).
However, it was also reported that allopurinol administration
may attenuate exercise activation of the mitochondrial bio-
genesis pathway in skeletal muscle (Gomez-Cabrera et al.
2005; Kang et al. 2009). At variance with these data,
Wadley et al. recently showed that allopurinol does not inhibit
exercise-training increases in skeletal muscle mitochondrial
biogenesis (Wadley et al. 2013).

The inhibition of HSP expression is another non-XO effect
of allopurinol (George and Struthers 2009). Nishizawa and
collaborators also reported that allopurinol significantly re-
duced the accumulation of messenger RNA (mRNA) for
HSP70 or HSP90 after repetitive ischemia/reperfusion
(Nishizawa et al. 1999), whereas Ohlmann et al. showed that
pretreatment of rat hepatocyte cultures with allopurinol before
exposure to anoxia and reoxygenation led to a marked de-
crease of heme oxygenase 1 (HO-1) and HSP70 mRNA
expression during reoxygenation (Ohlmann et al. 2003). In
addition, Mao et al. recently reported that allopurinol admin-
istration in combination or not with N-acetylcysteine affects
HO-1 expression, normalizing cardiac levels of HO-1 in dia-
betic rats, and thus resulting in a significant attenuation of
post-ischemic myocardial infarction (Mao et al. 2013).

It has also been demonstrated that acute exercise and
resistance (weight lifting) training can trigger changes in
serum and urine concentration of several laboratory parame-
ters, so their evaluation would enable identification and mon-
itoring of the damage at a specific tissue level (the liver,
kidney, skeletal muscle, or myocardium). This aspect has led
more sport physicians and researchers to use biomarkers of
conventional tissue injury in recent decades (Banfi et al.
2012). Furthermore, the aim of new initiatives in sport re-
search is to boost the research for innovative and promising
biomarkers that will improve follow-up of training and sport
performance, diagnosis of sport-related injury, overtraining

Fig. 1 Physical exercise, especially if having a high eccentric compo-
nent, can cause muscle damage. Excessive sarcomere tension is the main
cause of muscle lesion through membrane disruption, which permits
structural protein hydrolysis, leading to myofibril deformation. Thereaf-
ter, inflammation occurs to help degrade and subsequently repair necrotic
tissue
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prediction, and even identification of the best time to return to
top-level competition after the recovery period from injury.

The hypoxanthine/xanthine oxidase system

XOR, an enzyme originally described in 1902 as being an
aldehyde oxidase (Schardinger 1902), is widely distributed
among living beings of distinct complexity. In various species,
it catalyzes hydroxylation of a wide range of substrates like
purines, pyrimidines, pterines, and aldehydes. XDH is able to
employ both NAD+ like oxygen and acceptors of electrons,
but especially the former. XO is capable of using only oxygen
as an acceptor of electrons. It is the enzyme responsible for
purine degradation, as Fig. 2 shows.

XO

Despite several research groups identified that the mitochon-
drion in skeletal muscle is the main source of ROS generation
during exercise, a conceptual problem lies in this observation.
The superoxide radical produced by contracting muscles can
be detected in the extracellular area (Reid et al. 1992) as well
as in the vascular compartment (Lee and Okabe 1995). It is
unlikely that the superoxide anion generated in the mitochon-
drion can be measured outside the cell. This would mean that
reactive and electrically charged species would escape to
antioxidant systems in the mitochondrial matrix and diffuse
through the internal and external mitochondrial membrane,
the cytosol and the sarcolemma. Therefore, it is unlikely that
they would be involved in chemical reaction(s). Diffusion
through the capillary endothelium in the vascular compart-
ment seems even less likely (Reid 2001). XO represents an
alternative source of ROS with experimental support. In skel-
etal muscle, XO is localized mainly in the vascular endothe-
lium (Linder et al. 1999). The administration of enzyme
inhibitors attenuates the release of superoxide radicals in the
vascular area in contracting muscles (Stofan et al. 2000), and
this strategy has been proven effective to partially inhibit
fatigue in vivo (Barclay and Hansel 1991). Unlike what occurs
in the mitochondrion, which generates FRs in a basal state, the

ROS arising from XO play an important role in the inflam-
matory response to physical exercise bouts that have a high
eccentric component or impose either high-intensity or long-
lasting efforts (Hellsten et al. 1997), as well as in the damage
caused by ischemia–reperfusion processes (Kadambi and
Skalak 2000).

XO was initially identified as a potential source of FRs in
the cytosol of muscle cells (Laughlin et al. 1991).
Nevertheless, later studies using monoclonal antibodies for
XDH/XO revealed the presence of immunoreactivity in
smooth muscle cells of the vessel wall and in endothelial cells
at the same time (Hellsten-Westing 1993), but its presence
within the muscle fibers was virtually excluded.
Hypoxanthine is formed in muscles during intensive physical
exercise, and consequently, its concentration also shows
marked increases in blood (Sahlin et al. 1991), with the
amount of circulating hypoxanthine increasing in parallel with
exercise intensity (Hellsten-Westing et al. 1991).
Hypoxanthine formation can be associated with IMP accumu-
lation in muscle which, in turn, is directly related to exercise
intensity and duration (Sahlin et al. 1989). Recent studies
suggested that nucleotides are degraded when ATP resynthe-
sis is impaired due to low muscular glycogen levels (Broberg
and Sahlin 1989). As regards uric acid, previous studies that
reported no release of this metabolic compound from working
muscles might have been biased by the use of poorly sensitive
detection methods (Hellsten 1994; Sahlin 1991). In rats, for
example, uric acid accumulation has been found after electri-
cal stimulation (Arabadjis et al. 1993).

A linear correlation exists between the plasma peak of
hypoxanthine and that of uric acid following exhaustive phys-
ical exercise (Hellsten-Westing et al. 1994). This observation
indicates that a plasma concentration of hypoxanthine is im-
portant in the XDH/XO pathway flow because a high level of
this molecule would entail increased superoxide radical pro-
duction, should conversion into XO occurs. In 1981, Granger
et al. demonstrated that treating feline intestine with superox-
ide dismutase prior to an ischemic process attenuated the
damage during subsequent reperfusion, thus suggesting that
the superoxide radical is indeed responsible for tissue injury
(Granger et al. 1981). The authors also proposed that ischemia
triggers the conversion of XDH into XO, as well as the

Fig. 2 Diagram of purine
degradation. AMP adenosine
monophosphate, IMP inositol
monophosphate, XOR xanthine
oxide-reductase
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degradation of adenine nucleotides into hypoxanthine. Thus,
with the reintroduction of molecular oxygen during reperfu-
sion, a considerable amount of superoxide radical may be
generated in the XO reaction.

Allopurinol

Allopurinol (1H-pyrazol (3,4-d)pyrimidin-4-one) is a natural
purine hypoxanthine-based structural analog with a molecular
weight of 136.1 Da that acts on the catabolism of purines
without affecting their biosynthesis. Basically, it lowers uric
acid production by inhibiting the biochemical reactions that
lead to its generation. As mentioned, this drug acts as an
inhibitor of XOR, the enzyme responsible for converting
hypoxanthine into xanthine and xanthine into uric acid, with
the latter compound being the end-product of purine catabo-
lism in humans. Allopurinol effectively inhibits XO both
in vivo and in vitro conditions (Elion et al. 1966), by forming
a reversible complex with molybdenum and by interfering
with the purines that interact with the enzyme, so that their
oxidation cannot take place (Massey et al. 1970). Allopurinol
is absorbed by the intestinal tract and is metabolized to
alloxanthine (oxypurinol), which is also an inhibitor of XO.
Allopurinol and oxypurinol are cleared by the kidney, and as
such, impairment of kidney function has a profound effect on
the dosage (see Fig. 3). As a result of XO inhibition, levels of
xanthine and hypoxanthine of 0.3 to 0.4 mg/dl (clearly above
the normal levels of ∼0.15 mg/dl) have been detected in
patients treated with allopurinol (Turnheim et al. 1999). The
highest value detected of these oxypurines after taking very

high doses of allopurinol (i.e., 0.9 mg/dl) was much higher
than saturation (>7 mg/dl).

Effect of allopurinol administration on skeletal muscle
and cardiovascular damage induced by highly intensive
physical exercise in trained subjects

Effects on classic biomarkers

The prevention and effective treatment of soccer injuries is a
foremost challenge for sport physicians and coaches (Giza and
Micheli 2005). A good approach to prevent muscle lesions in
soccer can be based on counteracting muscle damage caused
by repeated contractions during training and competition
without biasing players’ performance. In this regard, the im-
plication of XO as a source of FRs in skeletal muscle as well
as the role of allopurinol as an antioxidant during exercise is
well documented (Borras et al. 2006; Gomez-Cabrera et al.
2003, 2005; Ji et al. 2007). Although XO, the enzyme that
generates the FRs involved in damage induced by ischemia–
reperfusion (McCord 1985), causes muscle injury associated
with exhaustive physical exercise (Gomez-Cabrera et al.
2003, 2006; Viña et al. 2000a), it has been demonstrated that
allopurinol may be effective to prevent the skeletal muscle
damage induced by highly intensive physical exercise in top-
level soccer players (Sanchis-Gomar et al. 2013a, b, 2014a).

After professional soccer players had played a match,
serummarkers of skeletal muscle damage (CK activity, lactate
dehydrogenase (LDH), AST, or myoglobin) significantly in-
creased, a phenomenon which, in turn, could be efficiently
prevented by allopurinol administration. Despite the fact that
serum levels of these biomarkers vary with age, gender, race,
muscle mass, and physical activity (Brancaccio et al. 2007),
no differences in these variables were found between the
allopurinol and placebo groups before the match.
Allopurinol administration also prevented exercise-induced
lipid peroxidation (Sanchis-Gomar et al. 2014a). These find-
ings are in agreement with the abovementioned study, show-
ing the benefits of allopurinol administration in Tour de
France participants (Gomez-Cabrera et al. 2003). Moreover,
allopurinol also prolongs exercise time to exhaustion in pa-
tients with stable angina pectoris (Noman et al. 2010).
However, no changes in the gamma glutamyltransferase
(GGT) activity, a hepatic damage marker, was found after a
professional soccer match either in the placebo or in the
allopurinol groups (Sanchis-Gomar et al. 2014a).

Although there is some controversy (Ruiz et al. 2013),
intensive and long-lasting endurance training might favor
cardiac remodeling and increase the risk of arrhythmias, es-
pecially atrial fibrillation (Aizer et al. 2009; Benito et al.
2011). Intensive physical exercise may also generate transito-
ry cardiac ischemia, myocardium stress, and left diastolic

Fig. 3 Xanthine oxidase (XO) inhibition by allopurinol. Allopurinol is a
natural purine hypoxanthine-based structural analog, and it acts as an XO
inhibitor. The two compounds’ structures are similar. Thus, allopurinol
can act on the catabolism of purines without modifying their biosynthesis.
Allopurinol, as a previous step to oxypurinol, acts by inhibiting XO, the
enzyme responsible for converting hypoxanthine into xanthine and xan-
thine into the end-product of purine catabolism, uric acid
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ventricular dysfunction and often induces a transient rise in
biomarkers of cardiac injury (Kim et al. 2012; Lippi and
Maffulli 2009; Neilan et al. 2006). In our study, we found a
significant increase in a serum marker of heart damage (i.e.,
cardiospecific troponin T), which could be prevented by allo-
purinol administration (Sanchis-Gomar et al. 2014a).

An increase in cardiac biomarkers in relation to exercise
has been broadly described, but no definite mechanistic ex-
planation has been offered (Banfi et al. 2012). It seems plau-
sible that such an increase reflects the occurrence of reversible
lesions in cardiomyocytes, which may then become less re-
versible with repeated, long-term exposure to intense exercise
bouts (Banfi et al. 2012; Lippi et al. 2011a). The beneficial
effects of allopurinol for different cardiovascular pathologies
have been demonstrated. Thus, in chronic heart failure, long-
term treatment with allopurinol improves left ventricular he-
modynamics and avoids left ventricular remodeling. These
long-term effects are, at least partly, caused by a transitory
reduction in FRs at the myocardium level (Mellin et al. 2005).
Allopurinol is a useful, safe anti-ischemic drug for patients
with chronic stable angina (Noman et al. 2010). A causal
association between hyperuricemia and cardiovascular risk
has been found (Papezikova et al. 2012). In effect, high levels
of uric acid are associated with higher risk of cardiovascular
events, coronary heart disease, and cerebrovascular accidents
(Lippi et al. 2008a). It has also been demonstrated that uric
acid has a predictive value of mortality related to chronic heart
failure (Anker et al. 2003). Therefore, allopurinol may help
prevent the increase of markers of skeletal muscle and cardiac
injury associated with practicing highly intensive physical
exercise. It has been also demonstrated that inhibiting XO
activity by allopurinol administration prevents muscular atro-
phy through inhibition of the p38 MAPK-MAFbx pathway
and may have therefore clinical benefits such as preventing
muscular atrophy in critical, bedridden, sarcopenic, or cachec-
tic patients (Derbre et al. 2012; Sanchis-Gomar et al. 2013c).

Effects on emerging biomarkers

A large number of conventional and innovative cardiovascular
biomarkers are currently regarded as promising indicators of
the level of injury generated by exercise (Brancaccio et al.
2010). Biomarkers are essential parameters that assess the
impact of different exercise intensities and patterns in sport
and exercise medicine, cardiology, and clinical biochemistry.
In this context, the identification of new biomarkers with
suitable sensitivity is essential. Thus, new compounds, such
as copeptin (CoP), midregional part of proadrenomedullin
(MR-proADM), growth differentiation factor 15 (GDF15),
vascular endothelial growth factor receptor-1 (sVEGFR-1/
sFLT-1), and placental growth factor (PlGF), have recently
emerged as candidates to be circulating biomarkers of
exercise-induced damage, and the effects of allopurinol

administration on their levels has been assessed (Sanchis-
Gomar et al. 2013a).

Two recent studies have assessed plasma CoP levels in
relation to ultramarathon runners’ hydration state. Hew-
Butler et al. found a significant increase in CoP levels during
and at the end of long-distance races. These authors also
reported the existence of a significant association between
CoP levels and the percentage of change in plasma volume
(Hew-Butler et al. 2011). Similarly, Burge et al. observed that
the plasma concentration of CoP increased by almost 12-fold
after running a 100-km ultramarathon, and a correlation be-
tween changes in CoP and in serum sodium levels was also
reported (Burge et al. 2011). Recently, it has been demonstrat-
ed that CoP has a relatively short plasma half-life in plasma,
i.e., 23 to 47 min (L’Abate et al. 2013). Although we found
that CoP levels increased after physical exercise both with and
without pre-exercise administration of allopurinol, we were
unable to provide an explanation for this phenomenon
(Sanchis-Gomar et al. 2013a).

To the best of our knowledge, no studies have investigated
the post-exercise variation of plasma MR-proADM.
Normally, increased ADM levels are associated with injury
at the endothelial level (Hinson et al. 2000). Under certain
conditions, an increase in ADM concentration suggests that
this compound may exert hormone-like effects, i.e., by low-
ering vascular resistance and blood pressure (Hinson et al.
2000). We recently observed a significant increase in serum
MR-proADM levels in a placebo group after playing a soccer
match (Sanchis-Gomar et al. 2014a). Allopurinol administra-
tion was also effective in preventing exercise-induced in-
creases in serum MR-proADM levels (Sanchis-Gomar et al.
2013a). Irrespective of the underlying causes of increased
MR-proADM, the finding that XO activity affects the levels
of this marker is interesting and may have some implications
and clinical applications, e.g., to be used in the follow-up of
patients with hyperuricemia. We recently found that MR-
proADM levels significantly increased after acute high-
intensity exercise (Sanchis-Gomar et al. 2013a). High levels
of GDF15 are associated with hypertrophic cardiopathy
(Montoro-Garcia et al. 2012). Yet regular, moderate exercise
practice (i.e., 1 h, three times a week for more than 6 months)
does not seem to affect circulating levels of GDF15 in patients
with stable coronary heart disease (Munk et al. 2011). GDF15
increases not only in patients with heart failure and a normal
ejection fraction but also in patients with systolic heart failure
(Stahrenberg et al. 2010). It is also independently associated
with low levels of exercise capacity and poor quality of life.
The diagnostic efficacy of GDF15 has been reported to be as
high as that of NT-proBNP, and the combination of these two
biomarkers can improve the diagnosis accuracy of measuring
natriuretic peptides alone in heart failure patients (Stahrenberg
et al. 2010). Tchou et al. reported significant increases in the
serum concentrations of GDF15 after an ultramarathon
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(Tchou et al. 2009). We observed a significant increase in
serum GDF15 levels after a soccer match in both the placebo
and allopurinol groups (Sanchis-Gomar et al. 2013a). Since
allopurinol administration did not affect the concentrations of
GDF15, GDF15 metabolism may be independent of allopuri-
nol administration and therefore of XO activity (Sanchis-
Gomar et al. 2013a).

Bailey et al. found that exercise increases the circulating
levels of sVEGFR-1/sFLT-1 in healthy volunteers (Bailey et al.
2006). Because sVEGFR-1/sFLT-1 acts as an inhibitor of
endogenous VEGF, it may be effective to lower the plasma
levels of free VEGF. Another study described a positive,
significant association between the percentage increase in
plasma sVEGFR-1/sFLT-1 levels and maximum oxygen con-
sumption while exercising (Bailey et al. 2006). However,
Kivelä et al. did not observe any significant change in the
expression of VEGFR-1 in skeletal muscle in either healthy
or diabetic mice after exercise (Kivela et al. 2008). In our study,
the concentration of sVEGFR-1/sFLT-1 or PlGF did not sig-
nificantly increase in either group (placebo or allopurinol) after
playing a soccer match. This finding suggested that these
biomarkers are practically insensitive to physical exercise, at
least under our experimental conditions of intensity and dura-
tion. We also found that allopurinol administration did not alter
the serum levels of sVEGFR-1/sFLT-1 or PlGF, thus suggest-
ing that the metabolism of these two biomarkers is scarcely
influenced by XO activity (Sanchis-Gomar et al. 2013a).

Soluble urokinase plasminogen activator receptor (suPAR)
acts as a risk “master alarm” in several disease conditions
including diabetes, cancer, and kidney, cardiovascular, infec-
tious, inflammatory, or autoimmune diseases, with high levels
indicating poor prognosis and low levels reflecting favorable
outcome and success of treatment (Eugen-Olsen et al. 2010;
Huai et al. 2006; Kofoed et al. 2008; Sidenius et al. 2000). We
recently found that neither physical exercise nor allopurinol
administration influences serum suPAR levels (Sanchis-
Gomar et al. 2013b). This finding may have some meaningful
clinical implications. In fact, allopurinol is increasingly used
in patients with different tissue and vascular lesions, such as
acute coronary syndrome, chronic heart failure, inflammatory
diseases, septic shock (Pacher et al. 2006), burns, injuries
(Sahib et al. 2010), and several forms of localized infection
(Gobbi et al. 2007), and the relative insensitiveness of this
biomarker to allopurinol administration may make it a more
reliable marker for disease monitoring than any other bio-
markers of inflammation, the concentration of which is sub-
stantially affected by allopurinol.

Conclusions and future perspectives

XO is involved in the skeletal muscle damage as well as in the
potential transient cardiovascular damage that might be

induced by high-intensity physical exercise, as reflected by
the assessment of “classic” biomarkers like CK activity, LDH,
AST, myoglobin, or cardiac troponins and also of more novel
biomarkers such as MR-proADM and GDF15. The adminis-
tration of the XO inhibitor allopurinol may hence be regarded
as a promising, safe, and economic strategy to decrease tran-
sient skeletal muscle damage (as well as heart damage, if
occurring) in top-level athletes when administered before a
competition or a particularly high-intensity training session
(see Table 1). It is also noteworthy, however, that continuous
administration of allopurinol in high-level athletes is not rec-
ommended at this point in time due to its possible role in
hampering training-induced adaptations according to the pre-
viously discussed hormesis theory.

On the other hand, drugs such as statins, common and
effective treatments for hypercholesterolemia, can also cause
muscle damage as reflected by “hyper-CK-emia”, myalgias,
cramps, exercise intolerance, muscle weakness, and even
rhabdomyolysis (Meador and Huey 2010; Mor et al. 2011).

Table 1 Summary of changes induced by exercise and the administration
of allopurinol on muscular, hepatic, and cardiovascular biochemical
variables

Biomarker After
exercise

After exercise + allopurinol
administration

CK ↑ ↓

CK-MB ↑ ↓

LDH ↑ ↓

AST ↑ ↓

ALT ↑ ↑

GGT = =

Myo ↑ ↓

Hs-TnT ↑ ↓

MDA ↑ ↓

CoP ↓ ↑

MR-proADM ↑ ↑

GDF15 ↑ ↓

sVEGFR-1/sFLT-1 = =

PlGF = =

suPAR = =

“↑” increase, “↓” decrease, “=” no change (of note, undifferentiated fibers
inside the damaged, regenerating skeletal muscle can express liver (e.g.,
AST and ALT) or cardiac isoenzymes (e.g., CK-MB)—this potential
confounder might lead to the false assumption that intense/eccentric
exercise consistently causes cardiac or liver damage). ALT alanine ami-
notransferase, AST aspartate aminotransferase, CK creatine kinase, CK-
MB creatine kinase, myocardic isoenzyme,CoP copeptin,GDF15 growth
differentiation factor 15, GGT gamma glutamyltransferase, Hs-TnT high-
ly sensitive troponin T, LDH lactate dehydrogenase, MDA
malondialdehyde, MR-proADM midregional part of proadrenomedullin,
Myo myoglobin, PlGF placental growth factor, suPAR soluble urokinase
plasminogen activator receptor, sVEGFR-1/sFLT-1 vascular endothelial
growth factor receptor-1
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Exertional rhabdomyolysis is the most common form of rhab-
domyolysis and affects individuals who participate in novel
and intense exercise to which they are unaccustomed (Cleary
et al. 2011). Moreover, exertional rhabdomyolysis can cause
myoglobinuria, which increases the risk of acute renal failure
(Elsayed and Reilly 2010; Patel et al. 2009), and is also
associated with sickle cell trait (Tsaras et al. 2009).
Therefore, although more research is needed, allopurinol
could prove useful in preventing exertional myoglobinuria
and subsequent renal damage, along with skeletal muscle
wasting in critical illness or in immobilized, bedridden,
sarcopenic, or cachectic patients (Sanchis-Gomar et al.
2013c). In addition, allopurinol is used increasingly in patients
with various cardiovascular conditions, in whom CRP and IL-
6 are frequently assessed as follow-up markers. Thus, evi-
dence that allopurinol does not significantly modify serum
suPAR levels would be relevant for its use as a reliable marker
in patients who receive this drug.
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