
JOURNAL OF ANIMAL SCIENCE
AND BIOTECHNOLOGY

Li Journal of Animal Science and Biotechnology 2014, 5:52
http://www.jasbsci.com/content/5/1/52
REVIEW Open Access
Transforming growth factor β signaling in uterine
development and function
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Abstract

Transforming growth factor β (TGFβ) superfamily is evolutionarily conserved and plays fundamental roles in cell
growth and differentiation. Mounting evidence supports its important role in female reproduction and
development. TGFBs1-3 are founding members of this growth factor family, however, the in vivo function of TGFβ
signaling in the uterus remains poorly defined. By drawing on mouse and human studies as a main source, this
review focuses on the recent progress on understanding TGFβ signaling in the uterus. The review also considers
the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility
problems in women.
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Introduction
Transforming growth factor β (TGFβ) superfamily pro-
teins are versatile and fundamental regulators in meta-
zoans. The TGFβ signal transduction pathway has been
extensively studied. The application of mouse genetic ap-
proaches has catalyzed the identification of the roles of
core signaling components of TGFβ superfamily members
in reproductive processes. Recent studies using tissue/cell-
specific knockout approaches represent a milestone to-
wards understanding the in vivo function of TGFβ super-
family signaling in reproduction and development. These
studies have yielded new insights into this growth factor
superfamily in uterine development, function, and dis-
eases. This review will focus on TGFβ signaling in the
uterus, primarily using results from studies with mice and
humans.
TGFβ superfamily
Core components of the TGFβ signaling pathway
Core components of the TGFβ signaling pathway consist
of ligands, receptors, and SMA and MAD (mother against
decapentaplegic)-related proteins (SMAD). TGFβ ligands
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bind to their receptors and impinge on SMADs to activate
gene transcription. TGFβ superfamily ligands include
TGFβs, activins, inhibins, bone morphogenetic proteins
(BMPs), growth differentiation factors (GDFs), anti-
Müllerian hormone (AMH), and nodal growth differen-
tiation factor (NODAL). Seven type I (i.e., ACVRL1,
ACVR1, BMPR1A, ACVR1B, TGFBR1, BMPR1B, and
ACVR1C) and five type II receptors (i.e., TGFBR2,
ACVR2, ACVR2B, BMPR2, and AMHR2) have been
identified [1-4]. SMADs are intracellular transducers. In
mammalian species, eight SMAD proteins have been iden-
tified and are classified into receptor-regulated SMADs
(R-SMADs; SMAD1, 2, 3, 5, and 8), common SMAD (Co-
SMAD), and inhibitory SMADs (I-SMADs; SMAD6 and
SMAD7). R-SMADs are tethered by SMAD anchor for re-
ceptor activation (SARA) [5]. In general, SMAD1/5/8 me-
diate BMP signaling, whereas SMAD2/3 mediate TGFβ
and activin signaling. SMAD6 and SMAD7 can bind type
I receptors and inhibit TGFβ and/or BMP signaling [6,7].
A plethora of ligands versus a fixed number of receptors
and SMADs suggests the usage of shared receptor(s) and
SMAD cell signaling molecules in this system.
TGFβ signaling paradigm: canonical versus non-canonical
pathway
To initiate signal transduction, a ligand forms a hetero-
meric type II and type I receptor complex, where the
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constitutively active type II receptor phosphorylates type I
receptor at the glycine and serine (GS) domain. Subse-
quent phosphorylation of R-SMADs by the type I receptor
and formation and translocation of R-SMAD-SMAD4
complex to the nucleus are critical steps for gene regula-
tion [2,8-10]. Activation of transcription is achieved by
SMAD binding to the consensus DNA binding sequence
(AGAC) termed SMAD binding element (SBE) [11,12], in
concert with co-activators and co-repressors. Of note,
SMADs can promote chromatin remodeling and histone
modification, which facilitates gene transcription by
recruiting co-regulators to the promoters of genes of pref-
erence [13].
TGFβ signals through both SMAD-dependent (i.e., ca-

nonical) and SMAD-independent (i.e., non-canonical)
pathways in a contextually dependent manner [2,8,14-16]
(Figure 1). The non-canonical pathways serve to integrate
signaling from other signaling cascades, resulting in a
quantitative output in a given context. Davis and colleagues
[17] have recently suggested the presence of microRNA
(miRNA)-mediated non-canonical pathway, where TGFβ
signaling promotes the biosynthesis of a subset of miRNAs
via interactions between R-SMADs and a consensus RNA
sequence of miRNAs within the DROSHA (drosha, ribo-
nuclease type III) complex [17-19]. Thus, this type of non-
canonical signaling requires R-SMADs but not SMAD4.
Multiple regulatory layers including ligand traps (e.g., follis-
tatin), inhibitory SMADs, and interactive pathways exist to
determine the signaling output and precisely control TGFβ
signaling activity [4,8,20-23]. For instance, the linker region
of R-SMADs is subject to the phosphorylation modifica-
tion by mitogen-activated protein kinases (MAPKs) [24].
Figure 1 Canonical and non-canonical TGFβ signaling. In the canonica
type I receptors and phosphorylate R-SMADs, which form heteromeric com
transcription. The non-canonical pathway generally refers to the SMAD-ind
Recent studies have identified an “R-SMAD-dependent but SMAD4-indepen
Therefore, the variable responses triggered by this growth
factor superfamily and the complex signaling circuitries
within a given cell population underscore the importance
of a fine-tuned TGFβ signaling system at both the cellular
and systemic levels.

TGFβ superfamily signaling regulates female reproduction
TGFβ superfamily is evolutionarily conserved and plays
fundamental roles in cell growth and differentiation.
The signal transduction and biological functions of this
signaling pathway have been extensively investigated
[2,4,8,9,25]. TGFβ superfamily signaling is essential for
female reproduction (Figure 2), and dysregulation of
TGFβ signaling may cause catastrophic consequences,
leading to reproductive diseases and cancers [26-33].
Recent studies have uncovered the roles of key recep-

tors and intracellular SMADs of this pathway in female
reproduction. Smad1 and Smad5 null mice are embryoni-
cally lethal, but Smad8 null mice are viable and fertile
[34,35]. SMAD1/5 and ALK3/6 act as tumor suppressors
with functional redundancy in the ovary [27,29]. Smad3Δex8

mice demonstrate impaired follicular growth and atresia, al-
tered ovarian cell differentiation, and defective granulosa
cell response to follicle-stimulating hormone (FSH) [36,37].
We have shown that SMAD2 and SMAD3 are redun-
dantly required to maintain normal fertility and ovarian
function [38]. Disruption of Smad4 signaling in ovarian
granulosa cells leads to premature luteinization [39]. How-
ever, oocyte-specific knockout of Smad4 causes minimal
fertility defects in mice [40]. SMAD7 mediates TGFβ-
induced apoptosis [41] and antagonizes key TGFβ signal-
ing in ovarian granulosa cells [42], suggesting inhibitory
l pathway, TGFβ ligands bind to serine/threonine kinase type II and
plexes with SMAD4 and translocate into the nucleus to regulate gene
ependent pathway such as PI3K-AKT, ERK1/2, p38, and JNK pathways.
dent” non-canonical pathway that regulates miRNA maturation.



Figure 2 Major functions of TGFβ superfamily signaling in the
female reproduction. TGFβ superfamily signaling regulates a
variety of reproductive processes including follicular development
(e.g., TGFβs, GDF9, BMP15, activins, and AMH), ovulation (e.g., GDF9),
oocyte competence (e.g., GDF9 and BMP15), decidualization (e.g.,
BMP2 and NODAL), implantation (e.g., ALK2-mediated signaling),
pregnancy (e.g., BMPR2-mediated signaling), embryonic development
(e.g., TGFβs, activins, follistatin, BMP2, and BMP4), and uterine
development (TGFBR1-mediated signaling).
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SMADs are potentially novel regulators of ovarian func-
tion. Recent studies show that TGFBR1 is indispensable
for female reproductive tract development [43,44], while
ALK2 and BMPR2 are required for uterine decidualization
and/or pregnancy maintenance [45,46].

TGFβ signaling in uterine development
The uterus develops from the Müllerian duct, which forms
at embryonic day E11.75 in mice [47]. Uterine mesenchy-
mal cells remain randomly oriented and undifferentiated
until after birth. Between birth and postnatal day 3, circular
and longitudinal myometrial layers are differentiated from
the mesenchyme [48]. The uterus acquires basic layers and
structures by postnatal day 15 [48,49]. Maturation of the
myometrium continues into adulthood. Mechanisms con-
trolling myometrial development are poorly defined.
Wingless-type MMTV integration site family (Wnt)7a null
females demonstrate defects in reproductive tract forma-
tion, suggesting a critical role of Wnt/β catenin signaling in
myometrial development [50-53].
Myometrial contractility is critical for successful preg-

nancy and labor. The myometrial cells transform from a
quiescent to a contractile phenotype trigged by the decline
of progesterone levels during late pregnancy. What has
long puzzled scientists is how this transformation occurs
during pregnancy, and how myometrial development and
function are coordinately regulated. Uterine contraction is
controlled by hormonal, cellular, and molecular signals
[54-65]. Recent studies have discovered that miRNAs are
key regulators of contraction-associated genes and
suppressors including oxytocin receptor (Oxtr), cyclooxy-
genase 2 (Cox2), connexin 43 (Cx43), zinc finger E-box
binding homeobox 1 (Zeb1), and Zeb2 [65,66]. However,
signaling pathways that control the development of mor-
phologically normal and functionally competent myome-
trium are poorly understood.
TGFβ signaling plays a pleiotropic role in fundamental

cellular and developmental events [2,3,8]. Using a Tgfbr1
conditional knockout (cKO) mouse model created using
anti-Müllerian hormone receptor type 2 (Amhr2)-Cre,
we have shown that TGFβ signaling is essential for
smooth muscle development in the female reproductive
tract [43,44]. The female mice develop a striking ovi-
ductal phenotype that includes a diverticulum. The
Tgfbr1 cKO mice are infertile and embryos are unable
to be transported to the uterus due to the presence of the
physical barrier of oviductal diverticula [43]. Meanwhile,
disrupted uterine smooth muscle formation is another
prominent feature in these mice, which is associated with
a developmental failure of the myometrium during early
postnatal uterine development [44]. However, the expres-
sion of the majority of smooth muscle genes in the uterus
of the conditional knockout mice does not significantly
differ from that of controls, suggesting that the develop-
mental abnormality might not be a direct result of intrin-
sic deficiency in smooth muscle cell differentiation. Our
studies point to the contributions of reduced deposition of
extracellular matrix proteins, derailed signaling of platelet-
derived growth factors, and potentially altered migration
of uterine cells during a critical time window of develop-
ment [44]. The Tgfbr1 cKO mouse model can be further
exploited to understand the pathogenesis of myometrium-
associated diseases, such as adenomyosis that is present in
these mice [44].

TGFβ signaling and uterine function
Pre-implantation embryonic development refers to a period
from fertilization to blastocyst implantation, which requires
coordinated expression of maternal and embryonic genes.
The fertilized egg undergoes dynamic genetic programming
and divisions to reach the blastocyst stage. The pluripotent
inner cell mass of the blastocyst will develop into the em-
bryonic proper, while the trophectoderm and the primitive
endoderm form extra-embryonic tissues during devel-
opment [67]. Preimplantation embryonic development
largely depends on maternal proteins and transcripts
before zygotic genome activation (ZGA), which initiates
the expression of genes that are needed for continued
development of the embryos. ZGA occurs at the two-
cell stage in the mouse [68].
Blastocyst implantation is a complex event that is con-

trolled by both intrinsic embryonic programs and extrinsic
cues including hormonal and uterine signals. Implantation
in the mouse can be divided into three phases: apposition,
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attachment, and penetration. Following attachment, uter-
ine stromal cells extensively proliferate and differentiate
into decidual cells (i.e., decidualization) [69]. The roles of
steroid hormones, cytokines, growth factors, integrins,
and angiogenic factors have been explored, and more re-
cently, a number of novel genes/pathways underlying im-
plantation have been identified. Several elegant reviews
are available on these topics [70-72]. The important roles
of embryonic TGFβ superfamily signaling in embryo de-
velopment have been reviewed [3]. This article will focus
on the role of maternal TGFβ signaling in implantation
and embryonic development.
TGFBs1-3 are founding members of the TGFβ super-

family. The majority of currently available studies are con-
fined to the identification of tissue/cell-specific expression
of TGFBs and in vitro analysis of the ligand function. In
the uterus, the in vivo role of TGFβ signaling remains elu-
sive, partially because of the redundancy of the ligands
[73,74] and the lack of appropriate animal models as a re-
sult of the embryonic lethality in mice lacking TGFβ li-
gands. TGFB1 is involved in preimplantation development
and yolk sac vasculogenesis/hematopoiesis [75]. To allow
the Tgfb1 null mice survive to reproductive age, they were
bred onto the severe combined immunodeficiency (SCID)
background [76]. Although the uterus of Tgfb1 mutant
mice appears to be morphologically normal [76], embryos
are arrested in the morula stage.
An in vitro model has been used to determine the ef-

fect of growth factors on preimplantation development,
and the results showed that TGFB1 or epidermal growth
factor (EGF) dramatically improves the inferior develop-
ment of singly cultured embryos between eight-cell/morula
and blastocyst stages. This study suggests that embryo and/
or reproductive tract-derived growth factors are involved
in the development of preimplantation embryos [77]. In
vitro treatment of preimplantation stage embryos with
TGFB1 increases total numbers of cells in expanded and
hatching blastocysts [78]. Furthermore, TGFB1-promoted
in vitro blastocyst outgrowth is blocked by an antibody di-
rected to parathyroid hormone-related protein [79], which
suggests the involvement of parathyroid hormone-related
protein in mediating the effect of TGFB1 on blastocyst
outgrowth. In addition, TGFB1 increases the in vitro ex-
pression of oncofetal fibronectin, an anchoring trophoblast
marker, indicating a potential role of TGFβ in trophoblast
adhesion during implantation [80]. TGFB1 also inhibits
human trophoblast cell invasion, at least partially, by
promoting the production of tissue inhibitor of metallo-
proteinases (TIMP) [81]. An elegant study showed that
maternal TGFB1 can cross the placenta and rescue the
developmental defects of Tgfb1 null embryos, leading to
perinatal survival of these mice [82]. As further evi-
dence, both maternal and fetal TGFB1 may act to main-
tain pregnancy [83].
TGFβ signaling and uterine diseases
Uterine fibroids
Leiomyoma, generally known as uterine fibroid, is a be-
nign tumor arising from the myometrium (i.e., smooth
muscle layers). Although leiomyoma is commonly benign,
it could be the cause of fertility disorders and morbidity
and mortality in women [84].
Increasing lines of evidence point to the involvement

of TGFβ signaling in the development of leiomyoma. It
has been shown that the expression of TGFBs and re-
ceptors is elevated in leiomyomata versus unaffected
myometrium [85]. Among all the three TGFβ isoforms,
TGFB3 seems to play a major role in leiomyoma develop-
ment by promoting cell growth and fibrogenic process
[86]. Tgfb3 transcript and protein levels are elevated in hu-
man leiomyoma cells, compared with myometrial cells in
two-dimensional (2D) and 3D cultures [87-90]. In a 3D
culture system, a higher level of TGFB3 and SMAD2/3 ac-
tivation is present in the leiomyoma cells versus myome-
trial cells [87,89]. However, it does not support that
connective tissue growth factor 2 (CCN2/CTGF) is a major
mediator of TGFβ action in leiomyoma tissues [91].
Although a link between overexpression of TGFBs and

leiomyoma has been recognized, the precise mechanisms of
TGFβ signaling in leiomyoma are largely unknown. It has
been demonstrated that TGFB1-stimulated expression of
fibromodulin may contribute to the fibrotic properties of
leiomyoma [92]. Moreover, treatment of myometrial cells
with TGFB3 promotes the expression of ECM components
such as collagen 1A1 (COL1A1), fibronectin 1 (FN1), and
versican, but reduces the expression of those associated
with ECM degradation [88,93]. Thus, TGFβ signaling in-
duces molecular changes that facilitate leiomyoma forma-
tion. Consistent with the enhanced TGFβ signaling in the
etiology of leiomyoma, a number of substances or drugs,
such as genistein [94], relaxin [95], halofuginone [96],
asoprisnil [97], gonadotropin-releasing hormone-analogs
(GnRH-a), and tibolone [98] may influence leiomyoma de-
velopment via affecting TGFβ signaling. For the therapeutic
purpose, an ideal drug is one that only targets TGFβ signal-
ing in the leiomyoma cells but not normal myometrial cells.
In this vein, asoprisnil, a steroidal 11β-benzaldoxime-
substituted selective progesterone receptor modulator
(SPRM), targets TGFB3 and TGFBR2 in leiomyoma cells
but not normal myometrial cells [97], providing a poten-
tially effective treatment option for leiomyoma. The high
levels of leiomyoma-secreted TGFBs, in turn, may com-
promise uterine function of the patients. For example, by
producing excessive amount of TGFB3, leiomyoma antago-
nizes decidualization mediated by BMP2 [99].

Preeclampsia
Preeclampsia often occurs in pregnant women after the
20th week of gestation, characterized by hypertension and
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proteinuria. The causes of preeclampsia are complex and
beyond the scope of this review. It has been shown that
plasma TGFB1 [100-104] and TGFB2 [105] levels are ele-
vated in patients with preeclampsia. Experimental evidence
also suggests that failure to downregulate the expression of
TGFB3 during early gestation may cause trophoblast hypo-
invasion and preeclampsia [106]. Interestingly, the levels of
soluble endoglin, a transmembrane TGFβ co-receptor, are
elevated in sera of women with preeclampsia, which may
be associated with vascular complications and hyperten-
sion in these patients [107,108]. Based on these findings,
TGFB proteins may serve as potential biomarkers for pre-
eclampsia [105]. It is thus plausible that optimal TGFβ sig-
naling activity is required to keep preeclampsia in check by
maintaining normal trophoblast invasion during implant-
ation and placentation. However, another study showed
that TGFBs1-3 are not expressed in villous trophoblasts,
and TGFB1 and TGFB3 are not expressed in the extravil-
lous trophoblast either. The expression of TGFBs1-3 in the
placenta is not altered in patients with preeclampsia [109].
Moreover, there are also reports indicating that concen-
trations of TGFB1 in serum are indistinguishable be-
tween patients with preeclampsia and normal controls
[110-112]. In addition, the levels of activin A and in-
hibin A, but not inhibin B, are increased in patients with
preeclampsia [113-116]. Thus, the role of TGFβ signal-
ing in the pathophysiological events of preeclampsia
awaits further elucidation.

Intrauterine growth restriction
Intrauterine growth restriction (IUGR), also called fetal
growth restriction (FGR), refers to a complication of fetal
growth during pregnancy. The estimated weight of the
fetus with IUGR is often less than 90% of other fetuses at
the same stage of pregnancy [117]. Circumstantial evi-
dence indicates that TGFβ signaling is involved in the de-
velopment of IUGR. Serum levels of TGFB1 in the IUGR
fetus are lower [118]. TGFB2 is required for normal em-
bryo growth, as supported by the fact that Tgfb2 mutant
fetuses weigh less than littermate controls [119]. Soluble
endoglin levels are elevated in IUGR pregnancies [108], al-
though it is debatable [120]. It has been shown that the
higher expression of endoglin in IUGR pregnancies may
be caused by placental hypoxia involving TGFB3 [121].
Mouse models for IUGR are valuable to study the mech-
anism of this pathological condition, which may have dev-
astating effects on the pregnancy and newborns. Notably,
Nodal knockout mice show diminished decidua basalis
due to reduced proliferation and enhanced apoptosis as
well as defects in placental development, resulting in
IUGR and preterm fetal loss [122]. Conditional ablation of
Bmpr2 in the uterus causes defects in decidualization,
trophoblast invasion, and vascularization, which are causes
of IUGR in the pregnant females [46].
Endometrial hyperplasia
Endometrial hyperplasia is a pathological condition
where endometrial cells undergo excessive proliferation
[123]. Categories of endometrial hyperplasia include simple
hyperplasia, simple atypical hyperplasia, complex hyperpla-
sia, and complex atypical hyperplasia [124]. Endometrial
hyperplasia is recognized as a premalignant lesion of endo-
metrial carcinoma [125] and a potential cause of abnormal
uterine bleeding and fertility disorders. The high preva-
lence of endometrial carcinoma is associated with atypical
hyperplasia in women [126-128]. It has been reported that
up to 29% of untreated complex atypical hyperplasia pro-
gresses to carcinoma [124]. Endometrial hyperplasia is gen-
erally caused by excessive or chronic estrogen stimulation
that is unopposed by progesterone, as in patients with
chronic anovulation and polycystic ovary syndrome. Al-
though progestin treatment is commonly effective for this
disease [129], approximately 30% of patients with complex
hyperplasia are progestin resistant [130]. Genetic alter-
ations including mutations of Pten tumor suppressor have
been shown to be associated with endometrial hyperplasia
[131,132]. Elegant work has shown that inactivation of
TGFβ signaling and loss of growth inhibition are associated
with human endometrial carcinogenesis [133,134]. The
role of TGFβ signaling in endometrial cancer has been
reviewed and will not be covered in this article [135]. Our
recent study shows that loss of TGFBR1 in the mouse
uterus using Amhr2-Cre enhances epithelial cell prolifera-
tion. The aberration culminates in endometrial hyperplasia.
Further studies have uncovered potential TGFBR1-
mediated paracrine signaling in the regulation of uterine
epithelial cell proliferation, and provided genetic evi-
dence supporting the role of uterine epithelial cell pro-
liferation in the pathogenesis of endometrial hyperplasia
[136]. Further elucidating the role and the underlying
mechanisms of TGFβ signaling in the pathogenesis of
endometrial hyperplasia and/or cancer will benefit the
design of new therapies.

Conclusions and future directions
A precisely controlled endogenous TGFβ signaling system
is of critical importance for the development and function
of female reproductive tract. Mouse genetics has proven
to be a powerful tool to address many of the fundamental
questions posed in the field of TGFβ and reproduction.
Conditional knockout approaches have been utilized over
the last two decades to decipher the reproductive function
of TGFβ superfamily in female reproduction. These stud-
ies are at an exciting stage and are advancing at a rapid
pace. The functional role of TGFβ signaling in the uterus
is beginning to be unveiled. We anticipate that the genetic
approach will continue to have large impacts and lead to
new breakthroughs in this field. However, understanding
how the hormonal, cellular, and molecular signals induce
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a specific biological response and functional outcome in
the context of the uterine microenvironment in vivo rep-
resents a challenging task. It remains unclear how specific
or integrated signals act on the chromatin to shape the
epigenetic landscape in physiological and/or pathological
conditions of the uterus. Therefore, the interaction be-
tween TGFβ signaling and other regulatory pathways (e.g.,
small RNA pathways) and potential epigenetic mecha-
nisms underlying specific reproductive processes and/or
diseases in the uterus need to be clarified. This knowledge
will help to design new treatment options for uterine dis-
eases and fertility disorders.
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