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Abstract

Psychiatric disorders such as autism and schizophrenia arise from abnormalities in brain systems 

that underlie cognitive, emotional and social functions. The brain is enormously complex and its 

abundant feedback loops on multiple scales preclude intuitive explication of circuit functions. In 

close interplay with experiments, theory and computational modeling are essential for 

understanding how, precisely, neural circuits generate flexible behaviors and their impairments 

give rise to psychiatric symptoms. This Perspective highlights recent progress in applying 

computational neuroscience to the study of mental disorders. We outline basic approaches, 

including identification of core deficits that cut across disease categories, biologically-realistic 

modeling bridging cellular and synaptic mechanisms with behavior, model-aided diagnosis. The 

need for new research strategies in psychiatry is urgent. Computational psychiatry potentially 

provides powerful tools for elucidating pathophysiology that may inform both diagnosis and 

treatment. To achieve this promise will require investment in cross-disciplinary training and 

research in this nascent field.
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Introduction

In 1988, a computational neuroscience “manifesto” (Sejnowski et al. 1988) mentioned three 

reasons for the emergence of this new research field: advances in neuroscience had 

generated a large body of neurophysiologic data, new computers possessed sufficient power 

to conduct neural model simulations, and simplified brain models were introduced that 

provided insights into complex neural circuit functions. Since then, dramatic advances made 

on all three fronts fundamentally changed the computational neuroscience landscape (Abbott 

2008). Notably, computational neuroscience initially focused on the early stages of sensory 

processing (Sejnowski et al. 1988), because studies of the neural bases of higher cognitive 

functions were beyond empirical neuroscience of that era. Indeed, only in recent years, has 

the confluence of single-unit physiology, human functional brain imaging, and advances in 

computational modeling made significant strides in tackling executive functions (such as 

working memory and decision-making) that underlie cognitively controlled flexible 

behavior. These higher functions critically depend on the prefrontal cortex (PFC) (Fuster 

2008, Miller and Cohen 2001, Wang 2013, Szczepanski and Knight 2014). Because 

impairments of the PFC and related circuits are implicated in major psychiatric disorders, 

such as schizophrenia and autism (Goldman-Rakic 1994, Insel 2010,Courchesne et al. 2011, 

Anticevic et al. 2013), the newly acquired insights and computational models offer an 

opportunity to elucidate how cellular and circuit level pathologies give rise to cognitive 

deficits observed in mental illness, advances in this direction could inform studies of 

psychiatric diagnosis, pathophysiology and treatment.

Therefore, the time is ripe for Computational Psychiatry to emerge as a field at the interface 

between basic and clinical neuroscience (Montague et al. 2012, Friston et al. 2014). In this 

Perspective, we review recent work demonstrating that computational psychiatry introduces 

novel approaches and tools to investigate neural circuit mechanisms underlying the 

cognitive and behavioral features of neuropsychiatric disorders. First, we will spell out the 

rationale of a computational approach to Psychiatry, i.e., “why Computational Psychiatry? 

What theories and models are relevant to this field?” Second, we will discuss how theories 

and models have been applied to the investigation of behavioral impairments in terms of 

transdiagnostic endophenotypes. Third, we will summarize recent work that advocates for a 

model-aided framework of diagnosis and treatment. The fourth part will be devoted to 

biophysically-based neural circuit modeling that we argue represents the optimal approach 

for cross-level understanding from cellular processes to collective and emergent circuit 

dynamics and ultimately to behavior. Fifth and finally, we will end with practical 

recommendations related to the training and funding needed to foster this nascent field.

Why Computational Psychiatry?

It is widely acknowledged that current psychiatric diagnostic schema and the treatments for 

psychiatric disorders lack a firm biological foundation. The complexity of the brain presents 

unique challenges to the development of highly specific mechanistic hypotheses to guide 

research in psychiatry. Advances in genetics, molecular and cellular neurosciences are 

providing, at long last, clues to the etiology of human cognitive, emotional, and behavioral 

problems. For example, candidate-gene studies have revealed gene variations (such as 
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DISC1 (Brandon et al. 2009)) associated with psychiatric disorders. However, many in the 

field feel that attempts to seek single genes underlying complex psychiatric phenotypes have 

been largely disappointing, and that efforts to link genes to more basic cognitive and 

behavioral functions and functional impairments could be more promising. The progress in 

these areas has yet to provide a firm basis for a diagnostic system or a single 

pharmacotherapy for common psychiatric disorders (Krystal and State 2014).

A major hindrance in our capacity to develop novel pharmacotherapies for psychiatric 

disorders is the extremely superficial nature of our understanding of how circuits represent 

behavior. In this regard, synaptic and systems physiology are producing remarkable 

advances in our specific understanding of the functional properties of microcircuits and the 

beginnings of connecting these insights into behavioral processes including basic visual 

perception (Parker and Newsome 1998), fear conditioning and extinction (Johansen et al. 

2011), and mental representations in working memory (Arnsten et al. 2010). There are even 

examples where aspects of the neural representation of distinct fear memories can be 

ascribed to the functional integrity of a few distinct sets of cells in the amygdala (Josselyn 

2010). Yet, perhaps as a consequence of the limitations of our animal models combined with 

the limited spatial and temporal resolution of current neuroimaging technologies (MRI, 

MEG, PET), there is not a single symptom of a single psychiatric disorder for which we 

fully understand its physiologic basis at a molecular, cellular, and microcircuit level. In 

other words, we have only a somewhat vague idea of how the brain generates the cognitive, 

emotional, and behavioral problems that lead people to seek treatment by psychiatrists and 

other mental health clinicians.

As a consequence of our limited understanding of how circuits represent information, there 

are a plethora of attempts to explain circuit dysfunction in psychiatric disorders in 

superficial ways, giving rise to an equally large number of relatively risky potential 

pharmacologic strategies to address the unmet need for more effective treatments. The 

implications of this knowledge gap are profound for the field of psychiatry and for society. 

For example, psychiatric diagnoses have categorical qualities as exemplified by the 

Diagnostic and Statistical Manual for Psychiatric Disorders 5 (DSM-5). Although this new 

version of DSM takes into consideration the recent explosions in the genetics of disorders, 

such as autism and schizophrenia (Krystal and State 2014), it is widely criticized for lack of 

a solid biological foundation based on either etiology or pathophysiology. Categorizing 

patients by symptom checklists results in enormous clinical heterogeneity within diagnostic 

categories, surprisingly poor inter-rater reliability for many common psychiatric diagnoses 

(Freedman et al. 2013), and very likely, poorer clinical outcomes.

An alternative schema has emerged from the recognition that behavioral impairments are 

traits that may be shared across psychiatric disorders (Krueger 1999). The shift from a 

categorical diagnostic focus to a dimensional transdiagnostic approach emerged in the form 

of the Research Domain Criteria (RDoC, http://www.nimh.nih.gov/research-priorities/rdoc/

index.shtml) (Insel et al. 2010, Insel 2014). The RDoC program aims at identifying core 

cognitive, emotional and social dysfunctions, then elucidating their brain mechanisms 

bridging different levels (from molecules, cells, circuits to functions). Yet, the next step in 

this process is to determine whether the circuits are dysfunctional in the same way across 
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disorders or whether, when characterized in increasingly accurate molecular and 

physiological ways, categorical features of psychiatric diagnoses reemerge. Further, 

diagnoses may have both categorical and dimensional features. For example, schizophrenia 

appears to be a more severe form of circuit dysfunction than bipolar disorder with respect to 

the thalamo-cortical functional connectivity (Anticevic et al. 2013), but a completely distinct 

type of disorder than bipolar disorder with respect to the variance or “noise” level of cortical 

activity (Yang et al. 2014). Neither DSM or RDoC in its current form provides guidance as 

to how to integrate the dimensional and categorical features of psychiatric pathophysiology. 

A second consequence is the lack of precision with which one can predict whether a 

particular treatment mechanism will work for psychiatric disorders. It is not just that 

biomarkers of illness are lacking, but rather the biomarkers that we have are not sufficiently 

mechanistically precise as to specify a particular treatment. Further, even when aspects of 

molecular pathology are characterized, the impact on micro-and macro-circuit functions and 

the paths to correct that circuit dysfunction are not clear. As a result, in the case of 

schizophrenia, it is not clear that GABA signaling deficits (Lewis et al. 2005, Lewis and 

Gonzalez-Burgos 2006) should be treated by GABAA receptor agonists nor deficits in 

NMDA receptor signaling should be treated with drugs that increase the stimulation of the 

glycine co-agonist site of the NMDA receptor (Buchanan et al. 2011, Goff 2014).

The gap between genetic, molecular, and cellular studies, on the one hand, and systems and 

behavioral neuroscience studies, on the other, currently cannot be bridged purely through 

experimentation. Take, again, the example of the prefrontal cortex (PFC). Its crucial role in 

a wide range of executive functions (Fuster 2008, Miller and Cohen 2001, Wang 2013) begs 

the question: what are the key properties that enable the PFC to subserve cognitive 

processes, in contrast to primary sensory or motor systems? This question is difficult to 

address by laboratory experiments alone, partly because PFC circuitry is endowed with 

powerful positive and negative feedback loops and the behavior of any such dynamical 

system is not predictable by intuition alone. While physiological studies in animals and 

humans yield data on the correlation of particular measurements to specific cognitive 

operations, theory and modeling are usually needed, together with experimentation, to 

investigate the “follow up” questions: what circuit mechanisms give rise to the observed 

neuronal and other brain signals? What are the computational algorithms and generalizable 

principles that are reflected in the observed biological signals and sufficient to explain 

behavior?

Computational modeling offers a suitable approach to quantitatively explore the properties 

of complex systems across levels of investigation. Therefore, by incorporating 

computational neuroscience modeling within translational neuroscience research programs, 

it may be possible to develop more specific hypotheses related to circuit dysfunction in 

model systems and psychiatric disorders. There are many forms of computational models, 

the present article covers two kinds. Models of Mathematical Psychology or algorithmic 

models from Computer Science are enormously useful for quantifying behavioral data and 

relating their fitted parameters to neural computations (Maia and Frank 2011, Montague et 

al. 2012). On the other hand, biophysically-informed computational modeling, that are 

constrained by the biophysical properties of identified synaptic signaling mechanisms and 

other properties of microcircuits, has proven to be an effective approach to understanding 
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the neurobiology underlying cortical functions and psychiatric disorders (Wang 2006, 

Anticevic et al. 2013).

Biologically-based neural circuit models

What is biologically-based neural circuit modeling? Simply put, it is a computational 

framework that is constrained by neurobiology and designed to achieve a cross-level 

understanding of brain functions in terms of neural dynamics, computation, and biological 

mechanisms (Figure 1). One may question whether such models are too complex to be 

useful in cognitive science or psychiatry (Carandini 2012, Montague et al. 2012). Three 

points are worth noting on this regard. First, biologically-based modeling is a broad term 

that embraces a diversity of models with varying degrees of complexity. A model does not 

necessarily improve when more biological details are included. There is always a tradeoff 

between incorporating important details in order for the model to be suitable (given a 

scientific question) on one hand and simplicity and generalizability on the other hand. It is 

also tremendously useful to be able to go back and forth between models differing in their 

levels of abstraction, for instance between a spiking network model and its reduced “mean-

field” firing-rate model for population-level dynamics. Second, neuronal modeling is most 

appropriate for those functions for which we have some knowledge about the underlying 

neural processes, such as dopamine neural signaling of reward-prediction error, persistent 

activity subserving the internal representation of working memory and neural integrators in 

perceptual decision-making. By contrast, modeling at the neuronal level would seem 

premature for other behavioral phenomena such as hallucination or feeling of depression, in 

the absence of neurophysiological characterization. Finally, to the extent that biophysically-

based neural circuit modeling begins by incorporating the simplest and most fundamental 

features of synaptic connectivity, it is arguably the simplest possible framework that permits 

us to elucidate the inter-relationship between biological mechanism, neural dynamics and 

computations, and circuit functional output (Figure 1A).

In a spiking network model, single neurons are often described by either the leaky integrate-

and-fire model or the Hodgkin-Huxley model. These models are calibrated by physiological 

measurements, such as the membrane time constant and the input-output function (the spike 

firing rate as a function of the synaptic input current), which can be different for excitatory 

pyramidal cells and inhibitory interneurons. Furthermore, it is worth emphasizing that in 

biophysically-based models, synapses must be modeled accurately. Unlike connectionist 

models in which coupling between neurons is typically an instantaneous function of firing 

activity, synapses have their own rise-times and decay time constants, and they exhibit 

summation properties. Synaptic dynamics are crucial factors in determining the integration 

time of a neural circuit and the stability of a strongly recurrent network (Wang 1999). 

Finally, networks endowed with a biologically plausible architecture need to be constructed 

based on quantitative anatomy (Douglas and Martin 2004). For example, a commonly 

assumed circuit organization is local excitation between neurons of similar selectivity 

combined with a more global inhibition. Dynamic balance between synaptic excitation and 

inhibition is another feature of cortical microcircuits that has been increasingly recognized 

experimentally and incorporated in cortical network models (http://www.scholarpedia.org/

article/Balance_of_excitation_and_inhibition).
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Consider decision-making, the process of reaching a particular choice among several 

alternative options, such as rendering a judgment out of multiple possibilities given 

incomplete information or choosing one of actions expected to yield different outcomes 

(Glimcher 2003, Gold and Shadlen 2007, Wang 2008, Glimcher and Fehr 2013). Broadly 

speaking, there are two types of computational models of decision-making: behavioral 

models and neural circuit models. In Behavioral Psychology, decision-making is commonly 

modeled by the drift diffusion model (DDM) (Ratcliff 1978, Smith and Ratcliff 2004). In 

this model, an activity variable X represents the difference between the respective amounts 

of accumulated information about the two alternatives, say XA and XB, X = XA − XB. The 

dynamics of X is given by the drift diffusion equation, dX/dt= μ + w(t), where μ is the drift 

rate, w(t) represents noise. The drift rate μ represents the bias (net difference in the 

evidence) in favor of one of the two choices (and is zero if there is no net bias). For instance, 

in a random-dot motion direction discrimination task, μ is proportional to the strength of 

motion signal. This system is a perfect integrator of the input. The integration process is 

terminated and the decision time is read out, whenever X(t) reaches a positive threshold θ 

(choice A) or a negative threshold −θ (choice B). If the drift rate μ is positive, then choice A 

is correct, whereas choice B is an error. Therefore, this type of models is commonly referred 

to as ramping-to-threshold model, with the average ramping slope given by μ.

A biophysically-based neural circuit model has been proposed for decision-making (Wang 

2002). This model reproduces not only behavioral observations but also single neural 

activity associated with decision-making observed in a monkey experiment (Roitman and 

Shadlen 2002). Moreover, it suggests a specific biological basis for temporal accumulation 

of evidence in decision-making. The drift diffusion model is an ideal perfect integrator (with 

an infinite time constant), whereas neurons and synapses are leaky with short time constants 

of tens of milliseconds. The neural circuit model suggests that a long integration time can be 

realized in a decision network through recurrent excitation. Reverberating excitation 

represents a salient characteristic of cortical local circuits (Douglas et al. 1995, Douglas and 

Martin 2004). When this positive feedback is sufficiently strong, recurrent excitation in 

interplay with synaptic inhibition can create multiple stable states (“attractors”). Such 

models have been initially proposed for working memory. The same models, provided that 

excitatory reverberation is slow (i.e. mediated by the NMDA receptors), has been shown to 

be capable of decision-making computations (Wang 2002, Machens et al. 2005, Miller and 

Wang 2006, Wong and Wang 2006, Soltani and Wang 2006, Deco et al. 2007, Wang 2008, 

Furman and Wang 2008, Deco et al. 2009, Engel and Wang 2011, Hunt et al. 2012). 

Interestingly, physiological studies in behaving non-human primates often reported neural 

activity correlated with decision making in cortical areas such as the prefrontal cortex or the 

parietal cortex, that also exhibit mnemonic persistent activity during working memory. 

Hence, this model and supporting experimental data suggest a common, “cognitive-type” 

circuit mechanism for decision-making and working memory in the brain (Wang 2013).

Behavioral modeling is often powerful in describing computations that solve a problem 

normatively or algorithmically. On the other hand, neural circuit models may be more suited 

for enabling us to investigate the underlying neural mechanisms and potentially 

pharmacologic or genetic manipulations of the circuits. Importantly, neural circuit models 
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are not merely implementations of abstract mathematical models. For instance, the two types 

of models of perceptual decision-making have distinct predictions at the behavioral level 

(Wang 2008). These approaches are usually developed independently, but we are witnessing 

some convergence of the two in recent years. For example, spiking network models have 

been shown to have the capability of fitting quantitatively with behavioral performance 

(accuracy and reaction time) data (Lo et al. 2009), whereas such data fitting and model 

comparisons are commonly done with more abstract models due to their lower 

computational cost. Spiking network models can also be reduced to population rate models 

(Wong and Wang 2006), that have features of abstract connectionist models. On the other 

hand, connectionist neural network models have increasingly taken biological information 

(with identified brain structures, receptors, etc) into account (O’Reilly and Frank 2006). 

Thus, to bridge gaps in the current knowledge base and to facilitate research, there are 

advantages to move back and forth across several models that vary in their degree of 

abstraction, biological realism, their level of analysis (circuits, computational operations, 

behaviors).

Endophenotypes across brain disorder categories

Inasmuch as features of the pathophysiology of psychiatric disorders are shared across 

diagnostic boundaries (Krueger 1999), a promising research direction is to search for trans-

diagnostic endophenotypes, i.e., quantitative heritable traits that are intermediate between 

risk genotypes and the psychiatric disorder syndrome itself (Figure 2A, Gottesman and 

Gould 2003). While it has yet to be demonstrated that endophenotypes have a more simple 

genetics than psychiatric diagnoses, there remains a hope that endophenotypes may be more 

precisely defined, measured, and related to the underlying biology and to animal models. 

For instance, impulsivity and compulsivity are behavioral endophenotypes that cut across a 

range of diagnostic categories including obsessive-compulsive disorders, substance 

dependence, attention-deficit/hyperactivity disorder. Neither impulsivity nor compulsivity 

may be unitary constructs, but they may derive from a set of psychological processes which 

themselves are candidate endophenotypes (Figure 2B, Robbins et al. 2012). Thus, one could 

show impulsive choice behavior because of an aversion to delayed gratification, or 

impulsive response due to motor disinihibiton or timing impairment. While this dimensional 

approach has not supplanted the prevailing psychiatric diagnostic schema, it has powerfully 

stimulated psychiatry research.

It is a major challenge to accurately and reliably identify endophenotypes. To make 

progress, it is beneficiary to complement consideration of symptoms (how people feel) with 

attention to what people do (choices and actions). By using behavioral paradigms that are 

designed to probe a specific cognitive function or functional domain, one can quantify the 

abnormalities of a particular function that are shared by multiple mental disorders. Those 

carefully designed tasks should be doable by both human subjects and nonhuman animals, 

thereby enabling more productive translational research (Carter et al. 2008, Wang 2013, 

Insel 2014). Theories can be developed and applied to both normal subjects and patients, 

providing insights into the core of a brain dysfunction.
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Consider the case of disturbances in decision-making. Many people, who meet current 

diagnostic criteria for a number of neuropsychiatric disorders, repeatedly make bad choices 

in the social, vocational, and recreational domains that compromise the quality of their lives. 

There is increasing evidence that specific impairments in decision-making may represent 

cognitive endophenotypes across diagnostic boundaries (Robbins et al. 2012, Montague et 

al. 2012). A number of studies have dealt with the valuation process in reward-based 

decision-making. The computations that enable one to learn to evaluate alternative options 

through experience are fundamental for adaptive choice behavior, i.e., to make a choice, 

assess its outcome, and to use this experience to guide the next choice. Reinforcement 

learning (RL) theory (Rescorla and Wagner 1972, Sutton and Barto 1998, Rangel et al. 

2008) offers a framework for this adaptive process and impairments associated with 

psychiatric conditions (Montague et al. 2012, Maia and Frank 2011, Lee 2013). This field, 

which lies at the interface behavior and neurobiological mechanisms, was galvanized by the 

discovery that phasic activity of dopamine neurons in the ventral tegmental area signals 

reward prediction error (RPE) (Montague et al. 1996, Schultz et al. 1997). Specifically, 

dopamine phasic firing has been shown to confirm with RPE according to temporal-

difference RL (TDRL) (Sutton and Barto 1998, Dayan and Abbott 2001). TDRL computes 

the reward expectation in terms of all anticipated reward events in the future, and learns to 

predict reward by driving RPE to zero. For the sake of simplicity, here we describe a 

simplified notion of RPE, δt = rt − Vt, where rt is the actual reward and Vt is the expected 

reward, at time t). The idea is that the mismatch between the actual reward and the expected 

reward generates an “error signal” that informs learning. RL is hypothesized to be driven by 

αδt, with the rate α controlling the speed of learning. Therefore, there is a solid foundation 

for bridging reward-related learning with a specific underlying brain circuit (the dopamine 

system). Empirical evidence for impaired RL has been documented for Parkinson’s disease, 

schizophrenia, Tourette’s syndrome, attention deficit disorder, drug addiction, depression 

(Maia and Frank 2011, Lee 2013, Huys et al. 2013), demonstrating powerfully the 

importance of function-based, transdiagnostic, approach in psychiatry.

For instance, addiction can be viewed as RL gone awry. Indeed, a pioneering application of 

RL to psychiatry (Redish 2004, Redish et al. 2007) was inspired by TDRL. It was proposed 

that addiction access the same RL system as in the normal brain, but drug-induced positive 

prediction errors could produce unbounded increases in the value of drug receipt. A merit of 

such quantitative models is that they are precise enough to be falsifiable by new 

experiments, a hallmark of scientific inquiry. Redish’s model predicts that a behavioral trait 

called blocking does not occur when drugs are used as unconditional reinforcers. Blocking 

refers to the observation that after a subject learns to associate a stimulus A with a reward, 

later pairing A with another stimulus B should not lead to learning to associate B with the 

reward. If, however, drugs (as stimuli A and B) lead to unlimited value increase, blocking 

should not be observed. Behavioral experiments using cocaine as unconditional stimulus 

showed that this is not the case, i.e. blocking does occur (Panlilio et al. 2007). One possible 

interpretation of this result is that blocking is not due to the specific form TDRL of RL. 

Indeed, blocking is accounted for in an alternative model of addiction that assumes the 

expected reward Vt to be computed by a weighted average over past reward events 
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(Dezfouli et al. 2009). Another possibility is that RL involves multiple competing systems 

(Redish et al. 2007).

The RL approach has also been applied to depression. Huys et al. (2013) set out to test the 

hypothesis that depression is associated with an altered sensitivity to reward; specifically, 

the RPE becomes δt = ρrt − V t, where the parameter ρ represents reward sensitivity. Meta-

analysis of experiments with about 50 healthy subjects and 50 subjects with major 

depression disorder revealed has been carried out by fitting behavioral data with a RL 

model. It was found that compared to the control group, the patient group shows a 

significantly reduced reward sensitivity (a smaller value of ρ), but no change in the learning 

rate α, consistent with the anhedonia and lack of motivation found in patients with 

depression. Similar findings were also reported by Strauss et al. (2011). This work illustrates 

how computational modeling enables us to dissect distinct aspects (reward sensitivity but 

not learning rate) of a maladaptive behavior.

The RL theory is currently been extended beyond single-factor considerations. In particular, 

it has been recognized that RL involves two separate neural systems (Balleine and 

Dickinson 1998, Daw et al. 2005, 2011, Kahneman 2011, Dolan and Dayan 2013). One of 

these systems subserves habits and related behaviors. It is referred to as “model-free” 

because these behaviors are elicited in an automatized way by cues. The second, model-

based, system is endowed with an internal representation of the causal structure of the 

environment and underlies goaloriented behaviors. The model-free and model-based 

systems must be balanced. A dual-system learning model (Daw et al. 2011) has been 

combined with human brain imaging to examine specific ways an imbalance of these two 

systems might lead to maladaptive choice behavior in mental illness. Using this framework, 

it was found that repeated exposure to addictive drugs shifts behavior from model-based to 

model-free emphasis (Kurth-Nelson and Redish 2011, Lucantonio et al. 2012). Likewise, 

data fitting by the dual-system model revealed that subjects diagnosed with obsessive-

compulsive disorder display a bias towards model-free habit acquisition (Voon et al. 2014). 

The central control mechanisms governing the balance maintenance and shifts between 

model-based and model-free systems represent an area of intense ongoing research (Simon 

and Daw 2011).

Whereas the model-free system relies on RPE, the model-based system presumably depends 

on a more abstract “state prediction error” which might implicate lateral prefrontal cortex, 

giving rise to “dual system” RL models (Glascher et al. 2010). RL approaches have 

advanced translational neuroscience research on such phenomena as delusions that have 

been previously extremely challenging to study from this perspective. The focus on 

prediction error, a mismatch between expectation and experience, has inspired 

neurobiological studies of psychosis (Corlett et al. 2010). Delusions are false beliefs about 

the world that persist tenaciously despite repeated encounters with contradicting evidence. 

Corlett and his colleagues (Corlett et al. 2007) found that violations of causal associations 

activate the right lateral prefrontal cortex (rPFC) during fMRI, a putative prediction error 

signal. However, deficits in this fMRI prediction error signal among subjects with first 

episode psychosis strongly correlated with the severity of delusions across subjects (Corlett 

et al. 2007). Thus, false beliefs may be generated through compromised prediction error and 
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sustained as aberrant learning transitions from being represented by model-based to model-

free systems (Corlett et al. 2010).

RL has also been extended to hierarchically organized behaviors (Botvinick et al. 2009). 

These studies focused on RL illustrate well how theory and computational modeling, in 

conjunction with experimentation, can help dissect distinct component processes (such as 

reward sensitivity, learning rate, balance between model-free and model-based systems, et 

al.), each may be abnormal in multiple mental disorders but in different ways. This opens up 

the possibility that each cognitive endophenotype (such as impulsivity) could be defined in 

terms of a specific combination of quantitative impairments of these component processes. 

If so, future progress in this direction could yield a promising new framework to guide 

translational neuroscience studies of neuropsychiatric disorders.

Big data and model-aided diagnosis

Typically, the process of building from a behavioral experiment to a computational model 

follows several steps: (1) a cognitive task is strategically designed to probe a particular 

function (e.g. reward-related learning in decision-making), (2) an appropriate computational 

model (e.g. reinforcement learning) is chosen to simulate the process (e.g. valuation) under 

consideration, (3) model-fitting of data yields estimation of model parameters (e.g. reward 

sensitivity and learning rate). Many of these studies compare people deemed to be free of a 

psychiatric diagnosis to people who have been recruited specifically for the presence of a 

specific psychiatric diagnosis (e.g. according to DSM or international classification of 

diseases (ICD) criteria). Significant differences between the healthy group and patient group 

in some model parameters (e.g. reward sensitivity but not learning rate) provide the basis for 

characterizing the presumed “abnormality” in the patient group. However, computational 

psychiatry is not limited to existing diagnostic schema. Its focus on relating mechanisms to 

cognitive operations and behavioral processes promotes a transdiagnostic perspective. For 

instance, a similar bias toward model-free versus model-based learning has been found in 

disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, as 

well as obsessive-compulsive disorder (Voon et al. 2014).

Recently, Frank and collaborators (Wiecki et al. 2014) proposed to extend this approach 

from subject groups to individuals. This requires a fourth step, i.e., to use sophisticated 

statistical analysis algorithms to investigate whether model parameter values extracted from 

individual subjects are clustered into distinct groups (Figure 3A). This step is crucial for this 

paradigm to potentially serve as a clinical tool, since diagnosis must obviously be done for 

single individuals. A similar approach has been advocated by Stephan and his colleagues 

(Figure 3B) (Brodersen et al. 2014). These authors proposed a cross-disciplinary approach 

that combines behavior, brain measures (fMRI) and computation (dynamical causal 

modeling, DCM (Friston et al. 2003, Stephan et al. 2007)). In a working memory study of 

schizophrenic patients they focused on DCM based estimates of effective connectivity 

between visual, parietal and prefrontal cortex, since these three cortical areas were critically 

involved in their visual working memory task. An unsupervised clustering procedure 

operating on the individual connectivity patterns yielded three distinct patient subgroups 

(Figure 3C): (a) those with greater fronto-parietal connectivity, (b) those with weaker fronto-
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parietal connectivity, and (c) those with greater visuo-frontal connectivity. The authors 

further pushed the approach by including two more steps (Figure 3B): (5) assessment of 

whether clusters of subjects obtained by model-fitting are correlated with different severity 

of behavioral impairment (indeed they found that subjects in the three clusters display a 

different degree of negative symptom severity (Figure 2D)), and (6) interpretation of the 

results from step (5) that attributes the behavioral deficit (negative symptom) to a possible 

underlying brain substrate (visual-parietal-prefrontal circuitry connectivity), generating new 

hypotheses to be tested in future research.

This line of work raises the question of whether it might be possible to use brain imaging 

data (or models of such data) rather than symptoms as the substrate for diagnostic 

classification schema. A related line of thinking is to view psychiatric illness from the 

perspective of brain connectome (Rubinov and Bullmore 2013), according to which the 

analysis of functional connectivity patterns inferred from brain imaging offers a window to 

pathoconnectomics associated with mental disorders. It would be interesting to know the 

impact of attempting to, on a very large scale, develop model parameters that cluster patients 

in new ways. Would this approach yield a classification schema different from DSM? 

Would this classification schema be replicable and generalizable? Would it suggest new 

directions for research and treatment? This type of strategy might address a conundrum in 

psychiatry, i.e., the absence of biomarkers. It may be impossible to develop meaningful 

illness biomarkers within a diagnostic framework that is not based in biology. However, if 

the diagnostic framework were, itself, built around an imaging biomarker, then it would 

seem highly likely that this biomarker would have predictive power with regards to 

diagnosis and treatment.

A number of factors will determine the success of this framework: very large samples of 

subjects, efficient and statistically reliable analysis methods, and judicious choices of 

computational models. With the advance of big data science, and computational modeling, a 

radical modern paradigm shift may be on the horizon.

Biophysically-based neural circuit modeling: understanding across levels

In contrast to more abstract models, biophysically realistic neural circuit modeling has the 

potential to be rigorously calibrated by quantitative neurophysiology and anatomy. 

Ultimately, this is necessary to elucidate deficits at the molecular, cellular and circuit levels 

that underlie cognitive and behavioral disorders in mental illness.

Among hierarchically inter-related cognitive dysfunctions associated with schizophrenia 

(Millan et al. 2012), perhaps the best studied is working memory (Park and Holzman 1992, 

Lee and Park 2005, Lewis and Gonzalez-Burgos 2006, Barch and Ceaser 2012). Working 

memory, the brain’s ability to encode and sustain the neural representation of information in 

the absence of direct sensory stimulation and to manipulate this information in the service of 

future action, is a core cognitive function that depends on the PFC (Fuster 2008, Goldman-

Rakic 1995, D’Esposito 2007, Baddeley 2012). Fortunately, working memory has been 

particularly amenable to biophysically-based neural circuit modeling, because of the 

richness of experimental data at multiple levels of study.
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A well known working memory paradigm is the delayed oculomotor response task, in which 

a subject is required to remember a visual cue (a directional angle) across a delay period in 

order to perform a memory guided saccadic eye movement (Funahashi et al. 1989, 

Constantinidis and Wang 2004). A biologically-based network model of spiking neurons has 

been developed for this spatial working memory experiment (Fig. 4A) (Compte et al. 2000, 

Renart et al. 2003, Wang et al. 2004, Carter and Wang 2007, Wei et al. 2012, Kilpatrick et 

al. 2013, Hansel and Mato 2013, Pereira and Wang 2014). Fig. 4B shows a model 

simulation of the delayed oculomotor task. Initially, the network is in a resting state in which 

all cells fire spontaneously at low rates. A transient input drives a subpopulation of cells to 

fire at high rates. As a result they send recruited excitation to each other via horizontal 

connections. This internal excitation is large enough to sustain elevated activity, so that the 

firing pattern persists after the stimulus is withdrawn. Synaptic inhibition ensures that the 

activity does not spread to the rest of the network, and persistent activity has a localized, bell 

shape (“bump attractor”). At the end of a mnemonic delay period the cue information can be 

retrieved by reading out the peak location of the persistent activity pattern; and the network 

is reset back to the resting state. This type of spatial working memory network is endowed 

with a continuous family of bump attractors, each encoding a specific potential location.

In this model, a mnemonic persistent activity pattern is sustained internally by strong 

recurrent excitation, which the model predicts to be slow and dependent on the NMDA 

receptor mediated synaptic transmission at local synapses (Wang 1999, 2001) (Figure 4C). 

In a recent experiment with monkeys performing a working memory task (Wang et al. 

2013), iontophoresis of drugs that blocked the NMDA receptors suppressed delay-period 

persistent activity of PFC (Figure 4D), in support of an important role of the NMDA 

receptors in PFC processes. Another monkey experiment showed that ketamine (an NMDA 

receptor antagonist) reduces task selectivity of PFC neurons in parallel with behavioral 

impairment (Skoblenick and Everling 2012). These findings are directly relevant to 

psychiatry. Indeed, it has been hypothesized that NMDA hypofunction underlies working 

memory deficits in schizophrenia (Coyle et al. 2003, Moghaddam and Krystal 2012), and 

sub-anesthetic dose of ketamine produces working memory impairment in healthy human 

subjects, similar to that seen in schizophrenia (Krystal et al. 1994). The finding that NMDA 

receptors are critical for mnemonic persistent activity and its selectivity offers a possible 

mechanistic explanation as to why NMDA signaling pathway is essential for working 

memory function.

Like Yin and Yang in Ancient Chinese Philosophy, the dynamic balance between synaptic 

excitation and inhibition within local and distributed networks is a fundamental property of 

cortical function. This balance is important for normal functions within a biophysically-

based PFC neural circuit model because it defines many emergent properties of the network 

including: dynamic network stability (because if unchecked by inhibition, strong recurrent 

excitation would lead to runaway positive feedback), fast coherent oscillations (generated by 

the interplay between fast AMPA receptor mediated excitation and slower GABAA receptor 

mediated inhibition), stimulus-selectivity (synaptic inhibition is critical for neural tuning), 

and resistance to distractors (reduced responsiveness to distracting stimuli by neurons not 

involved in memory storage) (Compte et al. 2000, Brunel and Wang 2001, Wang 2013).
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These results have functional implications for the observed pathology of inhibitory circuits 

associated with schizophrenia (Lewis et al. 2005, Lewis et al. 2012). In particular, enhanced 

distractibility represents a common behavioral deficit in schizophrenic patients (Goldman-

Rakic 1987, Mesulam 2000, Luck and Gold 2008). A recent computational study examined 

how a reduced inhibition might lead to PFC’s deficient ability to filter out distracting stimuli 

during working memory (Murray et al. 2014). Disinhibition induced a broadening of the 

neural representation for the memorandum maintained in working memory through 

persistent activity (Figure 5A). Importantly, this feature of the circuit was a function of the 

overall balance between excitation and inhibition (Figure 5B). Neural broadening, in turn, 

induced specific behavioral deficits, making working memory more vulnerable to 

intervening distractors. In the model, distractibility depends on the similarity between the 

distractor and the mnemonic representation, and therefore broadening the mnemonic 

representations increases the range of distractors that can disrupt behavior. The authors 

tested this model prediction by analyzing behavior from healthy humans administered 

ketamine, a pharmacological model of schizophrenia, during a spatial delayed match-to-

sample task. Matching the model prediction, ketamine increased the rate of errors 

specifically for distractors that would overlap with a broadened mnemonic representation 

(Figure 5C). Just as the biophysical basis of the model allows instantiation of potential 

pathologies, it can also readily incorporate pharmacological treatments to compensate for 

these deficits. In particular, in this model it was demonstrated as proof-of-principle that 

glutamatergic or GABAergic manipulations could restore excitation-inhibition balance, 

reversing the broadened mnemonic representations and corresponding distractibility induced 

by disinhibition (Figure 5D). An open question is concerned with the brain mechanisms for 

deciding which information should be considered task-relevant versus distracting and how 

this may or may not be related to reward value processing of potentially relevant or 

distracting stimuli. Impairments of this decision process could be relatively independent 

from those of working memory circuit’s ability to resist distractors as described above, 

which would suggest an orthogonality between these deficits. Future research is needed to 

assess whether this is indeed the case.

In the model, the network’s ability to filter out distractors is impaired by a reduced 

excitation in inhibitory neurons. The main insight is that predominant behavorial disturbance 

due to modest disinhibition may not be so much the inability of memory storage per se as 

the difficulty of ignoring behaviorally irrelevant inputs during memory maintenance. The 

observation that ketamine in human subjects leads to impaired resistance against near 

distractors, as predicted by the model, suggests that disinhibition involves NMDARs. 

Intuitively, this could be caused by a reduced NMDAR mediated excitation in inhibitory 

neurons. In support of this view, there is evidence that, in rodents, acute ketamine 

administration led to a decreased activity of putative fast-spiking (FS) interneurons, and 

increased activity of putative pyramidal cells (Homayoun and Moghaddam 2007). 

Moreover, since FS inhibitory neurons are critically involved in the generation of fast γ 

oscillations (Buzsaki and Wang 2012, Wang 2010), a reduced excitation of those neurons 

could explain abnormal γ synchrony observed in schizophrenic patients (Spencer et al. 2004, 

Lisman et al. 2008).

Wang and Krystal Page 13

Neuron. Author manuscript; available in PMC 2015 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



However, in fast-spiking interneurons of the mice frontal cortex, NMDAR mediated 

excitation is small and insensitive to NMDAR blocker AP5 (Rotaru et al. 2011). In adult 

rats, the majority of fast-spiking interneurons are devoid of NMDA receptors, whereas 

NMDAR dependent synaptic excitation is more significant in other subclasses of regular-

spiking and low-threshold spiking inhibitory cells (Wang and Gao 2009). The latter mediate 

dendritic inhibition, thereby gating synaptic inputs onto pyramidal cells. Further, the 

dendrite-targeting interneurons function in an input-specific manner, enabling pyramidal 

neurons to be selectively activated by task-relevant inputs. This has been incorporated in an 

extended working memory microcircuit model endowed with three subtypes of inhibitory 

neurons: (a) PV-expressing soma-targeting interneurons that control pyramidal firing output, 

(b) interneurons that express calbindin or somatostatin and gate dendritic inputs to 

pyramidal cells, (c) interneurons that express calrintinin or VIP and preferentially target 

dendrite-targeting interneurons (thereby providing a new disinhibition mechanism) (Wang et 

al. 2004, Wang 2013). It was found that dendritic inhibition controls the network’s ability to 

resist irrelevant distractors more effectively than peri-somatic inhibition that controls the 

spiking output of pyramidal neurons. Taken together, one plausible scenario consistent with 

currently available evidence is that disinhibition induced by ketamine results from a 

reduction of NMDAR dependent excitation of dendrite-targeting interneurons. This 

prediction can be tested using cell-type specific genetic tools (Kepecs and Fishell 2014, 

Higley 2014) in future animal experiments.

What happens when the excitation-inhibition balance is tilted in a way that synaptic 

excitation becomes excessively strong? Model simulations showed that one consequence of 

such an imbalance could lead to behavioral inflexibility: attractor states encoding memory 

items become so robust that it becomes difficult to switch off from one memory attractor 

state either to rest (memory erasure) or another memory state (Rolls et al. 2008, Durstewitz 

and Seamans 2008, Gruber et al. 2010). This idea is interesting especially in the light of the 

fact that working memory is not limited to sensory stimuli but also more abstract 

information such as behavioral task sets or rules (Miller and Cohen 2001, Wallis et al. 2001, 

Sakai 2008, Buckley et al. 2009, Lapich et al. 2010, Sigala et al. 2010), and attractor 

network models have been extended to internal representation of behavioral rule or context 

in flexible behavior (Rigotti et al. 2010, 2013). Thus, behavioral inflexibility may be 

reflected in the difficulty to make a transition from a behavioral context to another one, 

which is a hallmark of abnormal cognition in schizophrenia.

This framework is also useful for analyzing abnormal neuromodulation in mental illness. 

The dopamine system represents an example par excellence. It is well known that working 

memory performance exhibits an inverted U-shaped dependence on dopamine modulation: 

too little dopamine, you loss working memory; too much dopamine, you are inflexible with 

switching on and off in a working memory system. Dopamine modulation acts on targets 

such as NMDA receptor mediated excitatory synaptic excitation and GABA mediated 

inhibitory synaptic inhibition (Brunel and Wang 2001, Seamans et al. 2001, Durstewitz et al. 

2000), or the gain of single-neuron input-output relationship (Cohen and Servant-Schreiber 

1992). Computational modeling showed that an inverted-U shape of dopamine modulation 

can be readily explained if dopamine modulation has a differential sensitivity to the NMDA 

Wang and Krystal Page 14

Neuron. Author manuscript; available in PMC 2015 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conductance and GABA conductance (Brunel and Wang 2001). Furthermore, interestingly, 

the network’s ability to ignore distractors is sensitive to modulation by dopamine of 

recurrent excitation and inhibition. Therefore, even a mild impairment of dopaminergic 

signaling in the prefrontal cortex could be very detrimental to robust working memory 

maintenance in spite of ongoing sensory flow.

These studies on working memory demonstrate how biophysically-based modeling in 

interplay with experimentation can play a powerful role in making discoveries and 

producing new hypotheses about the brain mechanisms of core cognitive processes 

implicated in psychiatric disorders.

Looking forward: building a new cross-disciplinary field

The economic cost of mental illness represents an enormous burden on the society Wittchen 

et al. (2011, Olesen et al. (2012, Vos et al. (2012). The critical nature of our knowledge gap 

for the clinical neuroscience fields, including neurology, neurosurgery, psychiatry, and 

psychology, is well known. In the United States, National Institute of Health initiatives 

including the Human Connectome Project (http://www.humanconnectomeproject.org) and 

the BRAIN Initiative (http://www.nih.gov/science/brain/) are designed to advance current 

approaches and to develop new technologies to characterize brain circuit function. Parallel 

initiatives are underway in Europe and Asia.

In this Perspective, we marshaled findings from recent work on reinforcement learning and 

working memory to argue for a Computational Psychiatry approach to brain disorders. This 

perspective emphasizes an integration of experimentation, data analysis and theory in 

concerted efforts to understand neural circuits involved in mental illness. Although we have 

focused on local circuit mechanisms, computational psychiatry must also be developed for 

large brain systems. A notable line of research in this regard is concerned with the interplay 

between cortex and basal ganglia, which is important for both working memory and 

decision-making (O’Reilly and Frank 2006, Lo and Wang 2006, Ding and Gold 2013). In 

fact, behavioral evidence from a cleverly designed experiment suggests that impaired RL in 

schizophrenia is attributable, largely, to working memory deficits rather than valuation 

process (Michael Frank, personal communication). Another interplay involves cortex and 

thamalus (Vukadinovic 2011, Anticevic et al. 2013). More broadly, new approaches applied 

to the study of the connectivity properties of large-scale brain systems are exciting 

developments (Sporns 2009, Bullmore and Sporns 2009, Markov et al. 2013) with important 

implications for psychiatric disorders (Anticevic et al. 2013, Rubinov and Bullmore 2013, 

Yang et al. 2014).

Unprecedented ongoing progress in neuroscience offers extraordinary opportunities as well 

as challenges. First, progress in genomics, massive neuroimaging and other advances are 

creating enormous datasets that, in turn, require new mathematical/statistical tools. Second, 

there is an increasing recognition that, so far, mechanistic preclinical studies have been 

almost exclusively focused on local circuits, but we need to develop large-scale brain circuit 

models in order to investigate how the PFC controls and interacts with many other brain 

regions in a highly interconnected large system. Third, major mental disorders like 
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schizophrenia, autism qnd ADHD are neurodevelopmental diseases (Moore et al. 2006, 

Belujon and Grace 2008, Insel 2010, Fair et al 2012). Thus it is critical that computational 

models incorporate developmental changes in synaptic and circuit function in disease-

related models. For instance, the human neural representation of working memory assessed 

with fMRI changes during adolescence (Satterthwaite et al. 2013). Similarly, synaptic 

mechanisms evolve during adolescence. In rodents, for example, NMDA receptors are 

abundant on PV interneurons early in life, but they are present more sparsely in adults 

(Belforte et al. 2010). In these circuits, reducing NMDA receptor expression early in life, 

but not in adulthood impairs cognitive function in adulthood. There is a dearth of 

computational modeling dedicated to understanding critical periods in neurodevelopment 

and the impact of even “transient” developmental disruption on circuit development and 

cognitive function in adulthood. Progress along these lines will require sophisticated neural 

circuit modeling in conjunction with genetic, physiological and imaging experimentation. 

Fourth and finally, can one quantitatively capture specific features of the normal and 

dysfunctional flow of thought associated with mental illness? A recent work took the view 

that language could be used “as a privileged measuring lens into thought”, and showed that 

quantitative analysis of speech could yield accurate sorting of schizophrenia versus mania 

with high sensitivity and specificity (Mota et al. 2012). Language is a human cognitive 

ability implicated in mental disorders, thus elucidation of brain’s language circuit represents 

another neuroscientific theme relevant to Psychiatry.

It is our belief that these challenges cannot be overcome without theory and computational 

modeling. To advance the field, we need new infrastructure, resources and training of cross-

disciplinary young talents who are well versed both in mathematical modeling and 

experimentation. In particular, it would be important to develop training programs whereby 

graduate students and postdoctoral fellows trained in the physical and mathematical sciences 

could more easily be introduced psychiatry develop without the input of physician-scientists. 

Third, government funding agencies and non-profit organizations and foundations should 

offer new programs to promote highly cross-disciplinary education and research in 

computational psychiatry. Through these concerted efforts, we are optimistic that 

computational psychiatry could play an indispensable role in addressing the great challenges 

of mental health in the twenty-first century.
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Figure 1. 
(A) Mechanistic understanding of brain functions must relate structure (molecules, cells and 

network connectivity) and dynamics with behavior. Brain measures probe spatiotemporal 

neural activity patterns that are correlated with specific aspects of behavior. Theory and 

modeling provide a powerful tool to elucidate how such a pattern is produced by its 

biological substrate, on one hand, and give rise to computations necessary to account for 

brain function, on the other hand. (B) Biologically-based neural circuit modeling is 

calibrated by physiology of single neurons and synapses, and constrained by quantitative 
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network connectivity data. This approach is arguably necessary for the 3-way understanding 

between function, neural dynamics and computation, biological mechanism.
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Figure 2. 
(A) Gene regions, genes, and putative endophenotypes implicated in a biological systems 

approach to schizophrenia research. The dynamic developmental interplay among genetic, 

environmental, and epigenetic factors that produce cumulative liability to developing 

schizophrenia. Endophenotypes as schizophrenia discriminators involve sensory motor 

gating, oculomotor function, working memory, and glial cell abnormalities. Many more 

gene loci, genes, and candidate endophenotypes remain to be discovered (represented by 

question marks). The figure is not to scale. (B) The impulsivity and compulsivity constructs. 
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The diagram describes possible psychological component mechanisms underlying the two 

constructs. It would appear that these different measures likely do not inter-correlate well, 

which would argue against a unitary construct for either impulsivity or compulsivity, but 

this issue is still actively being researched. Both impulsivity and compulsivity involve 

motor/response disinhibition, but at different stages of the response process. (A) was 

reproduced from Gottesman and Gould (2003), (B) from Robbins et al. (2012), with 

permission.

Wang and Krystal Page 27

Neuron. Author manuscript; available in PMC 2015 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
(A) Illustration of the 4 levels of computational psychiatry. Clinical and nonclinical 

populations are tested on a battery of cognitive tasks. Computational models can relate raw 

task performance (e.g. RT and accuracy) to psychological and/or neurocognitive processes. 

These models can be estimated via various methods. Finally, based on resulting 

computational multidimensional profile, training using learning algorithms can either 

uncover groups and subgroups in clinical and healthy populations, or relate model 

parameters to clinical symptom severity. (B) Conceptual overview of model-aided clustering 

of fMRI data. First, separately for each subject, BOLD time series are extracted from a 
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number of regions of interest. Second, subject-specific time series are used to estimate the 

parameters of a model. Third, subjects are embedded in a score space in which each 

dimension represents a specific model parameter. This space implies a similarity metric 

under which any two subjects can be compared. Fourth, a clustering algorithm is used to 

identify salient substructures in the data. Fifth, the resulting clusters are validated against 

known external (clinical) variables. Once validated, a clustering solution can, sixth, be 

interpreted mechanistically in the context of the underlying model. (C–D) Model-based 

clustering of fMRI data from schizophrenic patients in a working memory task. (C) An 

unsupervised clustering analysis of the patient group only, using Gaussian mixture models 

operating on dynamical causal model (DCM) parameter estimates, yield the average 

posterior parameter estimates (in terms of maximum a posteriori estimates) for each 

coupling and input parameter in the model. This is displayed graphically by the thickness of 

the respective arrows. (D) The three subgroups, which are defined on the basis of connection 

strengths, also differ in terms of negative clinical symptoms as operationalized by the 

negative symptoms (NS) subscale of the PANSS score. (A) was reproduced from Wiecki et 

al. (2014), (B–D) from (Brodersen et al. 2014), with permission.
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Figure 4. 
(A–B) Spiking network model of working memory. (A) Model architecture. Excitatory 

pyramidal cells are labeled by their preferred cues (0° to 360°). Pyramidal cells of similar 

preferred cues are connected through local excitatory-to-excitatory connections. Inhibitory 

interneurons receive inputs from excitatory cells and send feedback inhibition by broad 

projections. (B) A stimulus is encoded and actively maintained by a self-sustained network 

persistent activity pattern (a “bump attractor”) in a simulation of the delayed oculomotor 

experiment. C: cue period D: delay period, R: response period. Pyramidal neurons are 
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labeled along the y-axis according to their preferred cues. The x axis represents time. A dot 

in the rastergram indicates a spike of a neuron whose preferred location is at y, at time x. An 

elevated and localized neural activity is triggered by a transient cue stimulus and persists 

during the delay period. (C) The effects of iontophoretic NMDA blockade on working 

memory activity in a computational model of working memory. Under control conditions, a 

stimulus cue selectively activates a group of neurons, leading to persistent activity sustained 

by NMDAR-dependent recurrent excitation. NMDA conductance is reduced from control to 

90%, 80%, and 70% (to bottom) of a reference level in a few pyramidal neurons in the 

network model. Stimulus-selective persistent activity gradually decreases with more 

NMDAR blockade and eventually disappears in these affected cells. (D) An example of an 

individual dorsolateral PFC cell recorded from behaving monkey in a delayed oculomotor 

response task. Upper panels: control condition, lower panels: after iontophoresis of Ro 

25-6981 (25 nA), a blocker of NR2B-containing NMDA receptors. The rasters and 

histograms show firing patterns for the neuron’s preferred direction and the nonpreferred 

direction (opposite to the preferred direction). Iontophoresis of Ro 25-6981 markedly 

reduced mnemonic delay period firing to baseline. (B) was adapted from Compte et al. 

(2000), (C–D) from Wang et al. (2013), with permission.
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Figure 5. 
Computational modeling of excitation-inhibition (E/I) balance in working memory circuits. 

(A) A spatial working-memory model can generate a bump-shaped stimulus-selective 

persistent activity pattern following stimulus withdrawal. Disinhibition, mediated by 

NMDAR hypofunction on interneurons, broadens working-memory representations at the 

neural level. (B) The parameter space of NMDAR hypofunction highlights the importance 

of E/I balance for working memory function. If the E/I ratio is elevated as in disinhibition, 

the width of the representation increases. In contrast, if the E/I ratio is reduced too much 
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through weakened recurrent excitation between pyramidal cells, the circuit cannot support 

memory-related persistent activity (upper left corner). (C) Broadening of working-memory 

representations was tested using behavioral data from human subjects performing a spatial 

working-memory task combined with ketamine infusion, a pharmacological model of 

schizophrenia. Consistent with broadening, ketamine induced errors specifically for near 

distractor probes (left), as predicted by the model (right). (D) Compensations can restore E/I 

balance and ameliorate behavioral deficits in the model. We paired the disinhibition 

mechanism with either reduced excitation (purple) or increased inhibition (green), following 

proposed pharmacological treatments. Adapted with permission from (Murray et al. 2014).
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