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background: Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infec-
tions contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy
to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the develop-
ment and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the
efficacy and safety in the pregnant women and the offspring.

methods: An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic
literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy.
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Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of
maternal vaccination research was formulated.

results: Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal
IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy,
which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal
vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low.

conclusions: To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scien-
tists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary
mucosal immune responses to vaccines. The use of animal models should be coupled with human studies in an iterative manner for maternal
vaccine experimentation, evaluation and optimization. Systems biology approaches should be adopted to improve the speed, accuracy and
safety of maternal vaccine targeting.
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Introduction
Immunization has played a crucial role in eliminating or reducing the
occurrence of devastating infections worldwide (Roush et al., 2007;
Andre et al., 2008). Maternal vaccination, a form of immunization for
women of childbearing age before, during orafter pregnancy, aims atpro-
tecting the motheragainst infections that may threaten healthy reproduc-
tion and allowing vaccine-induced maternal antibodies to be transferred
via placenta to the fetus and in colostrum and breast milk to the infant for
protection against diseases before routine childhood immunization can
be initiated. The protection function of maternal vaccination in neonates
was initially suggested by a correlation between a maternal deficiency of
Group B streptococcus (GBS) anti-capsular antibodies and neonatal sus-
ceptibility to invasive GBS infection (Bakerand Kasper, 1976). Because of
the potential of protecting the mother and the fetus as well as the
newborn and the advantage of circumventing the challenges of inducing
efficient protective immunity in neonates, maternal vaccination has now
emerged as a recommended public health approach againstmaternal and
childhood infections.

In spite of the success of several maternal vaccines, many gaps exist in
our knowledge of this promising public health strategy. All current mater-
nal vaccine formulations were initially designed for and tested in non-
pregnant populations, but the diverse immune modulations during preg-
nancy may cause pregnant women to respond sub-optimally or different-
ly compared with non-pregnant populations. Efficacy is further affected
by a plethora of other variables, such as the form, dose, route and
timing of the vaccination. Very limited data exist on the effect in popula-
tions of high-risk pregnancies, such as recurrent miscarriage, pre-
eclampsia, autoimmunity and immunodeficiency. Many recommended
maternal vaccines are completely lacking in systematic surveillance
data on their safety. A long list of pathogens have no available vaccines
or vaccines that are contraindicated for pregnancy. By integrating the
current status of major medical concerns over maternal vaccination,
the recent advances in pregnancy-associated humoral immune modula-
tion that may influence vaccine responsiveness and a discussion on the
animal models for maternal vaccination development, this review aims
to bridge the gaps in the literature, offer a mechanistic direction for ma-
ternal vaccine research and encourage basic, clinical and translational
scientists to work together toward developing effective and safe mater-
nal vaccines.

Methods
We first synthesized an outline of the review based on the current recom-
mendations and major gaps in the knowledge of maternal vaccination. Fol-
lowing the outline, a systematic literature search was performed in
PUBMED using the key words in each section title of the outline to retrieve
articles relevant to pregnancy and published in English up to March 2014.
The search was performed without limitations by species, but the species
involved in the cited studies were indicated in the text when necessary. Rele-
vant abstracts from recent scientific meetings were also included. Articles
cited were selected based on relevance and quality as interpreted by all
the authors. No quantitative or statistical analysis was performed. On the
basis of the reviewed information and the recent progress in vaccinology
and reproductive immunology, we formulated a perspective on the future
directions of maternal vaccination research.

Rationales of maternal
vaccination

Fetal and neonatal susceptibility to infections
A major rationale for vaccinating the mother during pregnancy is that
neonates do not mount efficient protective immunity to many viral, bac-
terial and fungal pathogens and are prone to more severe or prolonged
infections than adults (Silverstein, 1964; Darmstadt et al., 2011). The
increased neonatal susceptibility to infections is more pronounced in
infants born prematurely (Stoll et al., 2002; Stoll and Hansen, 2003).
Therefore,by vaccinating the mother, humoral immunity can be passively
transferred to the fetus and the newborn. Historically, the susceptibility
of the fetus to infections was believed to be due to the immaturity of the
fetal immune system (Billingham et al., 1953) and its tendency to mount
tolerogenic responses to antigens (Silverstein, 1964). The heightened
neonatal susceptibility was attributed to a less intact mucosal barrier
and the lack of existing immunological memory as well as the immaturity
of the neonatal immune system, being incapable of developing adult-like
protective immune responses (Adkins et al., 2004; Levy, 2007). Lending
credence to this historical notion, many quantitative and qualitative dif-
ferences in both the innate and the adaptive components of fetal and
neonatal immune systems from their adult counterparts were documen-
ted (Garcia et al., 2000; Adkins et al., 2004; Levy, 2007; Siegrist and
Aspinall, 2009). Of note, fetal and neonatal T cells were found to
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deviate toward the development of regulatory T cell (Treg) or T helper
type 2 (TH2) responses that are ineffective in protection against intracel-
lular pathogens (Adkins et al., 2004; Michaelsson et al., 2006; Wang et al.,
2010). The antibody responses to many encapsulated bacteria (such as
Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningi-
tidis), which are the leading causes of bacterial infections in infants, and
their polysaccharide antigens are weak in early infancy. This is perhaps
due to delayed formation of the splenic marginal zone (MZ) (MacLennan
et al., 1985; Timens et al., 1989) that harbors MZ B cells producing
polysaccharide-reactive antibodies (Cerutti et al., 2013) and reduced
expression of activating receptors on neonatal B cells (Timens et al.,
1989; Kaur et al., 2007; Kanswal et al., 2008).

Recent studies have argued against the fetal immune system being im-
mature versions of the adult immune system (Mold et al., 2010). In add-
ition, a series of studies have showed that the neonatal immune system
can harbor considerable plasticity, and the intrinsic differences in neo-
natal immune cells from their adult counterparts can be overcome by ap-
propriatemanipulation of the neonatal immune environment to generate
adult-like TH1, cytotoxic T lymphocyte (CTL) and humoral responses
(Forsthuber et al., 1996; Ridge et al., 1996; Sarzotti et al., 1996;
Hassett et al., 1997; Martinez et al., 1997; Bot et al., 1998; Brazolot
Millan et al., 1998; Jakobsen et al., 1999; Franchini et al., 2001; Kovarik
et al., 2001; Fadel et al., 2002; Wynn et al., 2008). These observations
have engendered much effort in the design of vaccine formulations and
protocols to stimulate neonatal immunity (Wood and Siegrist, 2011), al-
though with limited success. Neonatal vaccination should be pursued but
with caution. Many agents designed to break neonatal tolerance and
induce vaccine responsiveness may trigger side effects, such as patho-
logical inflammation or toxicity, which are deleterious to development
(Kovariket al., 2000). Furthermore, recent progress in our understanding
of the immunologic challenges during prenatal life and the transition from
fetal to neonatal life has revealed important physiologic significance to
this attenuated perinatal immunity. The deviation toward an anti-
inflammatory TH2 or Treg response during mid-to-late gestation may
protect the fetus from preterm delivery or other unwanted pregnancy
complications that could otherwise occur in a pro-inflammatory TH1
or TH17 milieu (Vitoratos et al., 2006; Ito et al., 2010), and compromised
neonatal immunity may limit detrimental inflammation during mucosal
colonization by commensal microbes shortly after birth (Lotz et al.,
2006; Elahi et al., 2013). These potential hurdles to neonatal vaccination,
coupled with the concern that infection can precede the development of
a vaccine response, make maternal vaccination an appealing alternative
strategy to induce immune protection in neonates.

Maternal susceptibility to infections
Similar to neonates, epidemiological data have shown that pregnant
women have an increased incidence of and/or severity to a variety of
infections, such as influenza, varicella, measles, severe acute respiratory
syndrome, tuberculosis, listeriosis, pneumocystis, toxoplasmosis and
malaria (Jamieson et al., 2006; Pazos et al., 2012a; Sappenfield et al.,
2013). These observations have given rise to the theory that pregnancy
represents an immunocompromised state associated with inefficient
pathogen control. Further supporting this theory is the apparent
immunological challengewomen faceduring pregnancy, i.e. to be tolerant
to the semi-allogeneic fetus, which requires maternal suppressive immune
modulations. However, a careful examination of the epidemiological

data suggests that the severity of infections varies at different stages of
pregnancy. For example, the severity of Plasmodium falciparum malaria
and of toxoplasmosis were found in some studies to be the highest
during the first half of pregnancy and to decline gradually as pregnancy
proceeded (Bray and Anderson, 1979; Jenum et al., 1998; Okoko
et al., 2003), while women in the second and third trimesters were
shown to have higher maternal and fetal mortality and morbidity from in-
fluenza A infection (Lindsay et al., 2006, Neuzil et al., 1998; Schanzer
et al., 2007; Siston et al., 2010) and a higher incidence of Listeria monocy-
togenes (Gellin et al., 1991; Benshushan et al., 2002; Mylonakis et al.,
2002). Such differences are likely to result from the distinct types of pro-
tective immunity required to control the various pathogens during acute
or chronic infection and the unique immunological alterations occurring
at different stages of pregnancy, both systemically and at the maternal-
fetal interface. During early pregnancy when implantation and placenta-
tion take place, extensive tissue remodeling triggers a maternal local in-
flammatory immune reaction. During the second and third trimesters,
the dramatic tissue remodeling subsides and rapid fetal growth occurs,
which entails the mother and the developing conceptus co-existing
peacefully in an anti-inflammatory environment in order to avoid fetal re-
jection. Toward the final phase of pregnancy when fetal development is
complete, an inflammatory process takes places in the uterus to activate
smooth muscle contraction and parturition ensues. Therefore, it would
be conceivable that the higher severity of the mother and the fetus
to certain placental parasitic infections, such as P. falciparum malaria
and toxoplasmosis, during early pregnancy may reflect dominant local
pro-inflammatory TH1 and TH17 immune responses that amplify
collateral tissue damage (Fievet et al., 2001; Ge et al., 2008; Goldszmid
and Trinchieri, 2012), while the higher severity to influenza A and
L. monocytogenes during the second trimester may reflect diminished
systemic and local TH1 immunity that is critical for protection (Barber
et al., 2005). The complex spatial and temporal host-pathogen inter-
action during pregnancy dictates that the biology of the pathogen, the
timing of vaccination as well as the effect of the vaccine on both maternal
systemic and reproductive mucosal immune systems should be exam-
ined when designing maternal vaccine formulations and protocols that
will be effective and safe for the mother and the fetus.

Principlesofmaternalvaccination
Maternal vaccination generates active innate, humoral and cell-mediated
immune protection in the mother to increase resistance against infec-
tions and reduce the chance of vertical transmission of infections to
the fetus (Fig. 1A, left). In addition, maternal vaccination elicits systemic
immunoglobulin G (IgG) antibodies that can be transferred to the fetus
via the placenta in humans (Fig. 1A, middle and right) and mucosal IgG,
IgA and IgM antibodies that are secreted into the colostrum and milk
and ingested by the newborn during breastfeeding (Fig. 1B) to confer
immune protection. Species vary in the contribution each route makes
to the transfer of immunity. In humans and mice, maternal antibodies
can be transferred via both routes (Renegar, 2005).

Maternal immune protection
The argument for vaccination in pregnancy is not solely based on altruistic
behavior on the part of the mother. As noted above, women who are
pregnant remain at risk for a variety of vaccine-preventable diseases.
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These infectious processes result in identifiable morbidity and mortality
in the mother, and the associated adverse host systemic responses can
lead to disruptions in physiologic homeostasis thus compromising the
co-existing fetus. Despite these rather obvious observations, few data
exist examining the maternal and fetal benefits of vaccination. This is
perhaps due to a general unwillingness to study the pregnant patients,
which requires a reassessment of strategies (Brent, 2003; Healy,
2012). Most of the available literature on maternal immune protection
by vaccination relates to influenza infection. A large cohort study demon-
strated significant reduction in maternal flu-like disease in those

vaccinated in pregnancy (Zaman et al., 2008). Of additional interest,
the neonates from the pregnant mothers who were vaccinated also
showed a significant reduction in influenza and flu-like respiratory
disease after delivery.

Neonatal systemic immune protection
Significant placental transfer is found for maternal IgG. After endocytosis
by placental syncytiotrophoblasts, maternal IgG binds to neonatal Fc re-
ceptor (FcRn) in the acidic environment of early endosomes. FcRn-IgG

Figure 1 Mechanisms of vaccine-induced maternal, fetal and neonatal immune protection. (A) Maternal vaccination induces innate, humoral and cell-
mediated immunity that confers direct protection of the mother against infections (left panel). Vaccine-induced maternal IgG is also transferred to the fetus
to confer systemic passive immunity (middle and right panels). Maternal IgG is endocytosed into villous syncytiotrophoblasts from the maternal surface (a)
and binds to FcRn in the acidic environment of early endosomes (b). IgG-FcRn complexes are then either transcytosed to the fetal side of syncytiotropho-
blasts (c) or recycled back to the maternal side (d). IgG dissociates from FcRn upon exposure to the neutral pH environment at the fetal side of syncytio-
trophoblasts (e) and enters fetal circulation (f). FcRn on the fetal side of syncytiotrophoblasts can be retrieved back to the maternal side to participate in
subsequent IgG transport (g). Maternal vaccine-induced IgD could cross trophoblasts and enter fetal circulation via an unknown mechanism (h).
(B) Maternal vaccination-induced antibodies, including IgA, IgG, IgM and IgD, are also secreted into colostrum and milk. During breastfeeding, these anti-
bodies are ingested by the neonate (left panel). IgA, IgG and IgM confer neonatal mucosal immune protection by binding to commensal and pathogenic
microbes and their virulence factors to mediate immune exclusion and neutralization (middle panel). In addition, maternal IgA facilitates antigen sampling
in the neonatal intestinal mucosa by crossing M cells via an unknown receptor (i) or apical-to-basolateral retro-transcytosis via polymeric Ig receptor (pIgR)
(k). Besides delivering antigens to mucosal dendritic cells (DCs), IgA can interact with DCs via FcaRI, leading to either immunity against pathogenic microbes
or tolerance to commensal microbes (l). IgA can also interact with Fca/mR on DCs to mediate immune tolerance. Ingested maternal IgG can also cross
epithelial cells via FcRn (m) through a mechanism similar to that in syncytiotrophoblasts. This pathway delivers antigens to, and regulates, DCs via activating
or inhibitory FcgRs (n). Maternal IgG acquired during the perinatal period can be re-secreted by FcRn into the lumen to participate in mucosal immune
defense (o).
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complexes are then transported to the fetal surface of the syncytiotro-
phoblasts, where the neutral pH promotes IgG dissociation. IgG subse-
quently passes through the villous stroma and fetal capillary endothelium
and enters fetal circulation. The amount of IgG transferred is a function of
maternal IgG concentration, IgG subclass, the levelof FcRn expression on
syncytiotrophoblasts and gestational age. Preferential transport was
found for IgG1 and IgG4 over IgG3 and IgG2 (Costa-Carvalho et al.,
1996). Vaccines that contain protein antigens, such as Tdap, elicit a pre-
dominantly IgG1 and IgG3 response, which is transferred more efficiently
than polysaccharide vaccine antigens, which predominantly elicit an IgG2

response (van den Berg et al., 2010). IgG transfer can begin as early as 13
weeks of gestation and occurs as pregnancy proceeds, with the largest
amount transferred in the third trimester (Saji et al., 1999). The fetal
IgG concentration usually exceeds that in the maternal circulation at
full term, consistent with placental IgG transfer as an active transport
process. A sharp increase of maternal IgG in cord blood occurs after
36 weeks of gestation, and this has prompted the Advisory Committee
on Immunization Practices (ACIP) to recommend that the optimal timing
of Tdap vaccination is the third trimester, which would provide the
highest concentration of maternal antibodies in the fetus at birth
(Centers for Disease Control and Prevention, 2013b; Healy et al.,
2013). However, a study on influenza vaccination found that first trimes-
ter vaccination could also improve fetal and neonatal outcomes by redu-
cing the rate of stillbirth (Sheffield et al., 2012). Evidence supporting
impaired placental IgG transfer in mothers infected with human immuno-
deficiency virus-1 (HIV-1) or malaria and in babies born at term with
lower birthweight has been found (Wesumperuma et al., 1999; Okoko
et al., 2002), highlighting the need for careful design and evaluation of ma-
ternal vaccines in mothers with existing infections or other underlying
conditions.

Neonatal mucosal immunity and tolerance
Maternal non-specific and specific antibodies elicited by vaccination, in-
cluding IgA, IgM and IgG, are secreted into colostrum and milk. After in-
gestion by the neonates during breastfeeding, they provide mucosal
immune protection by inhibiting commensal and pathogen adhesion
and invasion and by promoting exclusion and neutralization. Secretory
IgA is the predominant antibody class in human colostrum and milk
(Mickleson and Moriarty, 1982; Telemo and Hanson, 1996), while IgG
is the most abundant antibody class in mouse milk (Ijaz et al., 1987). In
the gut, ingested maternal IgA can undergo retrograde transport
across M cells via an unknown receptor (Mantis et al., 2002) or across
duodenal epithelial cells via the transferrin receptor (CD71) (Cerutti
and Rescigno, 2008). Ingested maternal IgG can also undergo retrograde
transport by FcRn expressed on the apical surface of intestinal epithelial
cells (Israelet al., 1995). These mechanisms can promote the induction of
immunity against luminal pathogens and tolerance to commensal
microbes (Oda et al., 1983; Kohl and Loo, 1984; Heiman and
Weisman, 1989; Yoshida et al., 2004, 2006; Favre et al., 2005). Intestinal
FcRn can also mediate the resecretion of maternal IgG previously
acquired via placental transfer during prenatal life and control luminal
pathogens (Harris et al., 2006).

Developing a better understanding of IgD
Whereas much of the attention on maternal vaccination has been
focused on vaccine-induced maternal antepartum IgG response and

post-partum IgG, IgA and IgM responses in breast milk, IgD, an enigmatic
member of the immunoglobulin family, has been left in oblivion.
However, many features of IgD make it an appealing target of maternal
vaccination. IgD is enriched in the upper respiratory mucosa, markedly
increased in patients with selective IgA deficiency (Chen and Cerutti,
2010a) and contributes to immune defense against respiratory patho-
gens such as H. influenzae and Moraxella catarrhalis that are common neo-
natal infections (Chen et al., 2009). Maternal rubella-specific IgD persists
longer than IgM and IgA after infection, and significant amounts of
rubella-specific IgD can be transferred across the placenta during preg-
nancy, albeit through an unknown mechanism (Fig. 1A, right), allowing
cord blood rubella-specific IgD levels to reach levels comparable to
those in maternal blood (Salonen et al., 1985). IgD is also present in
human amniotic fluid and is concentrated in milk (Cederqvist et al.,
1978; Sewell et al., 1979; Steele and Leslie, 1985; Litwin et al., 1990),
which may provide fetal and neonatal immune protection. Furthermore,
secreted IgD exhibits extensive V(D)J gene somatic hypermutation and
has a long, protruding, finger-like heavy chain complementarity deter-
mining region 3 (Koelsch et al., 2007), which may be key to the neutral-
ization of highly conserved bacterial and viral epitopes with recessed
topography (Saphire et al., 2001; Burton et al., 2005). IgD can also
monitor the presence of systemic pathogens by activating the antimicro-
bial, antibody-inducing and pro-inflammatory functions of basophils
(Chen et al., 2009). The production of IgD is positively regulated by
TH2 cytokines (Levan-Petit et al., 1999), allowing IgD-inducing vaccines
to be more compatible with pregnancy than vaccines whose induction
and protection require a strong pro-inflammatory TH1 environment.
Finally, IgD inhibits IgE-induced histamine release but not cytokine pro-
duction by basophils (Cerutti and Chen, 2010) and thus may be targeted
by maternal vaccination to control the rising rate childhood allergies
without triggering adverse pregnancyoutcomesassociatedwith histamine,
such as preterm labor, pre-eclampsia and spontaneous abortion (Bytau-
tiene et al., 2004; Brew and Sullivan, 2006). However, IgD has been
neglected for a long time, and there has been no study on the function
of IgD in maternal, fetal or neonatal protection at the time of this review.

Current maternal vaccine
recommendations, use and safety

General guidelines
All guidelines considered today for maternal vaccination during preg-
nancy in the USA are derived from the ACIP. Currently, the ACIP
committee has found no evidence of risk to the fetus from maternal
vaccination from dead, inactivated or toxoid sources (National Center
for Immunization and Respiratory Diseases, 2011). For live vaccines,
there have been few conclusive studies. As a result, attenuated viral or
live bacterial vaccines are routinely avoided unless there is a high risk of
exposure to disease in which the mother or child could be in danger.

Tdap, influenza and hepatitis
As of 2013, two vaccines, IIV for influenza and Tdap for diphtheria,
tetanus and pertussis, are recommended by the ACIP to be administered
to all women of reproductive age before, during or after pregnancy
(National Center for Immunization and Respiratory Diseases, 2011)
(Table I). Several other vaccines, including Hepatitis A and B and
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Table I Current CDC recommendations of maternal vaccination.

Vaccine Type/form Before pregnancy During pregnancy After pregnancy

Hepatitis A Inactivated Yes, if indicated Yes, if indicated Yes, if indicated

Hepatitis B Inactivated Yes, if indicated Yes, if indicated Yes, if indicated

HPV Inactivated No (under study) No (under study) Yes, if indicated (to 26 years of age)

Influenza Inactivated Yes Yes Yes

Live attenuated Yes, if under 50 and healthy; avoid
conception for 4 weeks

No Yes, if under 50 and healthy; avoid conception
for 4 weeks

MMR Live attenuated Yes, if indicated; avoid conception
for 4 weeks

No Yes, if indicated. To be given immediately
post-partum if susceptible to rubella

Meningococcal Polysaccharide Yes, if indicated Yes, if indicated Yes, if indicated

Conjugate Yes, if indicated Yes, if indicated Yes, if indicated

Tdap Toxoid
Inactivated

Yes, if indicated Yes, vaccinate during each pregnancy between
27–36 weeks of gestation

Yes, immediately post-partum if not given
previously

Tetanus/diphtheria Toxoid Yes, if indicated Yes, if indicated (Tdap preferred) Yes, if indicated

Varicella Live attenuated Yes, if indicated; avoid conception
for 4 weeks

No Yes, give immediately post-partum if
susceptible

Anthrax Subunit Yes, if indicated No, unless risk of exposure is significant No, unless risk of exposure is significant

BCG Live attenuated Yes, if indicated No No

Japanese Encephalitis Inactivated Yes, if indicated Insufficient data for recommendation Insufficient data for recommendation

MPSV4 Polysaccharide Yes No, unless risk of exposure is significant No, unless risk of exposure is significant

Rabies Inactivated Yes, if indicated No, unless post-exposure No, unless post-exposure

Typhoid Live attenuated Yes, if indicated Insufficient data for recommendation Insufficient data for recommendation

Smallpox Live attenuated Yes, if indicated No, unless post-exposure No, unless post-exposure

Yellow fever Live attenuated Yes, if indicated No, unless risk of exposure is significant No, unless risk of exposure is significant

CDC, Centre for Disease Control and Prevention; HPV, human papillomavirus; MMR, Measles, mumps, rubella; BCG, baccilus (germ) of Calmette and Guerin; MPSV4, Meningococcal polysaccharide vaccine.
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meningococcal, are recommended for women before, during or after
pregnancy when risk factors exist (Centers for Disease Control and Pre-
vention, 2013b).

Sub-optimal vaccine usage in the obstetric
population
Despite the recommendations and advocacy by many public health orga-
nizations worldwide, the concept of maternal vaccination has not been
widely accepted by the general public or become a priority among
medical professionals. For example, even with the encouraging data
from post-licensure studies on maternal Tdap and influenza vaccinations
suggesting that the perinatal use of these vaccines is safe and could be key
to closing the gap between maternal immunologic protection and trad-
itional immunization schedules (discussed below), the maternal influenza
vaccination rate has been estimated to be only �50% in the USA
(Centers for Disease Control and Prevention, 2013a). There are no
retrospective studies on the rate of Tdap vaccination during pregnancy
at the time of this review, and such information is even more sparse
for other vaccines. Apart from the cultural, legal, educational and logistic
barriers that are restricting the boarder usage of maternal vaccines, the
lack of concrete scientific knowledge on the protective efficacy and
adverse effects on the short- and long-term health status of various preg-
nant and pediatric populations, especially of the less studied vaccines,
may have contributed to the underimmunization of pregnant women
by medical professionals (Moffatt and McNally, 2013).

Concerns over maternal
vaccination

Safety
Successful examples of maternal vaccines, such as influenza IIV, have
shown efficacy in reducing maternal, fetal and neonatal morbidity due
to infection or other pregnancy complications (Zaman et al., 2008;
Omer et al., 2011; Steinhoff et al., 2012; Richards et al., 2013; El-Kady
et al., 2014; Legge et al., 2014). Yet many concerns have been raised
over maternal vaccination, which need to be addressed by further re-
search. Apart from the ethical and legal issues (Riley and Minkoff,
2014), the potential short- and long-term deleterious effects of in utero
exposure to maternal vaccines on the fetus and offspring are prominent
concerns.

Prior to the recommended use on pregnant women, both IIV and
Tdap vaccines were extensively studied in non-pregnant populations.
However, the renewed ACIP recommendation of Tdap vaccination in
every pregnancy, as mentioned earlier, has spurred increased interest
in post-licensure studies to examine the effects that Tdap may have on
pregnancy outcomes. It was recently reported that no negative conse-
quences of administration to infants, regardless of the timing of vaccin-
ation in pregnancy, was found (Shakib et al., 2013), and maternal
administration of Tdap correlated with a higher level of neonatal
Pertussis-specific antibodies between birth and the first vaccine dose
(Hardy-Fairbanks et al., 2013). In the case of influenza, the long-standing
observation of its heightened severity on the mother and the fetus from
across the world (Callaghan et al., 2010; Liu et al., 2011; Beigi, 2012;
Hansen et al., 2012; Soydinc et al., 2012; Beau et al., 2014) and the dra-
matic disease morbidity and mortality in pregnant women during the

2009 H1N1 pandemic (Creanga et al., 2010) have underscored the im-
portance of maternal vaccination and promoted the ACIP recommenda-
tion. Severalwide-ranging surveillance studies in North America, Europe,
Asia, Australia and Latin America all found no evidence to suggest that
the IIV vaccine posed significant risk to either the mother or the fetus
(Lim et al., 2010; Moro et al., 2011; Omon et al., 2011; Fell et al.,
2012; Mackenzie et al., 2012; Oppermann et al., 2012; Pasternak et al.,
2012; Carcione et al., 2013; Conlin et al., 2013; Irving et al., 2013;
Louik et al., 2013; Nazareth et al., 2013; Nordin et al., 2013). In terms
of hepatitis vaccination, there appears to be little or no data evaluating
the effectiveness of the inactivated hepatitis vaccines in perinatal con-
texts. Centers for Disease Control and Prevention (CDC) guidelines rec-
ommend usage only if ‘other high-risk conditions or indications are
present’ (National Center for Immunization and Respiratory Diseases,
2011). Examination of the Vaccine Adverse Event Reporting System
(VAERS) over a 13-year period between 1996 and 2013 found no
adverse events correlated with either hepatitis A or hepatitis B vaccines.
In fact, several studies have pointed out that both hepatitis A (Moro et al.,
2014) and hepatitis B (Ayoola and Johnson, 1987; Gupta and Ratho,
2003; Moro et al., 2014) vaccines are safe to administer, and also in
the case of hepatitis B, that the vaccine clearly imparted high levels of im-
munogenicity to both the mother and fetus (Gupta and Ratho, 2003). Of
note, the Hepatitis B vaccine series is recommended by the ACIP to be
started on all neonates before hospital discharge.

For the other maternal vaccines routinely recommended in the CDC
guidelines, there remains a significant gap in our knowledge of their short-
and long-term safety. Studies on inadvertent pneumococcal polysacchar-
ide, rubella or yellow fever vaccination cases found no significant mater-
nal or fetal risk (Nasidi et al., 1993; Centers for Disease Control and
Prevention, 1997; Castillo-Solorzano et al., 2011). However, follow-up
requires both voluntary reporting and retrospective analysis involving sig-
nificant speculation. Virtually nothing is known regarding a wide category
of other vaccines that are considered ‘non-routine’, i.e. against possible
biological agents, such as anthrax, or diseases which are exceedingly
uncommon in the developed world, such as typhus or smallpox. In
most cases, the available recommendations rely heavily on a theoretical
benefit-to-risk ratio (Centers for Disease Control and Prevention,
2013b). Finally, questions continue to surface regarding the safety of
vaccine components (i.e. thimerosal), long-term childhood neurodeve-
lopmental conditions (i.e. autism) and venues to seek relief in the event
of an identifiable vaccine-related injury. Despite reassurances from
agencies, such as the Institute of Medicine (IOM), CDC and American
Congress of Obstetricians and Gynecologists (ACOG), based on
expanding reports of both short and long-term vaccine safety, the re-
sponsibility lies with the scientific community to continue a vigilant
watch through basic research efforts and post-marketing surveillance
systems (Poland, 2011).

Interference with infant response to
vaccination
Another major concern surrounding maternal vaccination stems from
the long-standing observation that the presence of maternal antibodies
in the infant is able to interfere with the infant’s humoral immune
response to vaccines both systemically and at mucosal districts
(Burstyn et al., 1983; Enriquez-Rincon and Klaus, 1984; Claesson et al.,
1989; Daum et al., 1991; Booy et al., 1992; Sarvas et al., 1992; Yamazaki
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et al., 1994; Englund et al., 1995; Troisi et al., 1997; Dagan et al., 2000;
Kanra et al., 2000; Crowe et al., 2001; Getahun and Heyman, 2009), al-
though cell-mediated immune responses arenot affected (Martinez et al.,
1997, 1999; Siegrist et al., 1998a, b). The inhibitory effect on infant re-
sponse to vaccination has been, however, highly variable among different
vaccines and even different studies of the same vaccine (Siegrist, 2003).

Many mechanisms of how maternal antibodies may inhibit infant
humoral immune response to vaccines (Table II) can be postulated,
some of which are based on the understanding of the immunosuppres-
sive mechanism of passive intravenous immunoglobulins (IVIGs)
(Schwab and Nimmerjahn, 2013). However, studies on how maternal
antibodies may actually interfere with vaccine-induced humoral immun-
ity in infants are needed, as maternal antibodies differ from IVIGs in quan-
tity, structure, composition and function, such as half-life, glycosylation
pattern, isotype and affinity for antigens and Fc receptors, and may inter-
fere with the infant immune response via distinct mechanisms from those
used by IVIGs. For example, the significant increase in the production of
maternal asymmetric IgG with an extracarbohydrate moiety in one of the
F(ab’) domains during pregnancy (Gutierrez et al., 2005) may allow such
IgG molecules to uniquely function as univalent blocking antibodies
against vaccine antigens differently from IVIGs in infants (Pasetti et al.,
1997). Since maternal antibodies decline in the infant, interference of
the infant humoral immunity to vaccination was found to mainly
impact primary immunization in early infancy but not subsequent
boosting (Glezen, 2003). However, this should not be a reason to
dismiss maternal immunization, as a reduced antibody titer after
infant vaccination may be acceptable if the high morbidity and mortality
can be mitigated in the first months of life by maternal vaccination.
Indeed, studies in mice show that maternal antibodies can promote
immune maturation in the offspring (Malanchere et al., 1997; Fink
et al., 2008). The pros and cons of maternal vaccination on the
immune responses to any given infant vaccination protocol should
therefore be evaluated individually.

Humoral immune modulations
in pregnancy that influence
vaccine efficacy and safety

All of the current maternal vaccination formulations are initially designed
for and tested in the non-pregnant population. However, substantial
immune modulations take place both systemically and in the reproduct-
ive mucosa during different stages of pregnancy, highlighting the distinct
possibility of sub-optimal or qualitatively different vaccine responses
in pregnant women. Research is thus needed to elucidate pregnancy-
associated immune alterations in both normal and complicated
pregnancies that can influence vaccine responses. The various preg-
nancy-associated changes in the T, natural killer, myeloid, cytokine and
chemokine compartments have been discussed in several excellent
reviews (Moffett and Loke, 2006; Mor and Cardenas, 2010, Chen
et al., 2012; Pazos et al., 2012a; Erlebacher, 2013). As B cells are the
final effectors of humoral immunity, we focus on the modulations in
the B cell compartment and their potential influence on vaccine-induced
antibody response.

The central and peripheral B cell compartments undergo quantitative
changes during pregnancy, with a contraction of peripheral B cell
numbers (Fig. 2). Initial studies in mice showed a profound reduction
of B cell precursors in the bone marrow from early pregnancy, which
was likely mediated by estrogen (Medina et al., 1993, 2000). Consistently,
the overall antibody titers to influenza infection are lower in pregnant
mice (Medina and Kincade, 1994; Smithson et al., 1998; Chan et al.,
2010). Similar changes have also been found in humans by many
studies (Christiansen et al., 1976; Moore et al., 1983; Valdimarsson
et al., 1983; Iwatani et al., 1988; Watanabe et al., 1997; Mahmoud
et al., 2001a). Of note, steroid hormones regulate humoral immunity
at multiple stages of B cell development. For example, the very early pre-
cursors of pro-B cells are particularly sensitive to negative regulation by
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Table II Postulated mechanisms of maternal antibody-mediated inhibition of infant humoral immune response to
vaccination.

Mechanism Supporting references

F(ab’)2-dependent Clearance of vaccine antigens by maternal IgG via opsonization
and subsequent FcgR-mediated phagocytosis

Getahun and Heyman (2009)

Neutralization of live viral vaccine epitopes by maternal IgG Albrecht et al. (1977) and Naniche (2009)
Inhibition of infant B cell recognition of vaccine epitopes by maternal IgG via
antigenic masking

Wiersma et al. (1989), Jelonek et al. (1996),
Nohynek et al. (1999) and Getahun and Heyman
(2009)

Fc-dependent Clearance of vaccine antigens by maternal IgG via FcgR-mediated
phagocytosis after antigen opsonization

Getahun and Heyman (2009)

Inhibition of infant B cell activation, survival and antibody production by
maternal IgG via the inhibitory receptor FcgRIIB

Victor et al. (2010) and Kim et al. (2011)

Inhibition of infant antigen-presenting cells by maternal IgG via the inhibitory
receptor Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing
Non-integrin (DC-SIGN), also called CD209

Anthony et al. (2008)

Saturation of infant endothelial or myeloid FcRn by maternal IgG and
acceleration of catabolism of vaccine-induced infant IgG

Vieira and Rajewsky (1988), Junghans and
Anderson (1996), Hansen and Balthasar (2002)
and Li et al. (2005)

Inhibition of infant dendritic cells (DCs) by ingested and absorbed
maternal IgA via FcaRI

Pasquier et al. (2005) and Kanamaru et al. (2008)

Inhibition of infant B cells and follicular DCs and macrophages by
ingested and absorbed maternal IgA via Fca/mR

Honda et al. (2009)
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estrogen (Kincade et al., 2000; Medina et al., 2001), allowing estrogen to
control the size of the B cell pool, while estrogen has an opposite effect at
later stages of B cell development, where it promotes B cell maturation
and antibody production (Verthelyi and Ahmed, 1998; Grimaldi et al.,
2002, 2006). Consequently, normal orevenelevatedpercentages of per-
ipheral mature B cells are found during pregnancy in mice (Medina et al.,
1993). Estrogen has also been shown to be able to expand MZ B cells and
follicular B cells in mice (Grimaldi et al., 2001, 2006).

Coupled with such stage-specific regulation of B cells by estrogen, are
the mechanisms that remove or reduce potentially pathogenic B cells
during normal pregnancy. The percentage of circulating CD5+ B cells
(Bhat et al., 1995), a population enriched with autoreactivity and partially
overlapping with the human B-1 cells (Griffin et al., 2011) recently postu-
lated to be implicated in adverse pregnancy outcomes, such as recurrent
pregnancy loss, pre-eclampsia and preterm birth (Kwak et al., 1995; Beer
et al., 1996; Roberts et al., 1996; Mahmoud et al., 2001b; Tamiolakis et al.,
2001; Darmochwal-Kolarz et al., 2002; Jensen et al., 2012; Wang et al.,
2013), is reduced in healthy human pregnancy. Paternal antigen-specific
maternal B cells are also suppressed (Ait-Azzouzene et al., 1998, 2001).
In addition, estrogen can induce regulatory B cells (Bregs) that express
interleukin-10 and programmed death ligand-1 (Bodhankar et al.,
2011), which have been implicated with protective functions in preg-
nancy (Rolle et al., 2013; Wang et al., 2013). The mechanisms to
remove or reduce auto- and allo-reactive B cells are critical, because if
they fail, estrogen would stimulate the production of pathogenic anti-
bodies by these B cells. Together with the predominant autoantibody
production by human early immature B cells (Wardemann et al.,
2003), mouse and human data suggest a selective down-regulation of
pathogenic B cells in normal pregnancy. This notion has important

implications for the development of maternal vaccines, which should le-
verage the antibody-promoting function of steroid hormones, such as es-
trogen, and at the same time target the B cell populations in pregnant
women to generate high levels of class-switched IgG while avoiding trig-
gering B cells that can mount detrimental autoimmune or alloimmune
reactions. This entails a thorough understanding of the type of B cells
in pregnancy that are responsible for the production of protective anti-
bodies in response to maternal vaccines, as well as the previous or
current autoimmune diagnosis of the pregnant women to be vaccinated.
The answer to this question is also relevant to the efficiency of placental
antibody transfer to and persistence in the fetus, as different B cell popu-
lations can undergo class switching in response to different antigens, pref-
erentially to specific IgG subclasses that vary in their binding affinities to
FcRn (Costa-Carvalho et al., 1996) and in vivo half-life (Morell et al., 1970;
Stapleton et al., 2011). The analysis of safe and effective examples
of maternal vaccines, including Tdap and IIV, in terms of the maternal
B cell populations targeted and the composition of maternal antibodies
produced, will offer clues to the answer of the above question.

Animal models for maternal
vaccination

General guidelines
Epidemiological studies of pregnant women exposed to vaccines have
proved to be a useful source of information for the efficacy and safety
of these vaccines, but animal models are required to dissect the mechan-
ism of vaccine-induced protection, side effects and to develop new

Figure2 Pregnancy-associated humoral immune alterations that can influence vaccine responses. Pregnancy is accompanied by a marked suppression of
the generation of B lineage precursors from hematopoietic stem cells (HSCs) in the bone marrow (a), leading to a reduction of the size of the B cell pool. This
suppression of B lymphopoiesis is likely mediated by steroid hormones, such as estrogen. However, estrogen has an opposite effect at later stages of B cell
differentiation by promoting the maturation of immature B cells (b) and the generation of marginal zone (MZ) B cells (c) and follicular B cells (d). The com-
bined effect is a reduction of the percentages of immature and transitional B cells in the reduced B cell pool. Estrogen has also been shown to promote the
development of plasma cells (e), whereas estrogen and human chorionic gonadotrophin (hCG) have been shown to promote the development of regu-
latory B cells (Bregs) (f). In normal pregnancy, peripheral CD5+ B cells, which have been implicated in adverse pregnancy outcomes, are suppressed by a
mechanism that is not well-known (g). This mechanism and the proper negative selection of autoreactive B cells in the bone marrow are critical to avoid the
stimulation of potentially pathogenic B cells by estrogen during pregnancy. Of note, the identity of human B-1 cells is under contentious debate, and the
developmental relationship between human Bregs, MZ B cells and B-1 cells is unclear.
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maternal vaccines. Historically, the development and testing of maternal
vaccines has critically relied on animal models, which have served at least
two purposes. They are used to understand the in vivo mechanism of
pathogenesis and the protective immunity required to control and eradi-
cate the pathogen. Once a lead vaccine candidate is identified, animal
models are used to evaluate its safety, immunogenicity, pharmacokinet-
ics and efficacy. Many species, including mouse (Oda et al., 1983; Paoletti
et al., 2000; Abram et al., 2003; Chan et al., 2010; Rahman et al., 2010;
Monney et al., 2012; Pazos et al., 2012a, b), rat (Heiman and
Weisman, 1989, 1990; Zenner et al., 1993; Hernando-Insua et al.,
2010; Kim et al., 2011), hamster (Freyreet al., 2012), guinea pig (Harrison
et al., 1995; Bourne et al., 2001; Schleiss et al., 2007, 2013, 2014; Leviton
et al., 2013), rabbit (Wessels et al., 1990, 1993; Barrow, 2012; Barrow and
Allais, 2013), sheep (Perez-Sancho et al., 2014), pig (Elahi et al., 2006) and
non-human primates (Paoletti et al., 2000; Barry et al., 2006; Warfel et al.,
2014), have been used.

In addition to cost and the availability of reagents, various experimen-
tal species differ from humans in immune regulation, susceptibility to the
pathogen, pathogenesis of infection, length of gestation, placenta physi-
ology and the relative contribution of placental (or yolk sac) antibody
transfer versus post-natal transfer of milk antibodies via milk (Table III).
Certain species, such as ruminants, horses and pigs, have no or little pla-
cental transfer of maternal antibodies to the fetus (Tizzard, 1987), and
intestinal absorption occurs for only the first 1–2 days after birth
(Tizzard, 1987; Yoshida et al., 2004, 2006; Zaman et al., 2008), which
makes these species unsuitable for testing the function of maternal vac-
cination in fetal or neonatal immune protection.

The World Health Organization has recommended general guidelines
to assess the potential adverse effects of in utero exposure to maternal
vaccines using animal models (World Health Organization, 2003). The
animal is usuallyexposed to the vaccine from implantation to the comple-
tion of pregnancy via a route similar to that used clinically. For the species
with a relative short gestation period, when compared with the time
required to develop a vaccine response, vaccination before mating is ne-
cessary to allow the fetus to be exposed to full vaccine-induced response.

The maximal human dose is recommended for the animal as a starting
point. However, if toxicity is observed or if the large administration
volume in not feasible for a smaller animal, a mg/kg dose that is higher
than the human dose and immunogenic in the animal should be used.
The titers of vaccine-induced antibodies in maternal, cord and fetal
blood should be determined to verify fetal exposure. Multiple doses
may be required depending on the nature of the vaccine formulation
and response. Booster immunizations during pregnancy may be neces-
sary to maintain high antibody titers throughout the gestation period
so that the embryo is exposed to both the maximal maternal immune re-
sponse and the complete components of the vaccine formulation. Fetal
viability, resorption, abortion, weight and morphology should be deter-
mined. In addition, pups should be monitored until weaning for growth,
weight gain and viability, whereas the mother should be monitored for
nursing activity.

The lesson from mice
Mice have been extensively used for maternal vaccination studies, includ-
ing influenza (Chan et al., 2010; Pazos et al., 2012a, b), pertussis (Oda
et al., 1983; Quinello et al., 2010) and GBS (Lagergard et al., 1990;
Wessels et al., 1990, 1993; Madoff et al., 1992; Paoletti et al., 2000). In
the case of influenza, the effect of infection on maternal immunity and
pregnancy outcome are largely conserved. Infection results in more
severe morbidity and mortality in pregnant mice and adversely impacts
litter size and health (Siem et al., 1960; Mackenzie et al., 1977; Williams
and Mackenzie, 1977; Chan et al., 2010). Pregnant mice also have altered
or delayed cytokine production similar to that in pregnant women (Chan
et al., 2010), which was likely mediated by estrogen (Pazos et al., 2012b).
For pertussis, placental and post-natal transfer of maternal antibodies
confers neonatal protection similarly to that in humans, although sub-
stantially greater protection has been found to be transferred via milk
post-natally (Oda et al., 1983; Quinello et al., 2010). For GBS, the
murine model of maternal vaccination followed by neonatal challenge
has been used to study both maternal immunogenicity and the efficacy
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Table III Comparison of human and the common animal models for maternal vaccination research.

Features Human Mouse Rat Guinea pig Rabbit Rhesus
monkey

Pig

Gestational
length

270–280 days 20 days 22 days 59–72 days 32 days 164 days 115 days

Placenta
morphology

Hemochorial,
discoid, villi

Hemochorial,
discoid, labyrinth

Hemochorial,
discoid, labyrinth

Hemochorial,
discoid, labyrinth

Hemochorial,
discoid, labyrinth

Hemochorial,
bidiscoid, villi

Epitheliochorial,
diffuse, folded

Source of
progesterone

Corpus luteum,
then placenta and
fetal membrane

Corpus luteum Corpus luteum Corpus luteum Corpus luteum Corpus luteum,
then placenta

Corpus luteum

Progesterone
withdrawal in
parturition

No* Yes Yes No* Yes No* Yes

Prenatal transfer
of IgG

Placenta, FcRn Inverted yolk
sac, FcRn

Inverted yolk
sac, FcRn

Inverted yolk
sac, fetal gut,
FcRn

Inverted yolk
sac, FcRn

Placenta, FcRn No transfer

Post-natal
transfer of IgG

Gut (1–2 days after
birth), FcRn

Proximal small
intestine, FcRn

Proximal small
intestine, FcRn

No significant
transfer

No significant
transfer

Gut (1–2 days
after birth), FcRn

Gut (2–3 days
after birth), FcRn

*Functional progesterone withdrawal may occur via the expression of inhibitory progesterone receptors in parturition.
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of neonatal protection (Madoff et al., 1992; Rodewald et al., 1992;
Paoletti et al., 1994). Preclinical evaluation of maternal GBS glycoconju-
gate vaccines has largely relied on mouse models. Female mice are
vaccinated before pregnancy and their offspring are challenged with
viable GBS (Madoff et al., 1994; Paoletti et al., 1994). An immunogenic
GBS glycoconjugate vaccine, but not capsular polysaccharides, has
been shown to confer protection of most of the pups. Mice have also
been used to test the therapeutic efficacy of GBS glycoconjugate
vaccine-induced passive immunity in human antisera (Paoletti et al.,
1997).

Nonetheless, mice differ from us in many key features pertaining to
pregnancy, including gestational length, placentation and endocrinology
(Table III), as well as a myriad of other differences in the immune
system (Mestas and Hughes, 2004). Various strains of mice also exhibit
subtle or even substantial differences in the susceptibility to certain
pathogens (Johnson, 2012), which, conceivably, reflects the intrinsic dif-
ferences in their immune systems. Therefore, the use of mouse models
to research maternal vaccination is not expected to completely replicate
human physiology, but should be coupled with human studies in an itera-
tive manner, whereby hypotheses drawn based on the observations in
humans are tested in mouse models under controlled conditions with
detailed sample and data collection, which in turn refines the hypotheses
to be further validated in additional human studies (Bonney, 2013). Only
by adopting such an iterative approach that mirrors the cycle of vaccine
development (Trautmann and Sekaly, 2011) can animal and human
studies synergize to make existing maternal vaccines more effective
and safer and to facilitate the development of new vaccines.

Conclusions and future directions
Maternal vaccination has emerged as a promising public health approach
to prevent or combat maternal and neonatal morbidity. Considerable
achievements have been made in the past decade, with a number of vac-
cines being universally recommended for pregnancy. However, the
public acceptance of maternal vaccination has been low in many coun-
tries. Besides the ethical, legal and socioeconomic restraints, significant
gaps exist in our knowledge of the efficacy and safetyof maternal vaccines
in pregnant women and those susceptible to high-risk pregnancies, and
no maternal vaccines against a large number of old and emerging patho-
gens are available. To tackle these scientific challenges and provide the
public with informed choices in vaccination, obstetricians, gynecologists,
reproductive biologists and immunologists must transcend the tradition-
al disciplinary barriers and work in concert, to be guided by a mechanistic
understanding of the maternal, fetal and neonatal immunologic
responses to vaccines. Our shallow overview of the various topics in
this review is precisely intended for such a purpose.

Can we be faster and more effective?
The empirical quest of maternal vaccines has largely relied on a reduc-
tionist approach of hypothesis creation followed by experimental valid-
ation in animal models and clinical trials. This approach can be time
consuming, not allowing the rapid development of new vaccines, espe-
cially in case of an emerging pandemic. Neither does it offer a systemic
view of the complex behavior of the maternal immune system after vac-
cination. Recently studies have highlighted the power of reverse vaccinol-
ogy for systematic and improved antigen discovery (Sette and Rappuoli,

2010) and systems vaccinology to profile vaccine response (Pulendran
et al., 2010) and even to predict vaccine efficacy (Querec et al., 2009;
Nakaya et al., 2011; Li et al., 2014). We believe the application of such
approaches at all stages of maternal vaccination research, from animal ex-
perimentation to human trials and evaluation, will dramatically improve
the speed, accuracy and safety of maternal vaccine targeting. Lastly, as
the efficacy of maternal vaccines also significantly relies on the secretion
of antibodies at the maternal– fetal interface and in the mammary gland, a
thorough understanding of the unique mechanisms of mucosal immune
regulation and the microbiota influence (Brandtzaeg, 2010, Chen and
Cerutti, 2010b) as well as the incorporation of mucosal immune assess-
ment into maternal vaccine experimentation and evaluation protocols
are required.
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