
Cellular and molecular pathways through which commensal 
bacteria regulate allergic responses to food

Taylor Feehley and Cathryn R. Nagler*

Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. 
JFK R120, Chicago, IL 60637 USA

Abstract

Food allergies are a growing public health concern. The rapidly increasing prevalence of allergic 

disease cannot be explained by genetic variation alone, suggesting a role for gene-by-environment 

interactions. The bacteria that colonize barrier surfaces, often referred to as the commensal 

microbiota, are dramatically affected by environmental factors and have a major impact on host 

health and homeostasis. Increasing evidence suggests that alterations in the composition of the 

microbiota, caused by factors such as antibiotic use and diet, are contributing to increased 

sensitization to dietary antigens. This review will discuss the cellular and molecular pathways 

activated by commensal bacteria to protect against allergic sensitization. By understanding the 

interplay between the environment, the microbiota, and the host, we may uncover novel 

therapeutic targets that will allow us to control the allergy epidemic.

Introduction

The hygiene hypothesis originally proposed that protection from allergic disease in children 

with older siblings could “be explained if allergic diseases were prevented by infection in 

early childhood, transmitted by unhygienic contact with older siblings, or acquired 

prenatally from a mother infected by contact with her older children.” [1]. This early 

evidence suggested that microbial factors regulate susceptibility to allergic disease. Societal 

efforts to improve sanitation and cleanliness have also been paralleled by an increase in 

autoimmune disease, broadening the original hypothesis beyond allergy. More recently the 

scope of the hygiene hypothesis has been further expanded to consider the role of 

commensal bacteria in the regulation of both allergic and inflammatory disease. It is now 

clear that trillions of bacteria colonize all of the body’s barrier sites, although the majority 

are located in the intestine [2]. Signals from these commensal bacteria are important for 

educating the immune system, beginning at birth and continuing throughout life. The 

composition of the microbiota is dynamic and strongly influenced by the external 

environment. It can be dramatically altered by diet, antibiotic use, mode of birth, formula 
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feeding, vaccination and exposure to pathogens (reviewed in [3]). It is now hypothesized 

that changes in the composition of the microbiota, called dysbiosis, lead to a loss of 

protective bacterial signals, which can cause both allergic and inflammatory disease. This 

review, however, will focus on the influence of the microbiota on allergic disease, 

specifically IgE-mediated food allergy.

Evidence that commensal bacteria regulate sensitization to food allergens

Work from our laboratory first linked microbiota-derived signals to increased sensitization 

to food allergens. We showed that C3H/HeJ mice, which are unable to signal through Toll-

like receptor (TLR) 4, had increased IgE production and allergic symptoms in response to 

sensitization with peanut (PN) plus cholera toxin (CT) when compared to TLR4-sufficient, 

C3H/FeJ mice [4]. TLR4 is the receptor for bacterial lipopolysaccharide, indicating that an 

inability to sense microbial products can lead to exacerbated allergic responses. Treating 

TLR4-sufficient mice with broad-spectrum antibiotics (Abx) to disrupt the microbial 

community structure of the gut increased the PN-specific IgE response to the levels seen in 

TLR4-deficient mice, suggesting that the microbiota was the source of the allergy-protective 

signal.

To identify these protective bacterial taxa our laboratory developed a gnotobiotic model of 

food allergy. Germ free (GF) mice, which are completely devoid of a microbiota, 

spontaneously generate high levels of IgE, and have increased symptoms of anaphylaxis 

after systemic sensitization [5]. This spontaneous IgE production is reversed by colonization 

with a diverse microbiota early in life, further linking commensal bacteria with the 

regulation of IgE. Using our model of intragastric sensitization with PN plus CT, we found 

that GF mice, like Abx-treated mice, had significantly increased PN-specific IgE and IgG 

responses when compared to SPF mice with a replete microbiota [6**]. We then colonized 

GF mice with representative members of the two major bacterial phyla of the intestine, 

Bacteroidetes and Firmicutes. Colonization with B. uniformis, a representative Bacteroidetes 

strain, was unable to reduce PN-specific responses. However colonization with a consortium 

of Clostridia, a class of anaerobic spore-forming Firmicutes, was sufficient to reduce the 

concentration of PN-specific IgE to that seen in SPF mice sensitized with PN plus CT. 

Restoration of a Clostridia containing microbiota also reduced PN-specific IgE responses in 

sensitized Abx-treated mice. These findings identified Clostridia as a component of the 

commensal microbiota critical for protection against food allergen sensitization. Other work 

has also postulated a role for the commensal microbiota in promoting allergic responses to 

food. Noval Rivas et al found that distinct microbial signatures can be induced after 

sensitization of allergy-susceptible mice with a gain of function mutation in the IL-4 

receptor α chain (Il4raF709) compared to WT controls [7]. Allergic sensitivity was 

transmissible by transfer of the disease-associated microbiota, suggesting that commensal 

bacteria may also play a role in the pathogenesis of food allergy.

Which cells require microbiota-mediated signals?

Exactly which cells in the intestine receive microbial signals to regulate sensitization to food 

allergens remains an outstanding question. The intestinal lumen is a complex site, filled with 
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hundreds of bacterial species as well as diverse food antigens. The gut associated lymphoid 

tissue must be able to differentiate between these innocuous dietary or microbial antigens 

and potentially harmful pathogens. The intestinal epithelium forms the physical barrier 

between the immune system and the contents of the intestinal lumen (both dietary and 

microbial) and is also the first site of host-microbe interaction. As part of the epithelial 

barrier, intestinal epithelial cells (IEC) regulate the passage of solutes and antigen from the 

lumen into the lamina propria (LP) via tight junctions (TJ) [8]. Changes in the cytokine 

milieu can alter the expression and function of different TJ proteins to regulate the antigens 

that cross into the LP. IEC express TLRs [9–15] and produce cytokines in response to 

microbial stimulation (reviewed in [16]). Other evidence suggests that specialized epithelial 

cells like M cells can shuttle antigen to dendritic cells (DC) and other antigen presenting 

cells (APC) [17,18]. Goblet cells produce mucus, which forms a thick matrix that promotes 

spatial segregation and prevents direct contact between most bacteria and the epithelium. 

Recently, it has been shown that goblet cells can also pass luminal antigen to LP DC [19*–

20]. Paneth cells produce antimicrobial peptides that can regulate the composition of the 

microbiota [21–23]. Extensive interaction between the epithelium and commensal bacteria is 

therefore critical for the maintenance of mucosal homeostasis.

Our study supports a role for IECs in Clostridia-mediated protection against food allergen 

sensitization. Because Clostridia reside close to the intestinal epithelium [24,25] we 

hypothesized that Clostridia would induce a unique set of genes in IEC that would not be 

induced by non-protective bacteria like B. uniformis. Microarray analysis of IEC from GF, 

B. uniformis, and Clostridia-colonized mice showed that Clostridia colonization upregulated 

expression of Reg3b, the gene that encodes the antimicrobial peptide REGIIIβ [6**]. 

Expression of the REG family of antimicrobial peptides depends on both MyD88-signaling 

and IL-22/IL-22 receptor signaling [22]; we found that the expression of IL-22 was 

increased in the colonic LP of Clostridia colonized mice [6**]. IL-22 is a barrier protective 

cytokine that is produced by hematopoietic cells but acts on stromal cells [26]. In the 

intestine, IL-22 can stimulate epithelial proliferation, increase antimicrobial peptide 

production, and promote mucus secretion by goblet cells [27,28]. The role of this suite of 

responses in protection against intestinal pathogens and in promoting tissue repair is well 

documented [27,28]. We hypothesized that the barrier protective effects of IL-22 would also 

reduce epithelial permeability to food antigens, thereby reducing the concentration of PN 

antigen in the blood and limiting the opportunity for sensitization. This proved to be the 

case; mice colonized with Clostridia had reduced concentrations of two immunodominant 

PN allergens, Ara h 6 and Ara h 2, in their serum compared to GF or Abx-treated mice. 

Treating Clostridia-colonized mice with neutralizing antibody to IL-22 abrogated this effect 

and also increased PN-specific Ig and T cell responses to sensitization with PN plus CT. 

Thus Clostridia-induced IL-22 is a novel innate mechanism by which the microbiota can 

regulate the permeability of the epithelial barrier and contribute to protection against food 

allergen sensitization.

There are also several subsets of DC that are uniquely adapted to their niche in the LP that 

may also respond to commensal bacteria and mediate host-microbiota cross-talk [29]. DC 

are professional APC and express diverse pattern recognition receptors and cytokines to 
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receive signals from and respond to microbial stimulation. Some of these specialized DC 

populations are essential for establishing and maintaining tolerance to food. In particular 

CD103+ DC can traffic and carry antigen from the LP to the mesenteric lymph node (MLN), 

where they interact with naïve T cells [30,31]. Under healthy conditions, they are 

particularly good at driving these naïve T cells toward the Foxp3+ regulatory T cell (Treg) 

lineage. They produce TGF-β and express aldehyde dehydrogenase (ALDH) enzymes that 

can convert dietary vitamin A to retinoic acid (RA) which, together, promote Foxp3 

expression [32–34]. These Foxp3+ Treg then migrate back to the LP to suppress subsequent 

responses to food. When this process is disrupted, food allergies can result. New evidence 

suggests that intestinal eosinophils can release eosinophil peroxidase (EPO) to activate these 

same CD103+ DCs but skew them to stimulate food antigen-specific Th2 responses in the 

MLN instead of inducing Tregs [35]. CD103+ DC can also respond to microbial signals, 

such as flagellin, and express proinflammatory cytokines, such as IL-23 [36]. IL-23 induces 

IL-22 production by other cells (including innate lymphoid cells, ILC, see below), so these 

DC also indirectly impact IEC function. Their ability to integrate cues from both innate 

immune cells and the microbiota suggests that CD103+ DC play a central role in the 

induction of tolerance to dietary antigen and the prevention of food allergen sensitization.

CX3CR1+ macrophages may also contribute to protection against food allergen 

sensitization. CX3CR1+ cells have been shown to extend processes into the intestinal lumen 

to acquire antigen [37,38] and a new study reports that this antigen is then passed to the 

CD103+ DC, which carry it to the MLN [39*]. They can also produce IL-10 that expands 

Foxp3+ Tregs in the LP [39*,40]. In the absence of CX3CR1+ cells, there is a reduction in 

food antigen-specific Tregs and increased delayed-type hypersensitivity responses in 

sensitized mice, indicating that transfer of food antigen to DC by these cells is critical to 

establish tolerance [40]. CX3CR1+ cells were originally described as resident in the LP [41]. 

They can, however, migrate out of the intestine under conditions of dysbiosis, so they are 

also sensitive to changes in the microbiota [42]. If their localization is altered, it may limit 

antigen capture and prevent the establishment of tolerance, increasing the chances for food 

allergen sensitization.

Final cell types that may be important for receiving microbial signals to prevent allergic 

sensitization are innate lymphoid cells (ILC), particularly RORγt+ Group 3 ILC. Group 2 

ILC are often associated with allergy because they produce Th2 cytokines and can 

exacerbate disease [43]. Group 3 ILC, on the other hand, were first identified as important 

for protection against bacterial infection [44]. Recent data suggests they are more versatile 

than that, though, and contribute to the maintenance of homeostasis. Group 3 ILC can 

present antigen on MHC class II and can induce anergy in CD4 T cells to prevent aberrant 

responses to the microbiota [45]. They can also be stimulated to promote IL-22 by DC-

produced cytokines such as IL-23 and IL-6 [46]. Interestingly, RA can also promote IL-22 

production by ILC [47*]. In our model, the IL-22 required to prevent allergen uptake into 

the blood is produced primarily by these RORγt+ ILC [6**]. Treating Clostridia-colonized 

Rag−/− mice with anti-CD90 to deplete ILC significantly reduces the expression of IL-22 

and also abrogates the barrier protective effect of Clostridia. Serum Ara h 6 and Ara h 2 

concentrations are higher after ILC depletion, even when Clostridia are present. Another 
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study demonstrated that IL-1β produced by commensal bacteria-activated CX3CR1+ 

macrophages could also stimulate ILC3 to produce GM-CSF [48**]. GM-CSF then drives 

the production of IL-10 and RA by macrophages and DC, which promote the conversion of 

naïve T cells into Foxp3+ Treg. Altering the commensal bacteria may disrupt this 

macrophage-ILC-DC axis, contributing to the development of food allergic responses by 

limiting the production of anti-inflammatory cytokines and reducing bacterially induced 

Treg conversion.

What signals are provided by the microbiota to protect against the 

generation of food allergy?

In addition to not knowing which cell type (or types) interact with the microbiota, the 

signals that are required from the bacteria to prevent allergic disease are also not well 

understood. TLR-mediated signaling, aryl hydrocarbon receptor (AhR)-mediated signaling, 

and diet-derived compounds may all be involved in the interaction between bacteria and the 

host. There is evidence that each of these classes of signals has the potential to modulate the 

host immune response and to protect against allergy. It is also possible, however, that it is a 

balance or combination of multiple signals that is required to prevent sensitization to food. If 

the composition of the microbiota is disrupted, this balance may be lost.

A large body of work supports a role for TLR-mediated signals in regulating host 

homeostasis and interactions with the microbiota (reviewed in [49,50]). Indeed, the first clue 

that the microbiota may be involved in allergic sensitization to food came from the 

exacerbated disease phenotype in TLR4-deficient mice [4]. TLRs are expressed on IEC and 

DC and an essential role for signaling in these cell types is well established. In the absence 

of individual TLRs or the downstream adaptor molecule MyD88, there is increased 

inflammation, indicating these signals can be protective in the intestine [51]. TLRs may also 

be expressed in certain subsets of ILC and can control the expression of effector cytokines 

[52]. A lack of TLR-mediated signals has also been linked to deficiencies in regulatory cell 

populations, leading to the expansion of effector cells that may drive or exacerbate disease. 

For example, loss of TLR2 signaling reduces Treg proportions in the colon [53] while DC-

specific deletion of TRAF6, a downstream molecule in the TLR signaling pathway, 

promotes Th2 cell differentiation in the LP in response to stimulation by commensals and 

impaired Treg conversion in response to fed antigen [54**]. Furthermore, stimulation of DC 

by TLR ligands can trigger expression of a variety of cytokines, both pro- and anti-

inflammatory [55]. In the TRAF6 model, DC-derived IL-2 was critical to maintain tolerance 

through Tregs. TLR signaling in DC can also drive the upregulation of IL-23, IL-6, and 

IL-1β, which can, in turn, drive the expression of IL-22 in other cell types. Given the wide 

variety of TLR ligands expressed by the diverse members of the microbiota, it is clear that 

these signals can have a profound effect on the nature of an immune response, including the 

response to food.

TLRs are not the only receptors that may be involved in host/microbiota interaction, 

however. Recent work has shown an important role for AhR in regulating and responding to 

the microbiota. Although originally described as a receptor for xenobiotics [56], it is now 

known that AhR can have a profound effect on the immune system. AhR is a transcription 
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factor found in a variety of cells, including T cells, DC, and ILC [57–59]. AhR is therefore 

expressed in several of the major cell types found in the gut that may interact with 

commensals. Endogenous ligands for the AhR are now known, including products of 

tryptophan metabolism, some of which are bacterially derived [60]. AhR can also be 

stimulated by compounds found in cruciferous vegetables, so dietary signals may be 

important for the activation of this pathway as well [61].

One of the most notable effects of AhR is regulation of IL-22 expression. In the absence of 

AhR, little IL-22 is produced and the ability to fight intestinal pathogens is reduced [58*]. 

Loss of AhR signaling also changes the balance of Th cell subsets in the intestine, which 

subsequently alters the composition of the microbiota [62]. Based on our work and proposed 

model, the loss of Clostridia-induced IL-22 by Group 3 ILC could have consequences for 

intestinal permeability to food antigens as well. In the setting of low IL-22 levels as a result 

of diminished AhR signaling (due to lack of stimulation by bacterial or dietary components), 

more antigen may cross the epithelial barrier, leading to increased allergic sensitization. In 

support of this idea, administration of AhR ligands can suppress sensitization induced by PN 

plus CT [63]. Other work has revealed that AhR activation reduces effector T cell number 

[64] and expands and activates the CD103+ DC population to promote tolerance to orally 

administered antigen [65]. Together, these models suggest that AhR may be an important 

signaling pathway in each of the cellular compartments discussed above that are thought to 

control the establishment and maintenance of tolerance to food.

A final source of signals that are involved in regulating the interaction between the host and 

the microbiota are diet-derived compounds. One of the major contributions of the microbiota 

to host health is the metabolism of dietary components that the host cannot digest itself. 

Different diets, however, support different microbial populations based on the substrates 

provided for bacterial metabolism. An important example of this is dietary fiber. The 

microbiota metabolizes dietary fiber into short chain fatty acids (SCFA) such as acetate, 

butyrate, and propionate, which the host can then use in a variety of ways. A study 

comparing the microbiota of different human populations showed that a diet high in plant 

fiber promotes the growth of SCFA-producing bacteria to a greater extent than a high fat 

Western style diet [66]. SCFAs are an energy source for colonocytes [67,68] but can also be 

actively transported into cells via monocarboxylate transporters [69], act as histone 

deacetylase (HDAC) inhibitors [70], and signal through G-protein coupled receptors 

(GPCRs) [71–73*]. Through these different pathways, SCFAs can act on almost all cells of 

the immune system to alter their function [68]. Feeding a high fiber diet [74,75] or 

administering acetate, propionate, or butyrate orally [76] can all increase the proportion of 

Foxp3+ Tregs in the colonic lamina propria of GF or antibiotic-treated mice. Induction of 

Tregs has been linked to both signaling through GPCRs [76] and HDAC inhibition [74,75]. 

SCFA also circulate in the blood to reach sites far from the intestine to protect against 

airway hyperreactivity via GPCR signaling [77]. Other work from our group has shown that 

treating cow’s milk allergic infants with a probiotic-supplemented formula leads to an 

expansion of butyrate-producing Clostridiales and increased fecal butyrate levels, which 

correlates with accelerated acquisition of tolerance to cow’s milk [78,79].
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Further evidence that SCFA, particularly butyrate, may be involved in establishing tolerance 

to food or protecting against allergic sensitization comes from a recent report by Singh et al, 

which links the production of butyrate to the production of another diet-derived compound, 

RA [73*]. Butyrate can signal through GPR109a, a GPCR and the receptor for niacin as well 

as butyrate. In GPR109a knock out (Niacr1−/−) mice, the proportion of Foxp3+ Tregs in the 

colonic lamina propria is reduced. When the cause of this deficit was examined, the authors 

found that treatment of GPR109a-sufficient DCs with butyrate improved their ability to 

promote conversion of naïve T cells into Foxp3+ Tregs. Butyrate-treated DCs also had 

increased expression of ALDH1 (Aldh1a1), an enzyme involved in metabolizing RA. As 

mentioned previously, RA is produced from Vitamin A and is critical for the development of 

food-specific Foxp3+ Tregs. When DCs from Niacr1−/− mice were treated with butyrate, 

however, there was no increase in expression of Aldh1a1, demonstrating that signaling 

through this receptor is necessary for expression of ALDH1. Antibiotic treatment reversed 

this phenotype, confirming that the microbiota is required for this process. The increase in 

Aldh1a1 expression suggests that butyrate induces Tregs by promoting the production of RA 

by DCs. Perhaps this butyrate-mediated pathway plays a role in the induction of tolerance to 

food antigens and prevents food allergen sensitization.

Concluding remarks

Although it is clear from mouse models and human studies that the microbiota influences 

the development of allergic disease, exactly how this occurs remains incompletely 

understood. It is most likely that a variety of signals from the microbiota must be integrated 

by the various cell subsets in the intestine to fine-tune the balance between activation and 

tolerance. When this balance is disrupted, sensitization can be induced. TLR, AhR, and 

dietary signals may be received by IEC, DC, macrophages, and ILC to fortify the epithelial 

barrier, promote Foxp3+ Treg induction, and guard against the generation of food-specific 

Th2 effector populations (Fig. 1). Other effector populations like basophils and natural killer 

T cells can be regulated by the microbiota as well [80,81], further reinforcing the tolerogenic 

environment. An increased understanding of how all these pathways intersect will inform 

the development of targeted strategies to promote tolerance to dietary antigen. Ultimately, 

this knowledge will help us treat and prevent food allergen sensitization to effectively halt 

this epidemic.
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Highlights

• The commensal microbiota regulates sensitization to food antigens.

• Many cell types interact with commensal bacteria including IEC, DC, and ILC.

• Signaling by TLR or AhR ligands and dietary products may prevent 

sensitization.

• Bacterially induced cytokines like IL-22 are important to reinforce the epithelial 

barrier.
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Figure 1. Cellular and molecular pathways through which commensal bacteria regulate allergic 
responses to food
Commensal bacteria and their products, particularly TLR ligands, AhR ligands, and short 

chain fatty acids (SCFA) can all influence intestinal homeostasis. TLR ligands act on IEC, 

CD103+ DC, CX3CR1+ macrophages, and RORγt+ ILC to promote cytokine secretion. 

TGF-β and dietary RA produced by activated DC and IL-10 from macrophages induce 

conversion of naïve T cells to Foxp3+ Treg and expand this regulatory population. SCFAs 

produced by bacterial fermentation of dietary fiber act on DC via GPCRs to further promote 

RA production and reinforce the tolerogenic environment. AhR ligands, derived from the 

diet or produced during bacterial metabolism, can also act on DC and ILC. IL-22 produced 

by ILC in response to cytokine stimulation (IL-23, IL6, or IL-1β) by DC or macrophages or 

by AhR stimulation, can act on the epithelium to promote barrier integrity by inducing 

expression of antimicrobial peptides RegIIIβ and RegIIIγ, increasing epithelial proliferation, 

and promoting mucus secretion. Together, this network of signals maintains homeostasis in 

the host and prevents responses to food. When these signals are altered or lost due to 

changes in the microbiota (dysbiosis), food allergies may develop.
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