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Abstract

As high-throughput molecular dynamics simulations of proteins become more common and the 

databases housing the results become larger and more prevalent, more sophisticated methods to 

quickly and accurately mine large numbers of trajectories for relevant information will have to be 

developed. One such method, which is only recently gaining popularity in molecular biology, is 

the continuous wavelet transform, which is especially well-suited for time course data such as 

molecular dynamics simulations. We describe techniques for the calculation and analysis of 

wavelet transforms of molecular dynamics trajectories in detail and present examples of how these 

techniques can be useful in data mining. We demonstrate that wavelets are sensitive to structural 

rearrangements in proteins and that they can be used to quickly detect physically relevant events. 

Finally, as an example of the use of this approach, we show how wavelet data mining has led to a 

novel hypothesis related to the mechanism of the protein γδ resolvase.
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1. Introduction

Molecular dynamics (MD) has become a common method for studying the motion of 

proteins over time, and it is the only available technique for examining continuous fine 

granularity motion at atomic resolution. By numerically integrating Newton’s equations of 

motion, one can produce a series of snapshots of a protein’s trajectory through time. These 

snapshots, when saved at sufficiently high resolution, serve as stop-motion photography and 

provide a great deal of information about how proteins behave.

In recent years, the decreasing cost of computation has caused MD to grow in popularity. 

Longer and finer-resolution simulations of larger systems and of a greater number of 

systems have become common. Our Dynameomics project,1;2 containing >11,000 
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simulations, is one such example in which the number of systems has pushed the process of 

analysis to the edge of intractability. Other groups, by innovating efficient hardware for MD, 

have pushed their data to a similar position by running simulations with timescales on the 

order of milliseconds.3;4 Still others have simulated enormous systems, such as membrane 

proteins.5;6 Each of these projects has a similar problem when it comes to data analysis: the 

analysis itself requires the greatest human cost, due partly to the fact that analysis techniques 

have historically been more interested in explaining a short simulation than in locating 

events in a long simulation.

In this paper, we focus on the the analysis of MD simulations using wavelet-based 

techniques. It is worth noting, however, that any molecular system that evolves over time 

can be analysed with these same wavelet techniques. Nrownian dynamics simulations and 

elastic networks are two examples of systems whose data have a similar structure to MD 

systems and which could benefit from wavelet analysis as well. To demonstrate the 

effectiveness of wavelets on molecular systems, we examine the simulations in the 

Dynameomics database.

The Dynameomics project1;2 is a large-scale MD effort to simulate a representative from 

every protein fold family.7 The Dynameomics database8;9 currently contains over 2200 

proteins, including 807 fold family representatives and several extra members of more 

populated fold families. Each protein has been simulated for at least one 51 ns at a 

temperature of 298 K, at least twice at 498 K for 51 ns, and at least three times at 498 K for 

2 ns. This makes a total of ~11,000 simulations. These simulated target proteins are selected 

from our updated consensus domain dictionary10 based on procedures developed by Day et 

al.11 These targets constitute a data set that spans a considerable portion of the protein 

universe, representing more than 80% of all known protein domains. The majority of the 

remaining 20% of the domains are not in fact autonomous self-contained folds. In fact, the 

selected targets represent 97% of the known autonomous protein domains (the remaining 

3% are membrane proteins or contain complicated co-factors). Consequently, the simulation 

portion of the Dynameomics project is complete; thus we now turn to mining and using this 

database.

Because of the incredible amount of information stored in the Dynameomics database, 

which contains 104 times as many structures as the Protein Data Bank (PDB),12 analysis is 

often challenging. Although a vast array of analysis techniques exist for the examination of 

individual trajectories, these techniques are designed to shed light on the cause and effect of 

events specific to one protein. Determining the often subtle similarities and differences 

between hundreds of simulations has never before been possible, and new analysis 

techniques that focus on hypothesis generation rather than mere description are necessary.

Wriggers et al. have previously examined the topic of event detection in an MD trajectory 

by analyzing broken and gained contacts throughout a simulation.13 Although this method is 

a powerful tool for the analysis of large, long, or numerous trajectories, it is limited to 

detecting events that are associated with large changes in contacts. Although many 

significant events involve both significant motion and significant changes in contacts, some 

feature a greater change in the former than the latter or vice versa. Our method, which we 
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describe here, aims to build on these event detection abilities by examining the motions of 

proteins using continuous wavelets by and highlighting events based purely on the 

significance of these motions.

Wavelet analysis is a signal processing technique that has been around since the early 

1900s,14. Biological uses of wavelets have frequently focused on high-level probles such as 

voice recognition15 or brain imaging16, but wavelets have recently begun to gain popularity 

in molecular biology (reviewed by Liò17). Many applications of wavelets to protein science 

have focused on analysis of sequence or of individual 3D structures.18;19;20;21 More 

recently, the discrete wavelet transform (DWT) has been applied to protein trajectories in 

various forms as well, for example to reaction coordinates of folding22 or to contacts,23 

where it has proven to be a valuable noise reduction method. The continuous wavelet 

transform (CWT) has been specifically suggested as powerful tools in MD,24 but, to our 

knowledge, they have never been applied to the time dimension of MD, nor have wavelets 

been applied to atomic coordinates themselves. Like the Fourier transform, wavelets give 

information about the frequency domain of a signal, but, unlike the Fourier transform, which 

gives only average information about each frequency, wavelets give instantaneous 

information about how a particular frequency is localized in time. Consequently, one can 

obtain considerable information about the modes of a particular signal without losing 

information about when these modes occur or how variable they are (Fig. 1).

The CWT is a wavelet technique, distinct from the more common DWT, that offers high 

resolution information about a signal at any scale. For our purposes, a signal is the trajectory 

of an atom over time. The CWT is defined by Equation 1.1, where s is the unitless scale of 

the wavelet, t is time, q(τ) is the signal over time, ψ(t) is the wavelet function or wavelet, τ 

is the variable of integration, and * denotes the complex conjugate. Conceptually, this is 

equivalent to sliding a given wavelet function along the signal and calculating the match of 

the signal to the wavelet at each time. The wavelet is scaled (or horizontally stretched) by 

some amount determined by the scale s in order to examine various wavelengths in the 

signal. In order for wavelets to produce finite values localized in time, they are required to 

be localized in time and frequency space, meaning they and their Fourier transforms must 

approach zero as time or frequency approaches negative or positive infinity. We additionally 

require that they have unit power (  where Ψ(ω) is the Fourier transform 

of ψ(t)) in order to make them comparable across scales. Wavelets are also required to have 

a mean of zero. Examples of wavelet functions are shown in Figure 2.

For a discrete signal q of length n, the wavelet coefficients W(ψ,s) for a scale s and a wavelet 

function ψ are calculated using Equation 1.2, a discrete version of Equation 1.1. The 

resulting coefficients can then be examined in terms of time and scale (or wavelength) as 

shown in Figure 1c. The coefficients can be calculated very efficiently using the discreet 

Fourier transform and convolution theorem.25 Using this technique, the runtime of our 

method is O(n log n) where n is the length of the signal. Further details including complete 

Mathematica codes for calculating wavelets are included in the supplemental materials.
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(1.1)

(1.2)

Wavelet coordinates, like Fourier coordinates, can be expressed in terms of period or 

frequency. Low frequencies (few events per unit of time) are equivalent to long periods 

(events spread over a long time). Because our atoms do not have constant velocities and 

because we are interested primarily in the duration of events, we do not consider wavelength 

here. The scale of a wavelet is related to its period in that if a wavelet has a period of p, then 

the same wavelet, when scaled by s, will have a period of sp. Equivalently, if a wavelet has 

frequency ω = 1/p, the wavelet will have frequency s/ω when stretched by s. Because many 

wavelets have periods close to 1, the scale is often approximately equal to the period of the 

wavelet.

Because each wavelet function has a unique shape, the scale of a wavelet does not always 

correspond perfectly to the wavelength at which it best matches the signal. For example, the 

Paul wavelet (Fig. 2b), when scaled by s, matches a sine or cosine wave with a wavelength 

of approximately 1.389s. The Morlet wavelet (Fig. 2a), on the other hand, would match a 

wavelength of 1.01s. These parameters can be calculated using the method outlined by 

Meyers et al.26 Parameters as well as equations for each of the wavelets used in this paper 

are given in Table 1.

Once wavelet coefficients have been calculated, one may determine which scales and times 

are significant and which are not. To demonstrate how this can be done, suppose that we 

believe our signal follows white noise, meaning that at every frequency, the signal (an 

atom’s motion) will tend to have the same amplitude. We would thus expect that at any 

given time t the square of the absolute value of the wavelet coefficient for a period p would 

be approximated by the variance of the original signal; note that the absolute value is used 

because the wavelet coefficient may be a complex number. Generally speaking, we can 

expect that a wavelet coefficient will be normally distributed around the expected value, 

thus the square of its absolute value, assuming the coefficients are complex numbers, will be 

distributed by . By extension, if we believe that the mean amplitude of our signal is 

distributed by the function ν(p) and that the wavelet coefficients will be normally distributed 

around their mean amplitudes, then we expect the square of the absolute values of our 

wavelet coefficients to be distributed by . Using this distribution, we can choose 

any significance level and examine only those regions of time whose power is in the upper 

portion of the expected distribution, just like in a standard t-test. For a more complete 

theoretical description of the continuous wavelet transform, please refer to Daubechies.27 A 

practical guide to wavelets is discussed by Torrence and Compo.28 Implementation details, 

including an exact algorithm, are given in the supplemental materials.
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The CWT, unlike the discrete wavelet transform, is not a data reduction method; in fact, the 

CWT produces considerably more data than the original signal (each scale produces as much 

data as the simple x, y, z coordinates of an atom over time). By using significance testing, 

however, one can manage these data by storing only those points at which significant 

wavelet matches occur along with their significance levels. The vast majority of data 

produced by the CWT carries no more information than the fact that, at a particular time and 

scale, there is no motion of statistical interest. By storing only the scales and times of 

significant motion, an entire trajectory of wavelet coordinates can be compressed into a few 

kilobytes without loss of useful information, allowing the CWT to be used as a data 

reduction and summary technique.

Here we begin by showing what wavelet analysis provides for a simple 3-helix bundle fold 

(the engrailed homeodomain, EnHD; PDB: 1enh). We then demonstrate the utility of 

wavelet analysis by focusing on two proteins: endoglucanase A (CelA; PDB: 1cem) and 

profilin (ProF; PDB: 1ypr). We compare these wavelet spectra to other analysis methods as 

well as to the trajectories themselves. With these two proteins, we show that wavelet 

analysis can be used to discover important events in a simulation including rearrangements 

and changes in secondary structure. We then show the power of wavelet signatures as a 

high-throughput metric for identifying subtle features and interactions that are not always 

obvious using traditional techniques by analyzing the 298 K simulations of all 807 of the 

targets in our Dynameomics database and examining the most statistically significant result. 

This result, the identification of a loop in the protein γδ resolvate that oscillates between 

subtly different conformations, explains how the protein achieves the flexibility required to 

bind DNA.

2. Methods

2.1. Molecular Dynamics Simulations

Simulations were performed with explicit water using our in-house developed simulation 

package in lucem molecular mechanics29;30 and our previously described protein and water 

force fields.31;32 Simulation details can be found elsewhere.1 Here we are focusing on the 

298 K trajectories. For each simulation, atomic coordinates from all but the first 1 ns of our 

trajectories were analyzed from our in-house developed database.9 For each ps of the 

simulation, the protein structure was aligned to the initial structure using a rigid least squares 

fitting of Cα atoms with the structure’s center of mass held at the origin.33 The total time of 

each simulation was at least 51 ns; though only 31 ns were complete at the time this project 

was started. Haar, Morlet, and Paul wavelet analyses were performed on each Cα atom’s 

trajectory over time; these wavelet data were then loaded into Mathematica34 for further 

analysis. At least 31 ns of all 807 ‘simulatable’ (self-contained) folds in our new 2011 

consensus domain dictionary,10 which is an updated version of our 2003 domain dictionary,7 

were analyzed (~17 μs total).

2.2. Wavelet Analysis

We chose to use the continuous wavelet transform because of its ability to retain very finely 

detailed information at a wide range of wavelengths. Scales were chosen to fit Equation 2.1,
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(2.1)

giving a range of 60 scales from 250 ps to 16 ns. Scales determine how much each wavelet 

function is stretched or compressed prior to calculation of the wavelet coordinates, thus are 

roughly equivalent to frequency. Because a wavelet function scaled by a factor s may not 

match motions occurring in exactly a period s, scales were adjusted for each wavelet 

function according to the period factor in Table 1 so that, for each wavelet function, the 

resulting wavelet coordinates describe the motions with periods sk from Equation 2.1. In 

other words, each wavelet function examines differently shaped motions (Fig. 2), but each 

function examines the motions occurring on timeframes (periods) occurring from 250 ps to 

16 ns as described in Equation 2.1. The granularity for our simulations is 1 ps, so this range 

of scales captures both the fast (250 ps) and the slower (10–20 ns) motions that occur in our 

simulations. Additionally, the large number of wavelet scales gives a very fine resolution.

Three wavelet functions were chosen in order to capture the variety of motion that can occur 

in a simulation. The Morlet wavelet35 consists of a plane wave tempered by a Gaussian. The 

Morlet has both a real and imaginary component, such that it can capture both the amplitude 

of the motion and the phase. It best matches motions that are sinusoidal in nature. The Haar 

wavelet14 is a very simple wavelet that is zero everywhere except for immediately before 

and after 0 where it is 1 and −1, respectively. The Haar wavelet best matches sudden 

changes in a signal and square waves. The Paul wavelet36 is essentially a complex version of 

the famous Mexican hat wavelet, which is based on the derivative of the Gaussian function. 

It is similar to the Morlet wavelet but decays more quickly, giving it better resolution in time 

and lower resolution in frequency. Notably, the imaginary portion of the Paul wavelet can 

match sigmoidal signals quite well. All wavelets were initially scaled so as to have a single 

period of approximately 21 ns. Plots of the three wavelets are shown in Figure 2. Example 

wavelet spectra for the Cα atom of Arg29 of EnHD are show in Figure 3. These spectra 

demonstrate that the Morlet, Paul, and Haar wavelets have different sensitivities in time and 

frequency while still highlighting the same events.

In order to determine which pieces of a wavelet spectrum are of interest, we used the basic 

significance testing method discussed above and outlined by Torrence and Compo.28 

Because the square of the absolute value of a wavelet coordinate is distributed by , 

where the variance of the signal is σ2 and the mean expected Fourier power (squared 

amplitude) of a particular period p is μp, we only need to know the mean Fourier power of a 

particular period to determine statistical significance of the oscillations occurring at any 

given time for that wavelength. We calculated the Fourier spectrum, fp, for each of our 

wavelengths over every atom’s trajectory, q, according to Equation 2.2 and found that the 

mean Fourier power, |fp|2, was approximately described by the equation μp = p1.43/155 + 20, 

where p is the period measured in picoseconds. Equation 2.2 is similar to the calculation of a 

single Fourier coefficient but at an arbitrary wavelength. The calculation is made over as 

much of the signal as possible, but trims from the front when necessary to prevent 

incomplete sinusoidal waves from biasing the magnitude of the calculation.
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(2.2)

For each wavelet spectrum, we extracted regions whose values were statistically in the upper 

20% of the expected power distribution as strong oscillations of a particular wavelength. For 

each scale, s, regions within s/2 ps of the beginning or end of the trajectory were ignored in 

order to avoid the edge effects inherent with a finite signal. Additionally, the first 

nanosecond was ignored to allow for equilibration. For each picosecond, the wavelength at 

which a given Cα atom was oscillating according to this analysis was recorded. Whenever 

multiple frequencies occurred at the same time, the one with the stronger oscillation (greater 

statistical significance) was used. These data thus formed a “wavelet map” of the 

wavelengths that were most prevalent at every picosecond for each Cα atom in a given 

protein.

In order to demonstrate the utility of these wavelet maps, we examined their general 

properties for all 807 proteins. We hypothesized that an atom experiencing no significant 

wavelet oscillations over a time regime would be characterized by very little motion or by 

rapid vibrations, likely due to heat. Similarly, we hypothesized that those residues with low 

frequency wavelets would be characterized by structural rearrangements and large motions 

during the time of those wavelets. To test this, we randomly chose 100 residues and time 

regions from our 807 proteins requiring only that the wavelets for the residue be of a 

uniform frequency over that time. Time regions were allowed to be low frequency/long 

period (p > 1 ns), high frequency/short period (p < 1 ns), or no frequency (no significant 

wavelets) for the entire region in question. These residues were then scored as either 

arbitrary vibrations or large movements/rearrangements with the actual values of the 

wavelets during each time region concealed. The results were then tallied and compared. To 

demonstrate our specific findings, we present wavelets for the two proteins ProF and CelA. 

Finally, to show how wavelets can be used to mine simulations, we compared the low 

frequency distributions of all Cα atoms and examined the simulations of those with the 

greatest statistical significance at low frequencies. The trajectory of one such pair of atoms, 

G101 and M103 of γδ resolvase, revealed a novel mechanism in which helix αE changes 

conformation during DNA binding.

3. Results and Discussion

Universally, the Morlet and Paul wavelets were a better fit for MD trajectories than the Haar 

wavelet. At a given period, the Paul wavelet tended to give the best resolution in time; at a 

given time, the Morlet wavelet tended to give the best resolution in frequency. The Haar 

tended to lag behind both. This comparison is demonstrated in Figure 3 for the simple 3-

helix bundle fold of EnHD. There were no residues in all of our simulations that could be 

statistically differentiated from white noise more than 20% of the time using the Haar 

wavelet; thus, we do not consider it further (note that nothing in Fig. 3c is statistically 

distinct from white noise).
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In the 807-protein data set, high frequency oscillations (p < 1 ns) were common, occurring 

22% of the time, but they were frequently correlated with thermal vibrations. Midrange and 

low frequencies occurred 30% of the time and were almost always correlated with motions 

ranging from slight rearrangements to loss or gain of secondary structure to broad shifts in 

backbone conformation. When scored by hand, regions of time with no significant wavelets 

correlate with arbitrary vibrations 78% of the time while low frequency wavelets correlate 

with structural movements and rearrangements 73% of the time. High frequency wavelets 

correlated with movements and rearrangements 50% of the time and with arbitrary 

vibrations 50% of the time.

Proteins with very stable trajectories have considerably fewer significant oscillations than 

those that were unstable. EnHD, for example, exhibits only a small amount of motion, 

mostly at the N-terminal tail (Fig. S1a). Only 20% of the time is there a significant 

oscillation with p > 1 ns not occurring in the N-terminal tail (Fig. S1a). Conversely, proteins 

that undergo considerable rearrangement from their crystal structures have more low 

frequency oscillations. The DNA-binding domain of ADR6 (1kkx) is a protein with a similar 

topology to the engrailed homeodomain, but which was deemed unstable in our simulation. 

It undergoes a large set of helical rearrangements in the beginning of its trajectory after 

which it moves less but has an exposed hydrophobic core. Low frequency oscillations occur 

in 35% of this simulation, most of which correlate with the protein’s overall shifts (Fig. 

S1b).

Given that low frequency wavelets correlated strongly with overall rearrangements in a 

protein simulation, we searched all 807 simulations for wavelet coordinates that whose 

period was at least 1 ns and whose significance was in the top 5% of the expected power 

distribution. Two proteins stood out as having highly significant motions during their 

trajectories: endoglucanase A (CelA) and profilin (ProF). We examine these proteins in 

more detail here.

The catalytic core of CelA is an all-helical protein in the α/α toroids family (Fig. 4a). The 

simulation of CelA contains moderate rearrangement of several mobile loops early on and 

several subtle changes that occur throughout the simulation. The Paul wavelet map and the 

root mean square fluctuation (RMSF) plot for CelA are shown in Figure 5a. RMSF is a 

commonly used metric for the amount of fluctuation occurring in a residue over time 

relative to its average position. Three main regions are of interest in this wavelet map, the 

first of which is an empty region around 5–10 ns near residue 125 followed by the long 

periods around 14 ns. During this time, the loop, shown in blue in Figure 4a, moves over 7 

Å from a docked to a completely solvent-exposed configuration. The corresponding 

structures for these regions are shown in Figure 4b. Another interesting region is the long 

period block near residue 250 throughout the middle of the simulation. During this time a 

pair of small β-strands are lost (~10 ns) and the helix shown in red in Figure 4a (α7) moves 

close to the nearby loop (Fig. 4c). The structures for this region are compared with the 

region absent of long periods at the end of the simulation in Figure 4c. Finally, Figure 4d 

shows the subtle helical shift that occurs near residue 350 early in the simulation that result 

in a change in the orientation and packing of two small helices. None of these fluctuations is 

visible on the RMSF spectrum due to their subtle nature and their relatively small 

BENSON and DAGGETT Page 8

Int J Wavelets Multiresolut Inf Process. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



movements. RMSF and other traditional analyses often fail to detect small movements, even 

when they are significant, due to their focus on the amount of change rather than the quality 

of change. Wavelet analysis finds these motions despite their subtlety because they are 

ordered rearrangements whose magnitude is significant relative to the timescale at which 

they occur.

The protein profilin is a member of the profilin-like family that binds actin and regulates the 

growth of actin filaments. The simulation of ProF, in contrast to CelA, undergoes a few fast 

rearrangements in the first few ns of the simulation after which little significant motion is 

observed. The simulation is very stable with even the most flexible residue having a mean 

RMSF of only ~ 0.76 Å. When examining the Morlet oscillation map of ProF (Fig. 5b), one 

is immediately drawn to the long period block throughout the middle of the simulation 

between residues 55 and 75. This midrange oscillation occurs for a long period of time and 

includes the highly significant motions located by wavelet analysis, which are focused 

around a band of residues from A53-N58 (Fig. 6a). These residues are in a helix near the 

binding interface with actin, and S57 participates directly in actin binding. Above this band 

(further along the sequence) are several other bands of low frequency motion containing 6 

other actin-binding residues (M68, L70, R71, H81, D82, and G85). In the crystal structure, 

S57 points outward into solvent and away from the other binding residues, but during the 

time frame highlighted by the long period wavelets from ~ 4.5 ns until ~ 14 ns, the helix 

containing S57 unravels from the C-terminal end, keeping the loop containing S57 and N58 

in tact and pushing them toward the other active site residues slightly (Fig. 6).

Figure 5 shows the RMSF for CelA (a) and ProF (b) over time. For these proteins, their 

RMSF profiles are essentially uncorrelated with their wavelet maps. Notably, there is a 

slight increase in the RMSF of the region S122-A153 for CelA during the longer periods 

near 15 ns. However, regions E245-Y275 and S335-T360 show virtually no distinctive 

patterns in the RMSF spectra. Similarly, the regions around S57 and N58 of ProF show little 

correlation with the wavelets and, in fact, do not tend to change much over time. Thus, 

wavelet analysis was able to effectively screen for and detect interesting motion within two 

unrelated proteins where conventional analysis failed.

Searching a database of multiple simulations of 807 proteins and > 17 μs of simulation time 

for interesting or important events is a daunting task. In order to expedite this process, we 

hypothesized that individual residues dominated by low frequency movements were most 

likely to be involved in significant conformational events. Accordingly, we examined the 

trajectories of Cα atoms in our simulations that had the highest portion of significant low 

frequency (> 1 ns) motion according to the Paul and Morlet wavelets. Two such atoms, both 

in the upper 5% of the distribution, belong to G101 and M103 of γδ resolvase (1gdt). γδ 

resolvase is a 183-residue protein belonging to the resolvase and DNA invertase family that 

forms a homodimer in solution.37 It is known that G101 is a critically flexible residue 

situated between β-strand 5 and α-helix E (Fig. 7a) that allows αE to pivot away from αD 

during DNA binding,38 but how this event occurs is unclear.

In our simulation of the monomer of γδ resolvase, we observed a slight unraveling of helix 

αE and β-strand 5 around 3.5 ns as well as periodically throughout the simulation (Fig. 7b). 
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These movements were the cause of the low frequency motion highlighted by wavelet 

analysis. Closer examination revealed that this separation is accompanied by the formation 

of an Ω-loop between β5 and αE with G101 at its tip. This loop is stabilized by the 

movement of the side-chain of M103 from a solvent-accessible state into a hydrophobic 

pocket consisting of I90, F92, and I97 where it displaces the Cγ of T99 (Fig. 7c and 7d). 

During this motion, T99 rotates out of the pocket, maintaining its hydrogen bond with the 

amide of I90 and allowing it to easily rotate back into the pocket when M103 leaves. The 

result of this event is a slight turning of αE and a loosening of loop 5E, making further 

rearrangement of αE, such as that required for strand exchange, possible. Interestingly, 

methionine can be reversibly oxidized, increasing its polarity and hydrophilicity, a process 

proposed to be involved in protein regulation.39;40 Theoretically, an oxidized M103 or a 

mutation such as M103D could stabilize the solvent-accessible state (αE closed) while a 

reduced M103 or a mutation such as M103L could stabilize the Ω-loop (αE open). Thus, an 

automated screen for Cα atoms in the upper 5% of the distribution with respect to low 

frequency motion led to the discovery of interesting cyclic conformational behavior that 

may be linked to function.

The wavelet analyses explored here are a very effective method of examining both very 

large and very subtle types of motions occurring in a protein over time. We have 

demonstrated that wavelets are capable of picking out multiple types of distinct movements 

that occur within a protein that may not be easy to find via visual inspection of the trajectory 

or by using traditional analysis methods (for example, CelA, ProF). Additionally, wavelets 

are capable of pinpointing when a change is occurring in time, allowing them to be used as a 

high-throughput screening technique for simulations (as with γδ resolvase).

It is not surprising that the Haar wavelet fit our data poorly. The Haar is, by nature, designed 

for square waves and discrete jumps, neither of which we observe in our simulations. The 

Paul wavelet, which approximates the Haar wavelet in a smooth form, was much more 

useful for our purposes. Both the Paul and the Morlet wavelet provided good results, though 

the Paul is theoretically better suited for analysis across time due to its high temporal 

resolution.

Although it is initially surprising that wavelets would be able to detect non-oscillatory 

movements, such as a helical rearrangement, it should be noted that an atom following a 

sigmoid trajectory can easily match the imaginary part of an appropriately scaled Paul 

wavelet (Fig. 2b). Thus, the Paul wavelet should not be thought of purely as an indicator of 

oscillation, but rather as an indicator of non-random motions. The fact that wavelet 

significance testing is not dependent on the amplitude of the oscillation additionally confers 

an advantage, in that large motions do not necessarily drown out smaller motions as is often 

the case in analyses such as RMSF. For example, a large hinge motion between two regions 

of a protein would not prevent a smaller change in secondary structure within one region 

from being detected.

Wavelets show clear sensitivity and specificity to all ranges of structural rearrangement in a 

simulation, including many that are not visible using traditional analyses such as RMSF. 

This is potentially of great use for studying the effects of mutation, pH, and/or temperature 
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on a structure, as these changes can be difficult to detect. The motions highlighted from 

CelA (Fig. 4) demonstrate the range of wavelet sensitivity, as these motions include a large 

loop rearrangement (Fig. 4b), a small change in contacts and secondary structure position 

(Fig. 4c), and a subtle change in the arrangement of two helices (Fig. 4d).

Wavelets also show promise for detecting biochemically relevant motions that can be 

otherwise very subtle and difficult to find. Notably, the Cα RMSFs for the oscillating region 

in ProF are relatively low and show no particular distinction over the time range during 

which the helical unwindings were occurring (Fig. 6b). In fact, compared with the wavelet 

maps, the RMSF profile shows very little differentiation over time.

Notably, the Paul and Morlet wavelets excel at detecting different kinds of events. While the 

Paul wavelet showed excellent sensitivity to changes and rearrangements in protein 

structure, the Morlet showed sensitivity to periodic oscillations. This sensitivity suggests 

that the Morlet wavelet may be useful in detecting interactions and communication in long 

simulations while the Paul wavelet may additionally be useful in examining changes in 

simulations and simulations in which rearrangements are expected to occur, such as in high-

temperature unfolding simulations.

Perhaps most critically, all of these advantages of wavelets can be used in a high-throughput 

fashion to screen and isolate events in large simulations or sets of simulations, as illustrated 

with γδ resolvase. Finding an event of interest by hand in even 0.1 μs of simulation data of a 

single protein is a daunting task and would be virtually impossible for our now complete 

database containing ~11,000 simulations of all protein folds. As high-throughput 

computation becomes more common, methods for mining the resulting data, such as 

wavelets, will also become more important.

4. Conclusions

Wavelet analysis is a powerful tool that can be used to quickly and automatically isolate 

distinct motions of interest in a protein simulation. Due to their ability to locate subtle 

changes without being overwhelmed by larger more obvious motions, wavelets represent an 

ideal method for screening simulations to quickly pinpoint changes or structural 

rearrangements and for comparing differences in simulations, due to mutation, pH, or 

temperature changes, for example. Additionally, wavelets can be used to scan large 

databases of simulations for biochemically relevant events, such as the motion of a catalytic 

site or of functionally relevant loops.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of Fourier transform and the continuous wavelet transform. (a) A signal whose 

frequency increases over time. (b) The absolute value of the Fourier transform of the signal 

in a. (c) The continuous wavelet transform of the signal in a. Notably, the wavelet transform 

shows clearly that the signal is increasing in frequency over time while the Fourier 

transform shows only that low frequencies are dominant. (d) Plot of the significant period 

over time of the signal in (a), calculated by taking the most significant wavelet wavelength 

from (c) at each time with a minimum significance of 0.2.
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Fig. 2. 
Plots of the three wavelets used in this study, as described in Table 1, each plotted from −4 

to 4 with scale s = 1. Solid lines represent the real parts while dashed lines represent the 

imaginary parts. (a) The Morlet wavelet. (b) The Paul wavelet. (c) The Haar wavelet.
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Fig. 3. 
Plots of the wavelet analyses of the Cα atom of R29 of the engrailed homeodomain (EnHd, 

PDB: 1enh). The absolute value of each wavelet coordinate is shown with low values 

illustrated in blue. No scale is given because wavelet values are in arbitrary units. (a) The 

Morlet wavelet. (b) The Paul wavelet. (c) The Haar wavelet. The scales of each are not 

identical as they are not directly comparable.
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Fig. 4. 
(a) Protein structures and notable structural features of the protein Endoglucanase A (1cem; 

CelA) taken at 10 ns in its simulation. (b) Region S122-A153 of CelA colored red, green, 

blue, magenta in temporal order. (c) Region E245-Y275. (d) Region S335-T360. In each 

instance, the time period whose wavelet coordinates were significant in the low frequency 

range are mobile while the time period whose wavelet coordinates were not significant in 

the low frequency range is stationary.
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Fig. 5. 
Wavelet maps and RMSF plots of (a) Endoglucanase A (CelA; PDB: 1cem) and (b) profilin 

(ProF; PDB: 1ypr). The wavelet maps show the most statistically significant frequency of 

each Cα atom occurring at each time. Notably, RMSF maps and wavelet maps are not 

correlated in time.
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Fig. 6. 
Changes in profilin (ProF) binding residue S57. Helix α3, containing S57, is shown in red. 

Side-chains of actin binding residues highlighted by wavelet analysis are shown in black, 

and the side-chain of S57 is shown in red. (a) Minimized crystal structure. (b) 5.4 ns, (c) 11 

ns, and (d) 12.7 ns. During this time period, helix α3 twists significantly and unravels from 

the N-terminal end, changing the orientation of S57 to the binding site.
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Fig. 7. 
The protein γδ resolvase (PDB: 1gdt). The side-chains of residues forming a hydrophobic 

pocket (I90, F92, I97, T99, and M103) are shown in black while the backbones of residues 

99–103 are shown in red. (a) Residues near loop 5E in the minimized crystal structure. (b) 
Residues near loop 5E at 3.5 ns. Near 3.5 ns the end of helix αE and part of loop 5E unwind 

to form an Ω-loop. This motion flips the side-chain of residue M103 into the hydrophobic 

pocket shown in black while pushing residue G101 into solvent, stabilizing the alternate 

conformation. Both M103 and G101 are known to be important for the binding and 

flexibility of αE and were identified as highly significant during this time range by wavelet 

analysis.
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Table 1

Formulas and wavelengths for wavelets used in the paper.

Wavelet Formula Period of W(ψ,s) (ps)

Morlet (ω = 2π) ψ(t) = π−1/4e−t22e2πit 1.01s

Paul (order = 4) 1.389s

Haar 0.87s
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