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Abstract

Automated electron microscopy (EM) image analysis techniques can be tremendously helpful for 

connectomics research. In this paper, we extend our previous work [1] and propose a fully 

automatic method to utilize inter-section information for intra-section neuron segmentation of EM 

image stacks. A watershed merge forest is built via the watershed transform with each tree 

representing the region merging hierarchy of one 2D section in the stack. A section classifier is 

learned to identify the most likely region correspondence between adjacent sections. The inter-

section information from such correspondence is incorporated to update the potentials of tree 

nodes. We resolve the merge forest using these potentials together with consistency constraints to 

acquire the final segmentation of the whole stack. We demonstrate that our method leads to 

notable segmentation accuracy improvement by experimenting with two types of EM image data 

sets.

Index Terms
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1. INTRODUCTION

Electron microscopy (EM) is currently a unique imaging technique for reconstructing neural 

circuits, i.e. the connectome [2], because it has a sufficiently high resolution for 

neuroscientists to identify synapses. However, the terabyte scale of the generated image data 

causes manual analysis to take decades and thus is impractical [3]. Therefore, automated 

microscopy image analysis is required. Complex cellular textures and considerable 

variations in shapes and topologies within and across sections make fully automated 

segmentation and reconstruction of neurons very challenging problems.

In this paper, we focus on 2D neuron segmentation, which is suggested as a first step for 3D 

neuron reconstruction by the anisotropy of current EM image volumes. For example, the 

serial section transmission electron microscopy (SSTEM) has 2–10 nm in-plane and 30–90 

nm out-of-plane resolution, and the serial block-face scanning electron microscopy (SBF-

SEM) has approximately 10 nm in-plane and 50 nm out-of-plane resolution.

Various methods were proposed to segment EM images, among which supervised learning 

for membrane detection using contextual information followed by region segmentation 
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methods have been successful. Jain et al. [4] learned a convolutional network to classify 

pixels as membrane or non-membrane. Jurrus et al. [5] presented a serial artificial neural 

network (ANN) framework that integrates original image with the contextual information 

from a previous classifier to train a next classifier. Seyedhosseini et al. [6] took advantage of 

this serial classifier architecture and exploited multi-scale contextual information to improve 

membrane detection results.

As for region segmentation given membrane detection results, simply thresholding the 

classifier output can be applied [7, 5, 6]. However, a good threshold value is often difficult 

or even impossible to find, and pixel-size misdetections about membrane can cause 

significant under-segmentation errors. Superpixel and region merging techniques, which 

have been widely used to segment natural images [8, 9], are starting to be applied to neuron 

segmentation. Andres et al. [10] proposed a hierarchical method that acquires over-

segmentations from membrane detection maps and uses a classifier to determine region 

merging, which introduces region based information but still needs a fixed cutoff value to 

threshold the predicted edge probability maps. Jain et al. [11] used reinforcement learning to 

cluster superpixels. Funke et al. [12] presented a pioneering work that uses a tree structure to 

represent the organization of segmentation hypotheses for simultaneous 2D segmentation 

and 3D reconstruction of neurons via integer linear programming. However, their approach 

considers features only from regions located in different sections but not from regions within 

a section. Furthermore, it only optimizes inter-section connections as constraints to acquire 

2D segmentation, and it does not focus on optimization with respect to the 2D segmentation 

quality. We proposed a 2D neuron segmentation approach that also adopts a tree structure to 

represent the order of region merging from watershed transform and resolves the tree to 

acquire final segmentation based on the predictions of a boundary classifier learned from 

intra-section region features [1]. We showed that this approach has potential for improving 

segmentation accuracy.

One missing factor in [1] is inter-section information. In spite of the anisotropy of image 

volumes, substantial region similarities can be observed across consecutive sections. 

Corresponding regions on adjacent sections may provide clues about segmenting a current 

section. This is in fact what a human does when a 2D segmentation decision is difficult to 

make: adjacent sections are looked at for corresponding regions that belong to the same 

neuron, and the geometric and/or textural information from such corresponding regions is 

used for assistance. In this paper, we simulate this procedure and extend our work [1] by 

introducing a section classifier to identify region correspondence between adjacent sections. 

Then all trees, each of which represents one section, are combined with their node potentials 

updated with the inter-section correspondence. Instead of resolving one single tree at a time, 

a whole forest is resolved simultaneously using a greedy optimization strategy. In this way, 

we take advantage of inter-section information, which improves the overall segmentation 

accuracy as indicated by the experimental results.

2. WATERSHED MERGE TREE AND BOUNDARY CLASSIFIER

Our work uses the results from a supervised pixel-wise membrane detector, for which we 

train a random forest classifier [13] with stencils of intensity features from original images 
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[6], multi-scale Radon-like features [14, 6] and SIFT features [15]. The membrane detector 

assigns to each pixel a probability of being membrane, which results in a probability map. 

Considering it as a 3D terrain map, we run the watershed transform with an initial water 

level l0 to obtain an over-segmentation of the image. Then by raising the water level, we 

have regions merge and thus produce a segmentation hierarchy that can be represented by a 

tree structure (Figure 1). This is called a watershed merge tree [1] and notated as T = ({N}, 

{E}), where a node Ni corresponds to an image region Ri, and a local tree structure of parent 

Ni and children { } represents subregions { } merge to compose 

region Ri, and {E} is the set of all the edges between the nodes. A merge tree is considered 

to be a binary tree for convenience.

A boundary classifier [1] is trained to predict how likely a potential merge could happen. It 

takes features from a pair of potential merging regions (Ri, Rj) within a section and gives a 

probability pi,j that the two regions merge to one. Then every node Ni in the merge tree 

receives a potential Pi as

(1)

where pi′,j′ is the probability that the two child nodes Ni′ and Nj′ merge, and pi,j is the 

probability that node Ni merge with its sibling node Nj.

With such potentials, a merge tree can be resolved via greedy optimization that iteratively 

picks the highest potential node and removes inconsistent hypothesis nodes [1].

3. WATERSHED MERGE FOREST AND SECTION CLASSIFIER

Since the region merging hierarchy of one section can be represented by a merge tree, it is 

straightforward that we can use a series of merge trees, or in other words a merge forest, to 

represent an image stack consisting of consecutive sections. To compute how probable a 

node should be in the final segmentation, we not only consider the node potential from the 

boundary classifier, but also refer to corresponding nodes in adjacent sections, which we call 

reference nodes. Connections to all possible reference nodes can be considered as directed 

edges between nodes in different trees, which we call reference edges. The most likely 

corresponding node is called the best reference node and the corresponding edge is called 

the best reference edge (explained in details in Section 4). Regions that are too large or too 

far away are eliminated as very unlikely reference node choices, and therefore the number of 

reference nodes/edges is linearly proportional to the number of nodes in a forest. Figure 1 

shows an example: node 1 has node 2 to 7 as possible reference nodes, and thus there are 

reference edges from node 1 to these nodes; suppose node 3 is the best reference node of 

node 1, then the edge from node 1 to 3 is the best reference edge. We denote a reference 

edge from node  in section z to its reference node  in a referred adjacent section zref 

(zref = z ± 1) as .

Since only a subset of nodes in a tree represents correct segmentations, reference edges do 

not always represent true region correspondence. Only those between nodes that correspond 
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to the correct segmentations are valid. To identify such connections, we introduce a section 

classifier. The section classifier takes a set of 59 features computed from a pair of 

potentially corresponded regions, including geometric features (region area/perimeter/

compactness differences, centroid distance, overlapping, etc.), image intensity statistics 

features (region and boundary pixel intensity statistics from both Gaussian denoised EM 

images and membrane detection maps), and textural features (texton statistics). We train a 

random forest classifier [13] with class weights reversely proportional to numbers of 

positive/negative examples to handle the data imbalance.

4. RESOLVING THE MERGE FOREST

The section classifier predicts how likely each reference edge is valid, based on which we 

can choose the best correspondence to update our knowledge about a current node. First, we 

identify the best reference node based on the section classifier output edge weight 

for each reference edge  as

(2)

Then each node potential is updated with its best reference edge weight  and its best 

reference node potential  as

(3)

where  and  before the update are computed using Equation (1). By doing this, we 

associate the potential of this node with its best reference node, and therefore correlate their 

chances of existence in the final segmentation. Zero edge weights are set to a minimal 

positive value ε that is smaller than the minimum non-zero edge weight overall. Because 

otherwise the corresponding node potentials would be all punished to exactly zero. If a node 

has no reference edge, its potential is updated by multiplying ε and 0.25 as reference node 

potential which represents random merge/split decisions from the boundary classifier 

according to Equation (1). Since the number of decision trees we use in random forest as the 

section classifier is always far smaller than 104, we fix ε as 10−4 to be guaranteed smaller 

than the minimum non-zero edge weight.

The next step is to resolve the merge forest, which selects a subset of nodes from each tree, 

respectively. The consistency constraint in [1] still applies: any pixel should be labeled only 

once. Therefore, if a node is selected, its ancestors and descendants must be removed. 

Instead of resolving each merge tree independently, we resolve the whole merge forest 

simultaneously using a greedy approach. The node with the highest potential in the forest is 

picked. Then all of its ancestors and descendants within the tree, which are inconsistent 

choices, are removed, and all reference edges directed to these removed inconsistent nodes 

are removed as well. Next, all node potentials are recomputed, and this procedure is repeated 
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until no nodes are left in the forest. The set of selected nodes in each tree forms a consistent 

final segmentation for all sections.

5. RESULTS

We validate our methods using two data sets. One data set is a stack of 70 SBFSEM images 

(700 × 700) of mouse neuropil. The last 25 sections are used for training, and the first 45 

sections are for testing. The other data set is the ISBI 2012 Segmentation of Neuronal 

Structures in EM Stack Challenge [16] training stack. It consists of 30 SSTEM images (512 

× 512) of the Drosophila first instar larva ventral nerve cord [17]. We use the first 20 

sections for training and the rest for testing. The ground truth intra-section segmentation and 

inter-section region correspondence were manually annotated. The hypothetical regions 

from either the initial over-segmentation or the region merging are matched to the 2D 

ground truth regions with respect to symmetric difference in order to generate the training 

labels for the section classifier.

We use a MATLAB implementation of random forest [18]. The pixel-wise membrane 

detection random forest uses 200 trees. The initial water level l0 is set as one percent and 

five percent respectively for the mouse neuropil and the ISBI Challenge data set. Reference 

edges are considered between regions smaller than 200000 and 40000 pixels and within a 

centroid distance of 45 and 30 pixels for the mouse neuropil and the ISBI Challenge data set 

respectively based on their different resolutions and cell sizes. We use 255 trees for both the 

boundary and the section classifier.

To measure segmentation accuracy, we use 1 minus pair F-score, which was the main metric 

of the ISBI Challenge [16]. Pair F-score is the harmonic mean of pair precision and recall 

calculated based on the definition of true positives as pixel pairs with both the same truth 

and proposed labels, true negatives as pixel pairs with both different truth and proposed 

labels, false positives as pixel pairs with different truth labels but the same proposed label, 

and false negatives as pixel pairs with the same truth label but different proposed labels. The 

results for the two data sets obtained via thresholding pixel-wise membrane detection results 

at the best threshold [6], the watershed merge tree method [1] and the watershed merge 

forest method in this paper are shown in Table 1 for comparison. Figure 2 shows visual 

results of the testing images from both the mouse neuropil and the ISBI Challenge data sets.

We observe from Figure 2, our watershed merge forest method can correct node selection 

mistakes in a section by utilizing information from adjacent sections that are easier to 

segment. Therefore, it can fix both the over-segmentation and the under-segmentation errors 

from the watershed merge tree method. The testing results of both the two data sets are 

improved significantly by over 3.6 percent compared with the merge tree results and over 

13.1 percent compared with the thresholding results. Considering this method is meant to be 

applied to large scale data sets, the improvement may save a substantial amount of manual 

work for biologists and neuroscientists.
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6. CONCLUSION

This paper presented an effective extension to our previous work [1] and utilized inter-

section information to improve intra-section neuron segmentation accuracy. Besides for cell 

continuation as the major type of region connection, we argue that our reference model 

works for most cell terminations and branchings as well. Since cells appear almost always in 

more than one section, even if a cell terminates in the next section, correspondence should 

still be found in the previous section. Also, when a cell branches, its profile often splits 

unevenly to a similarly sized region and some other much smaller regions, so we expect to 

find informative reference nodes for most branching cases as well. Future work will 

introduce new features to further improve the section classifier and address the inter-section 

neuron reconstruction problem.
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Fig. 1. 
Example of a merge forest (consisting of three merge trees) with reference edges.
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Fig. 2. 
Segmentation results of two image regions on two consecutive sections from the mouse 

neuropil and the ISBI Challenge data sets (zoomed in).

Liu et al. Page 9

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Liu et al. Page 10

Table 1

Segmentation errors, 1 – F, for the mouse neuropil and the ISBI Challenge data sets (TH: thresholding; MT: 

watershed merge tree method; MF: watershed merge forest method).

Method
Mouse neuropil ISBI Challenge

Training Testing Training Testing

TH 0.1942 0.2946 0.1542 0.2449

MT 0.06768 0.2010 0.02656 0.1173

MF 0.04917 0.1632 0.01937 0.08129
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