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Abstract

O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins has been shown to be 

involved in many different cellular processes, such as cell cycle control, nutrient sensing, signal 

transduction, stress response and transcriptional regulation. Cells have developed complex 

regulatory systems in order to regulate gene expression appropriately in response to environmental 

and intracellular cues. Control of eukaryotic gene transcription often involves post-translational 

modification of a multitude of proteins including transcription factors, basal transcription 

machinery, and chromatin remodeling complexes to modulate their functions in a variety of 

manners. In this review we describe the emerging functional roles for and techniques to detect and 

modulate the O-GlcNAc modification and illustrate that the O-GlcNAc modification is intricately 

involved in at least seven different general mechanisms for the control of gene transcription.
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INTRODUCTION

Cells have developed a highly regulated system to respond to environmental and 

intracellular signals to specifically and coordinately express gene products [1, 2]. 

Surprisingly, the number of protein-coding genes in a genome does not reflect organism 

complexity, thus it has been hypothesized that increased complexity in gene regulation leads 

to increased organism complexity [3]. Indeed, the regulation of eukaryotic gene transcription 

involves a multitude of proteins including transcription factors, basal transcription 

machinery, and chromatin remodeling complexes [4]. An additional layer of complexity 

results from a wide variety of post-translational modifications on regulatory proteins [5]. 
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Herein, we describe the emerging role of the O-GlcNAc post-translational modification of 

nuclear/cytosolic proteins in the regulation of transcription.

In the 1980’s, Hart and coworkers reported a nucleocytoplasmic, post-translational sugar 

modification on serine and/or threonine residues of polypeptides, O-GlcNAc [6–8]. All 

metazoans currently studied contain the O-GlcNAc modification on proteins involved in 

many different cell processes, such as cell cycle control [9–11], nutrient sensing [12], signal 

transduction [13–16], stress response [17, 18], and transcriptional regulation (the focus of 

this review) [19–23]. Furthermore, O-GlcNAc transferase (OGT) [24–26], the enzyme 

required for O-GlcNAc addition, is required for mouse embryonic stem cell viability, 

emphasizing the importance of this modification [27]. O-GlcNAc is more akin to 

phosphorylation than complex glycosylation in that it is not elongated, its cycling enzymes, 

OGT and O-GlcNAcase (OGA) [28, 29], are nucleocytoplasmic, it is dynamic and 

inducible, and it can regulate intracellular protein activity, localization, stability, and 

molecular interactions. O-GlcNAc is often found on the same residues as known 

phosphorylation sites, suggesting reciprocity between the modifications in some cases, Fig. 

(1) [13, 30, 31]. However, unlike phosphorylation, which is modulated by hundreds of 

kinases and phosphatases, the cycling of the O-GlcNAc modification is accomplished by the 

gene products of single genes for OGT and OGA in most metazoans.

O-GlcNAc modification of transcription regulatory proteins could fine tune their regulation 

in response to nutrient levels in the cell because the synthesis of its sugar donor, UDP-

GlcNAc, via the hexosamine biosynthetic pathway (HBP), responds to amino acid, fatty 

acid, nucleotide and glucose metabolism [12, 21]. There are several ways to modulate O-

GlcNAc levels on proteins (for review see [32]) Fig. (1). OGT is responsive to physiological 

levels of UDP-GlcNAc, so increased HBP flux by hyperglycemia or by the addition of 

glucosamine results in globally elevated levels of O-GlcNAc modification [33]. Decreased 

O-GlcNAc levels can be achieved by blocking glutamine-fructose-6-phosphate transaminase 

(GFAT), the rate limiting enzyme of the HBP, using the pharmacological inhibitors 

azaserine or 6-diazo-5-oxo-L-norleucine (DON) or by decreasing glucose levels. However, 

the alteration of HBP flux may lead to off-target effects as azaserine and DON are general 

amidotransferase inhibitors. A more specific way to alter global O-GlcNAc levels is by the 

use of pharmacological OGA inhibitors such as the widely used O-(2-acetamido-2-deoxy-D-

glucopyrano-sylidene)amino-N-phenylcarbamate (PUGNAc) [34], or the more specific 

inhibitors 1,2-dideoxy-2′-propyl-α-D-gluco-pyranoso-[2,1-D]-Δ2′-thiazoline (NButGT) [35] 

and GlcNAcstatin [36, 37]. Several OGT inhibitors have also been recently characterized 

[38] although their specificity and in vivo utility has not been adequately explored. 

Alternatively, O-GlcNAc steady state levels can be modulated genetically by over 

expression or knockdown of OGT and/or OGA.

O-GlcNAc DETECTION AND SITE MAPPING

Over the last 20 years more than 400 proteins have been shown to be modified by O-

GlcNAc using a variety of detection methods [21, 39–42]. Interestingly, most RNA 

Polymerase II transcription factors are glycosylated; many of which respond to nutrient 

abundance [19, 43]. There are several methods to identify O-GlcNAc modification of 
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proteins [44] and the relevant methods will be briefly discussed here. The first step in 

identifying O-GlcNAc modified proteins generally involves modification-specific 

enrichment. Detection or enrichment of O-GlcNAc modified proteins can be achieved using 

O-GlcNAc specific antibodies, such as RL2 [45, 46] and CTD110.6 [47], and by lectin-

blotting or chromatography using succinylated Wheat Germ Agglutinin, a terminal GlcNAc-

binding lectin. The presence of O-GlcNAc on proteins can also be determined by labeling 

with radiolabeled galactose using purified β-1,4-galactosyltransferase (GalT), a 

galactosyltransferase that transfers galactose onto terminal GlcNAc moieties [6]. Click-iT™ 

chemistry available from Invitrogen offers two different approaches for in vitro and in vivo 

labeling of O-GlcNAc residues. In vitro labeling takes advantage of a mutant form of GalT 

that transfers ketone-modified galactose onto the GlcNAc residues of proteins [48]. The 

ketone group introduces a chemically reactive group that can be tagged with biotin and then 

enriched with streptavidin [48]. Using an in vivo approach, introduction of N-

azidoacetylglucosamine (GlcNAz) into the cells allows this azidosugar to be converted via 

the salvage pathway to UDP-GlcNAz and transferred onto proteins by OGT [49]. The azido 

group of GlcNAz acts as a bio-orthogonal handle for enrichment by the addition of 

functional groups using the Staudinger ligation [50]. However, there are limitations to using 

the in vivo approach, since it requires the UDP-GlcNAz to compete with the existing UDP-

GlcNAc in the cell. These O-GlcNAc enrichment techniques can be combined with mass 

spectrometry to identify the actual residues of modification [54–56]. Proteomic efforts in 

this area have identified hundreds of modified polypeptides with proteins involved in 

transcriptional regulation being a major class [45, 48, 54–56]; however, only about 75 

proteins have had their sites of modification mapped. The modification is extremely labile, 

small, uncharged, and usually substoichiometric [32, 51] making detection difficult using 

standard mass spectrometry techniques.

Recently, several methods have been developed to make O-GlcNAc site-mapping by mass 

spectrometry (MS) feasible in biologically relevant tissues. O-GlcNAc enrichment 

techniques can be combined with mass spectrometry to identify the actual residues of 

modification [41, 52]. Collision-induced dissociation (CID) mass spectrometry tends to 

cleave PTMs, so a non-labile tag added to the site of O-GlcNAc modification facilitates 

identification. Site-mapping studies using β-elimination followed by Michael addition with 

dithiothreitol attach a non-labile tag to the site of O-GlcNAc modification so it can be 

identified by CID MS [42]. In addition, enrichment of O-GlcNAc containing peptides by 

chemoenzymatic labeling assists in detection [39, 48, 49, 51]. An advantage of these 

methods is that more O-GlcNAc peptides, which are generally substoichiometric in a total 

peptide pool, can be detected leading to a more prolific site mapping experiment. The 

development of electron transfer dissociation fragmentation and related dissociation 

techniques that often retain CID-labile PTMs have allowed for the identification of O-

GlcNAc modified fragments directly [53, 54]. In Fig. (2), we show an example of an 

electron dissociation technique (electron capture dissociation) for definitively mapping a site 

of O-GlcNAc on UL32, a synthetic glycosylated peptide, to one particular residue on a 

peptide containing three potential sites of attachment. Unlike CID, the fragmented peptides 

containing the modified amino acid retain the mass of the sugar. Electron dissociation 
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techniques are an emerging technology for O-GlcNAc site-mapping that show great promise 

[51, 54–57].

O-GlcNAc REGULATION OF EUKARYOTIC GENE EXPRESSION

Specialized transcription factor regulation occurs through the actions of multiple post-

translational modifications (PTMs) (reviewed in [5, 58]) such as phosphorylation [59, 60], 

SUMOylation [61], acetylation [62], and the focus of this review, O-GlcNAc modification. 

Transcriptional control can occur via at least seven different general mechanisms, Fig. (3), 

and examples of O-GlcNAc modification participation in each of these regulatory steps are 

explored below.

Chromatin Remodeling

Chromatin not only provides compact packaging for DNA, it also regulates transcription. 

For transcription to occur, nucleosomes, the histone proteins/DNA subunits of chromatin, 

must be positioned to allow transcriptional machinery to access both the promoter and 

upstream regulatory elements and to allow transcriptional elongation [63]. Access to DNA is 

regulated by chromatin remodeling enzymes, which recognize PTM’s on histones [63, 64]. 

Acetylation, the most well studied histone PTM, is added by histone acetyltransferases and 

removed by histone deacetylases (HDACs) [63, 64]. Transcriptional regulation is associated 

with altered histone acetylation and movement, restructuring, and ejection of nucleosomes 

[63]. Methylation of certain histone lysines by histone methyltransferases also plays a role in 

both gene silencing and activation [65]. The actual chromatin remodeling enzymes are 

thought to be regulated by PTM’s such as phosphorylation and acetylation [63]. Several 

studies have found glycosylation affects the regulation of chromatin remodeling [66, 67].

The first evidence for O-GlcNAc’s role in transcriptional regulation was the observation that 

Drosophila melanogaster polytene chromosomes contain more O-GlcNAc modified 

proteins at the transcriptionally repressed condensed regions than at the active puff regions 

of the chromatin [68]. Further studies implicated OGT in transcriptional repression through 

the identification of an interaction between mSin3a and OGT [66]. mSin3a is a corepression 

scaffolding protein that forms a multi-protein complex with HDAC and can be recruited by 

transcription factors to modify histones and repress transcription [69]. Several transcription 

factors involved in cell survival and apoptosis, such as p53, an O-GlcNAc modified protein 

[70, 71], recruit mSin3a [72]. The paired amphipathic helix domain 4 of mSin3A was shown 

to bind to the tetracopeptide repeat (TPR) domain of OGT, suggesting a mechanism where 

mSin3a recruits OGT for gene silencing [66]. Although both the TPR and catalytic domain 

of OGT promote transcriptional repression, catalytically active OGT is required for full 

transcriptional repression [66]. The other proteins in the repression complex, mSin3A and 

HDAC1, were also found to be O-GlcNAc modified [66] and, although the functional 

significance is still to be elucidated, may explain why the catalytic activity of OGT is 

necessary. In agreement with the data seen in Drosophila melanogaster polytene 

chromosomes, a chromatin immunoprecipitation assay showed an increase in both O-

GlcNAc modified proteins and mSin3a presence on the promoters of silenced genes [66]. In 

another study, OGT was found to interact with both mSin3A and Sp3 and was associated 

with the prevention of transcriptional repression of angiopoietin-2 during hyperglycemic 
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conditions [73]. However, it is unclear whether the association of mSin3A with Sp3 or the 

direct O-GlcNAc modification of Sp3 was responsible for the transcriptional activation of 

angiopoietin-2 [73].

A landmark study recently identified a key role for O-GlcNAc in modulating the activity of 

MLL5, a histone lysine methyltransferase [67]. MLL5 was found to co-activate RARα 

(retinoic acid receptor α) induction of promyelocyte-like differentiation into granulocyte-

like HL60 cells. OGT forms a complex with MLL5. Elevation of O-GlcNAc levels in 

undifferentiated HL60 cells increase retinoic acid (RA) stimulated differentiation. Upon RA 

stimulation, RARα activates the expression of C/EBPε, a major differentiation facilitating 

transcription factor. Expression of a T440A, the major site of O-GlcNAc modification, 

mutant of MLL5 failed to activate C/EBPε expression and enhancement of the RA effect on 

differentiation. Further experiments established that OGT is necessary for MLL5 

methylation of H3K4, which allows the transcriptional activation of pro-differentiation 

genes [67]. Thus, this manuscript clearly illustrates a causal relationship between O-GlcNAc 

modification of a protein and its enzymatic activity, which is directly involved in chromatin 

remodeling.

Transcriptional Initiation and Elongation

O-GlcNAc modification has also been implicated in regulating transcriptional initiation via 

RNA Polymerase II (RNAP II). Transcriptional initiation is achieved in part by several 

general transcription factors that recruit hypophosphorylated RNAP II to the core promoter 

and form a preinitiation complex [74]. RNAP II has a carboxyl terminal domain (CTD) that 

consists of several tandem consensus sequence repeats that are modified by phosphate and 

O-GlcNAc [47, 74]. The phosphorylation of the CTD is involved in promoter clearance, 

passage through promoter proximal pause sites, stabilization of the elongation complex, and 

recruitment of mRNA processing machinery [2]. The CTD exists in two states with regards 

to its phosphorylation status; IIO is the phosphorylated form and is found predominantly in 

the elongation complex, while IIA is the unphosphorylated form generally found in the 

initiation complex [74].

When purified fractions of RNAP II were labeled with GalT, it was shown that only the IIA 

form, the unphosphorylated form, of CTD was modified with O-GlcNAc [75]. In an 

additional study, OGT failed to label a CTD consensus sequence that had been 

phosphorylated in vitro by CTD kinase, and CTD kinase would not label a CTD consensus 

sequence that had been synthetically glycosylated on the Thr 4 of each repeat, suggesting 

mutual exclusivity between the modifications [47]. This yin-yang relationship between 

phosphorylation and O-GlcNAc on the CTD suggests that the O-GlcNAc modification may 

prevent elongation from occurring by blocking phosphorylation or may help to recycle 

RNAP II after elongation has occurred to allow the complex to reattach to the promoter [47]. 

Further in vivo investigation is needed to clarify the function of glycosylation on the CTD of 

RNAP II; however, the suggestion that glycosylation regulates transcription initiation is not 

unprecedented.
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Degradation

The proper maintenance of transcription factor levels in cells is often accomplished by 

degradation via the ubiquitin-proteasome system [76]. Degradation is achieved by two steps: 

first, ubiquitin is added by an E3 ubiquitin ligase to lysine residues on proteins targeted for 

destruction, and second, the polyubiquitinylated proteins are degraded by the 26S 

proteasome [77]. The 26S proteasome is comprised of two major subcomplexes: two 19S 

regulatory particle caps and the 20S catalytic core [77]. The 20S core catalyzes the 

proteolysis of protein substrates. The 19S particle caps contain six ATPases that work to 

recognize and unfold substrates for entry into the 20S core [77, 78]. Glycosylation and 

phosphorylation have been suggested to regulate both the activity of the proteasome and the 

targeting of proteins to the proteasome [23, 79].

The most well-studied O-GlcNAc modified transcription factor is Sp1, a ubiquitous 

transcription factor for TATA-less genes. Sp1 target genes are involved in many different 

processes including metabolism, cell proliferation and oncogenesis [80]. In 1988, Jackson 

and Tjian determined that Sp1 is O-GlcNAc modified [81]. Since then, glycosylation has 

been described to affect Sp1 function by modulating its stability, protein-protein 

interactions, DNA binding, and localization [23, 81]. An initial study found that glucose 

starvation plus adenylate cyclase activation in normal rat kidney cells resulted in decreased 

Sp1 protein levels and Sp1 hypoglycosylation [82]. The authors suggested that 

hypoglycosylation of Sp1 promotes degradation through a proteasome-like mechanism [82]. 

However, it was subsequently shown that the degree of Sp1 glycosylation was independent 

of its degradation, and instead it was discovered that OGT inhibits and OGA activates the 

ATPase activity of the 19S regulatory particle caps of the proteasome [79]. OGT catalytic 

activity is necessary for this inhibition of the proteasome [79]. O-GlcNAc modification of 

Rpt2, one of the six ATPases present in the 19S cap, blocks the ATPase activity that 

provides the energy for hydrophobic proteins to unfold and be translocated inside the 

catalytic core of the proteasome for degradation [79]. Subsequently, in the 26S proteasome 

of Drosophila melanogaster, five out of nineteen regulatory subunits of the 19S cap and 

nine out of fourteen subunits of the 20S catalytic core were shown to be O-GlcNAc 

modified by immunoblotting with monoclonal antibodies and wheat germ agglutinin [83]. 

O-GlcNAc modification of the proteasome may function to regulate protein degradation in 

response to nutrient availability, which could potentially regulate transcription by altering 

transcription factor steady-state levels of transcription factors, such as in the case of Sp1.

Besides its global effect on proteasome function, O-GlcNAc modification is also associated 

with altered stability of individual transcription factors such as c-Myc, estrogen receptor β 

(ER-β), and p53. These transcription factors have been shown to be regulated by the 

ubiquitin proteasome pathway via phosphorylation [71, 84, 85]. A reciprocal relationship 

between phosphorylation and O-GlcNAc modification is observed for both c-Myc and ER-β 

[84–87].

c-Myc, a proto-oncogene, was one of the earliest proteins to be site-mapped for O-GlcNAc 

modification. c-Myc is O-glycosylated on Thr 58 in the N-terminal transcriptional activation 

domain region [87, 88]. Thr 58 is in the major region of mutation seen in Burkitt’s 
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lymphomas [89], and phosphorylation at this site leads to c-Myc polyubiquitinylation and 

degradation [90]. T58A mutants have increased stability, suggesting that glycosylation via 

blocking of phosphorylation on this residue may result in increased stability, although the 

specific mechanism is not known [85]. c-Myc is targeted by several signaling pathways and 

regulates a plethora of target genes involved in cell proliferation, differentiation, and 

apoptosis [91]. Thus, PTM’s on c-Myc including phosphorylation and glycosylation appear 

to influence the specificity and stability of c-Myc [90].

ER-β, an ER-α homologue, is important in many processes such as growth and 

development, response to stress, and control of energy balance [92, 93]. Phosphorylation of 

ER-α by GSK-3 (glycogen synthase kinase-3) promotes its stability and full transcriptional 

activation, and this regulation of ER-α has emerged as an important theme in estrogen 

signaling [94, 95]. Although this theme is not as well-studied for ER-β, phosphorylation of 

the ER-β AF-1 domain has been shown to affect its proteasome-dependent degradation [96]. 

Glycosylation may also play a role in regulating ER-β stability. Ser 16 of ER-β is 

reciprocally glycosylated and phosphorylated [86]. S16A and S16E mutants were generated 

to mimic no modification and constitutive phosphorylation, respectively. The S16A mutant 

had a longer half-life (15–16 hours) and the S16E mutant had a shorter half-life (4–5 hours) 

than the wild type ER-β (7–8 hours), which suggests that glycosylation may promote ER-β 

stability by blocking phosphorylation and subsequent targeting for degradation [84].

p53 is a tumor suppressor gene required for cell cycle arrest and apoptosis. Normally, 

cellular p53 levels, which are highly regulated, are kept very low via degradation by the 

ubiquitin-dependent proteosome system [97]. Factors such as DNA damage or the activation 

of oncogenes induce increased p53 stability and activation [97]. p53 is found to be mutated 

and dysfunctional in many human cancers [97]. An early study determined p53 is O-

GlcNAc modified and the presence of the modification was suggested to increase p53’s 

ability to bind DNA [70]. A later study determined a role for O-GlcNAc modification in p53 

stability [71]. p53 is O-GlcNAc modified on Ser 149, which is located on the DNA binding 

domain. Mutation of Ser 149 to alanine increases Thr 155 phosphorylation. Since elevated 

Thr 155 phosphorylation is associated with increased degradation of p53, Ser 149 

glycosylation has been hypothesized to play an important role in p53 stabilization [71].

Localization

Several papers have been published showing a functional relationship between O-GlcNAc 

modification and nuclear or cytoplasmic localization [98–101]. Transcription factors must 

localize to the nucleus to activate transcription, so sequestering latent transcription factors to 

the cytoplasm provides an additional mechanism of transcriptional regulation. In response to 

signals, latent cytoplasmic transcription factors are activated by several mechanisms, many 

of which depend on phosphorylation or other PTM’s, such as glycosylation [1].

The transducer of regulated cyclic adenosine 3′-5′ monophosphate response element 

(CREB) protein (CRTC2) associates with CREB to regulate gluconeogenic genes, including 

glucose-6-phosphatase (G6Pase), in response to insulin and glucagon [102]. Gluconeogenic 

genes fail to be inactivated during chronic hyperglycemic conditions, leading to 

gluconeogenesis during energy prevalent conditions. CRTC2 associates with CREB to bind 
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the cAMP response element on the G6Pase promoter. When insulin is present, SIK2 (salt-

induced kinase 2) is activated by Akt and phosphorylates Ser 171 of CRTC2, which allows 

it to be sequestered in the cytoplasm by 14-3-3 proteins and targeted for degradation [103]. 

Glucagon signaling prevents SIK2 from phosphorylating CRTC2 [104]. The 

dephosphorylated form of CRTC2 is no longer sequestered in the cytosol by 14-3-3 proteins 

and is free to translocate to the nucleus and activate transcription of target genes. CRTC2 is 

reciprocally modified by O-GlcNAc and phosphate on Ser 171 and Ser 70, suggesting 

alternative roles for the modifications. Hyperglycemia or elevating O-GlcNAc levels via 

genetic or pharmacological methods decreases CRTC2 phosphorylation and increases its O-

GlcNAc modification, nuclear localization, and G6Pase promoter activation [98]. Mutation 

of these sites to aspartate, which simulates phosphorylation, prevents hyperglycemic 

stimulation of G6Pase promoter activation. Overexpression of OGA in the liver of diabetic 

db/db mice restores their gluconeogenic profiles to nearly normal levels, suggesting that 

elevated O-GlcNAc levels contribute to the nuclear localization of CRTC2 and the 

subsequent deregulation of gluconeogenesis during hyperglycemic conditions [98].

O-GlcNAc modification appears to be required for the nuclear localization of NeuroD1 

(neurogenic differentiation 1). NeuroD1 is required for the terminal differentiation of 

neurons and for the development and insulin production of pancreatic β-cells [105]. 

Hyperglycemia results in increased phosphorylation of NeuroD1 on Ser 274, nuclear 

translocation, and increased NeuroD1 binding to the insulin promoter. Mutation to S274A 

results in the cytoplasmic accumulation of NeuroD1 even in hyperglycemic conditions [99]. 

Elevation of global O-GlcNAc levels using PUGNAc increased NeuroD1 nuclear 

localization, binding to the insulin promoter, and insulin expression even in normoglycemic 

conditions, suggesting that phosphorylation and O-GlcNAc modification are acting 

cooperatively. This result may be due to a similar increase in NeuroD1 glycosylation in both 

hyperglycemic and PUGNAc-treated conditions. OGT was found to associate with NeuroD1 

in hyperglycemic conditions and OGA was found to associate in normoglycemic conditions 

[100]. Identifying the NeuroD1 glycosylation sites would help to distinguish whether the 

effect on localization and subsequent insulin transcriptional activation results from the 

specific glycosylation of NeuroD1, the interplay between glycosylation and 

phosphorylation, or from the alteration of global O-GlcNAc levels [100].

β-catenin glycosylation has been shown to regulate its cellular localization [101]. β-catenin 

plays two major roles in the cell: first, it associates with E-cadherin to form cellular 

adhesions, and secondly, it is the major downstream signaling molecule for the canonical 

arm of the Wnt signaling pathway. Wnt signaling pathways are involved in cell growth, 

movement, and cell survival and are associated with several types of cancer [106]. GSK-3 

phosphorylation of β-catenin on its N-terminus targets it for ubiquitination and degradation. 

Wnt-activated signaling regulates β-catenin by inactivating GSK-3, allowing for the 

accumulation of β-catenin and its translocation to the nucleus. Here it can activate 

transcription of target genes by activating TCF (T-cell factor) and recruiting chromatin 

remodeling proteins [106]. β-catenin has been shown to be O-GlcNAc modified [107]. 

PUGNAc treatment of several cancer cell lines resulted in the redistribution of glycosylated 

β-catenin from the nucleus to the cytoplasm without affecting total protein levels [101]. The 
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increase in cytoplasmic localization was associated with decreased expression of two 

downstream targets genes, cyclin D and vascular endothelial growth factor A, and decreased 

promoter activation [101]. More work is needed to determine how the glycosylation of β-

catenin influences its interaction with many regulatory binding partners, such as GSK-3 and 

TCF, and in turn the role of O-GlcNAc in regulating its degradation and transcriptional 

activation [101].

DNA Binding and Transcriptional Activation

All classical transcription factors share two features: a DNA binding domain for binding to a 

specific sequence of DNA and a transactivation domain for response to regulatory factors. 

Sequence-specific transcription factors recruit coactivators to initiate transcription. These 

coactivators include chromatin remodeling enzymes that are needed to allow the basal 

transcription machinery to access the DNA and form the pre-initiation complex with the 

help of additional regulatory proteins [4]. PTM’s, such as glycosylation, can affect the 

ability of transcription factors to bind DNA and activate transcription [5].

The transcription factors PDX-1 (pancreatic/duodenal homeobox-1) protein, NeuroD1, and 

V-maf musculoaponeurotic fibrosarcoma oncogene homologue A co-regulate insulin 

transcription. The exact mechanisms of regulation are not clear, which is probably due to the 

number and complexity of post-translational modifications and cofactor interactions. PDX-1 

is necessary for pancreatic development, and it activates several β-cell specific genes, such 

as insulin [105]. In response to changing glucose concentrations, PDX-1 recruits chromatin 

remodeling enzymes and other cofactors and regulates transcriptional elongation. PDX-1 

phosphorylation is associated with its translocation to the nucleoplasm and its 

transactivation potential [105]. PDX-1 is also O-GlcNAc modified on at least two sites 

[108]. Hyperglycemia or PUGNAc treatment of MIN6 mouse insulinoma cells increases 

global O-GlcNAc protein levels, enhances PDX-1 binding to the insulin promoter, and is 

associated with an increase in insulin secretion [108]. The addition of azaserine, which 

inhibits GFAT and results in lower UDP-GlcNAc levels, decreases global O-GlcNAc levels 

and glucose-stimulated insulin secretion [108]. Treatment with siRNA against OGT also 

results in decreased glucose-stimulated insulin secretion, suggesting that the O-GlcNAc 

modification modulates insulin secretion, perhaps by activating PDX-1 binding to the 

insulin promoter [108, 109]. O-GlcNAc seems to be extensively involved in β-cell 

transcription factor regulation and may play an important role in controlling gene expression 

in response to glucose levels.

Like CRTC2, the forkhead transcription factor family, of which FoxO1 is a member, plays a 

major role in regulating energy homeostasis [110]. In the liver, FoxO1 and its coactivator, 

peroxisome proliferator activated receptor γ coactivator 1α (PGC1α), participate in the 

regulation of gluconeogenesis by activating the expression of G6Pase and 

phosphoenolpyruvate carboxykinase [111, 112]. Insulin signaling induces Akt to 

phosphorylate FoxO1 on residues Thr 24, Ser 256, and Ser 319, which results in FoxO1 

cytoplasmic localization [113]. FoxO1 is subject to many PTM’s, including glycosylation 

[114]. Increasing global O-GlcNAc levels by hyperglycemia, PUGNAc, or overexpression 

of OGT in HEK293 or rat hepatoma cells increases FoxO1 activation of a G6Pase promoter 
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reporter construct [115, 116]. A triple alanine mutant of the Akt phosphorylation sites on 

FoxO1 is still able to be glycosylated, suggesting that the FoxO1 O-GlcNAc sites are not 

directly reciprocal with the Akt phosphorylation sites [115]. Consistent with this result, O-

GlcNAc modification does not seem to be required for FoxO1 translocation to the nucleus 

[115, 116]. FoxO1 has been shown to be O-GlcNAc modified on the following residues: Ser 

550, Thr 648, Ser 654, and either Thr 317 or Ser 318 [115]. These sites were mutated to 

alanine and tested for activation of the G6Pase promoter. Only the T317A mutant had a 

small decrease in promoter activation under hyperglycemic conditions [115]. A follow-up 

study found that PGC1α interacts with OGT and enhances both OGT interaction and 

modification of FoxO1 [117]. Coexpression of PGC1α and FoxO1 in HEK293 cells 

cooperatively increases promoter activation in response to hyperglycemia [117].

Protein/Protein Interactions

Modification of proteins by O-GlcNAc has been shown to modulate protein-protein 

interactions that regulate nuclear localization [98, 118], stability [71], chromatin remodeling 

[66, 67], and transcriptional activation [101, 119, 120].

O-GlcNAc modification of Sp1 and β-catenin has been shown to decrease transcriptional 

activity possibly through inhibition of binding to co-activators [101, 120]. In addition, O-

GlcNAc modification of a small peptide segment of Sp1 has been shown in vitro to prevent 

binding to the general transcription factor TAF110 (TATA-binding-protein-associated 

factor) [121].

Glycosylation of STAT5a (signal transducer and activator of transcription 5a) was found to 

be important for its interaction with CREB-binding protein (CBP) [119]. STAT proteins are 

activated by tyrosine phosphorylation in response to various cytokines and growth factors 

[122]. They initiate downstream transcriptional activation by dimerizing, translocating to the 

nucleus and activating transcription partly through the binding to co-activator molecules, 

such as CBP, that have histone acetyltransferase activity [123]. Mass spectrometry analysis 

and mutational studies of STAT5a showed that Thr 92 and potentially Thr 97 are O-GlcNAc 

modified [119]. The mutant T92A prevented STAT5a interaction with CBP and 

transactivation without affecting DNA binding [119].

NFκB (Nuclear factor κB) signaling has been implicated in a wide range of cellular 

processes, such as cell immune response, survival, differentiation, and proliferation. In the 

canonical NFκB signaling pathway, NFκB is normally bound to IκB and sequestered in the 

cytoplasm [124]. Phosphorylation of IκB by IκB kinase (IKK) leads to IκB degradation via 

the ubiquitin-proteasome pathway and this allows NFκB to translocate to the nucleus where 

it can activate transcription [124]. PTM of NFκB subunits can alter transcriptional activation 

by affecting interactions with transcriptional coactivators and corepressors. NFκB is 

activated by many pathways, so differential PTMs may specify the particular targets of 

NFκB. IKK is also regulated by PTMs [124].

Manipulation of the HBP in mesangial cells showed that hyperglycemia increases 

glycosylation of the p65 subunit of NFκB and promoter activation of a target gene, 

VCAM-1 (vascular cell adhesion molecule 1) [125]. Hyperglycemia or OGT overexpression 
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decreased the association of the p65 subunit of NFκB with IκB and increased NFκB nuclear 

localization. Overexpression of OGA in rat vascular smooth muscle cells resulted in lower 

global O-GlcNAc levels and the reversal of NFκB activation by hyperglycemia. OGT 

overexpression resulted in the same effects as NFκB activation by hyperglycemia. Mutation 

of an NFκB O-GlcNAc modification site, Thr 352, to an alanine was found to abrogate 

promoter activation, DNA binding affinity, association with IκB, nuclear localization, and 

the expression of VCAM-1 induced by PUGNAc or OGT overexpression [118]. The 

primary effect of NFκB O-GlcNAc modification may be to prevent p65/IκB interaction, 

which would lead to nuclear localization and downstream target activation however, more 

investigation is needed to target the exact mechanism.

A recent paper tied p53 repression of NFκB activation to the O-GlcNAc modification of 

IKKβ [126]. p53 inactivation leads to an increase in glycolysis through enhanced NFκB 

activation and results in a positive feedback loop where glycolysis further activates NFκB 

signaling [127]. The authors proposed that O-GlcNAc modification of IKKβ could be acting 

as a glucose-sensor to potentiate the feedback loop. In a hepatic cancer cell line, 

hyperglycemia enhanced IKKβ O-GlcNAc modification and TNFα (tumor necrosis factor α) 

-stimulated NFκB promoter activation and prolonged NFκB DNA binding and IKKβ 

activity. Since phosphorylation of IKKβ at Ser 733 is known to inhibit its activation [128], 

O-GlcNAc modification of Ser 733 is suggested to prevent phosphorylation-stimulated 

inactivation leading to an increased in activation of NFκB in transformed cells [126]. These 

studies establish a clear role for O-GlcNAc in the activation of NFκB.

OGT/OGA Targeting to Substrates – A Special Case of Protein/Protein Interactions

O-GlcNAc modification regulates the function of many target proteins, so aberrant 

modification by OGT needs to be avoided for proper cellular function. However, the 

mechanism by which OGT selects its targets is not currently known. No consensus sequence 

for O-GlcNAc attachment has been found, so it has been proposed that interaction with 

OGT’s TPR domain may determine which proteins it modifies [26, 129, 130]. OGT may 

also use adaptor proteins that help to modulate its specificity and increase the complexity of 

its regulation [31, 131]. Cheung et al. used a yeast two-hybrid screen to identify proteins 

that interact with OGT from a human fetal brain cDNA library [131]. Two of the twenty-

seven putative OGT-interacting proteins identified, MYPT1 (myosin phosphatase target 

subunit 1) and CARM1 (coactivating arginine methyltransferase), were shown to interact 

with OGT and be O-GlcNAc modified by independent methods [131]. Knockdown of 

MYPT1 using siRNA in Neuro-2a cells reduced the O-GlcNAc levels of several proteins, 

suggesting that MYPT1 might target OGT to substrates in vivo [131]. CARM1 is a histone 

methyltransferase and functions as part of the p160 coactivator complex, which contributes 

to chromatin remodeling and transcriptional activation [132]. CARM1 may help to target 

OGT to substrates that are involved in transcriptional activation [131]. Trak1 (also known as 

OIP106) was identified by another yeast two-hybrid screen of OGT interacting proteins 

[130]. Trak1 associates with RNAP II, so it has been proposed that Trak1 targets OGT to the 

transcriptional machinery [130, 133]. Finally, as mentioned above, PGC-1α may act as an 

adaptor protein for OGT recruitment to FoxO1 [117].
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Although little is known about targeting of OGT to its substrates, even less is known about 

the regulation of OGA [134]. In some cases, OGT and OGA are found in the same complex 

[135]. As described above, NeuroD1 can associate with either OGT or OGA depending on 

glucose concentration [100]. The identification of more OGA-interacting proteins might 

provide insight into the mechanism of deglycosylation. Using a similar strategy as the OGT 

experiments, we used a yeast two-hybrid assay obtained from Proquest to identify human 

OGA binding partners using a cDNA library from human skeletal muscle. Proteins not in 

frame, proteins identified only once, and proteins known to commonly give false positives 

were removed from the results. A total of ten proteins were identified by this screen as 

shown in Table (1). Several of these proteins, including Fragile X mental retardation-related 

protein 1 (FXR1), Interferon-related developmental regulator 1 (IFRD1), and TANK-

Binding Kinase 1 (TBK1)-binding protein 1 (TBKBP1), are relevant to eukaryotic gene 

expression.

The leading cause of inherited mental retardation is Fragile X syndrome, which is caused by 

the reduction in an RNA binding protein, Fragile X Mental Retardation protein (FMRP) 

[136]. FMRP binds polyribosomes and suppresses translation [137]. FMRP has two 

homologs, FXR1 and FXR2, which share about 60% sequence homology to FMRP and have 

been shown to repress TNF translation [138]. Several other RNA-binding proteins, including 

Ewing-sarcoma RNA-binding protein, eukaryotic initiation factor 4A1, elongation factor 1, 

and the small and large ribosomal subunits, have been shown to be O-GlcNAc modified, 

suggesting a possible functional role for O-GlcNAc in post-transcriptional regulation as well 

[17, 21, 42].

IFRD1 has been shown to play a role in development by induction of differentiation by 

repression of a specific set of genes through interactions with the co-repressor complex 

mSin3B/HDAC1 [139, 140]. IFRD1 is implicated in the prevention of Sp1 binding to a 

common DNA element in IFRD1 regulated genes. It has also been implicated in recruiting 

HDAC to β-catenin in order to repress its transcriptional activity on downstream targets, 

such as osteopontin [141, 142]. Since IFRD1 interacts with already known O-GlcNAc 

targets, it will be interesting to see if the interaction with OGA is required to modify these 

targets for their function or for interaction with IFRD1.

TBKBP1 was found to interact with TBK1 and inducible IκB kinase (IKKi), which are 

members of the IKK family that regulate interferon regulatory factor (IRF) [143]. IRF and 

NFκB coordinate to regulate innate antiviral immunity [144]. TBK1 and IKKi 

phosphorylate and activate IRF in response to TLR3 (Toll-like receptor 3) activation. Like 

NFκB, upon activation, IRF dimerizes and translocates to the nucleus to initiate 

transcriptional activation. TBKBP1, which is also named Similar to NAP1 TBK1 adaptor 

(SINTBAD), along with two other cofactors, TANK and NAP1, are needed for full 

activation of IRF3 in response to the Sendai virus [143]. These cofactors might serve as a 

link between downstream signaling from TLR3 and activation of TBK1 and IKKi [143]. 

Since OGA interacts with TBKBP1 and the O-GlcNAc modification is intricately involved 

in NFκB signaling that is similar to the IRF pathway, it is plausible that the IRF pathway is 

also regulated by O-GlcNAc modification. Future work will need to establish the relevance 

of this hypothesis.

Brimble et al. Page 12

Curr Signal Transduct Ther. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SUMMARY

The O-GlcNAc modification of nuclear and cytoplasmic proteins plays a variety of roles in 

transcription factor regulation including recruiting chromatin remodeling factors, affecting 

protein stability, changing nuclear localization, and altering DNA binding and 

transcriptional activation. O-GlcNAc modification can either exert its effects directly on the 

modified transcription factor or indirectly by altering protein-protein interactions with other 

modified co-factors. It is becoming increasingly clear that transcription factors do not 

function in a solely “on” or “off” state but are subject to a number of modifications, such as 

O-GlcNAc, that fine-tune their regulation [145]. This is advantageous to the cell because 

transcription factors must interpret a wide range of signals, including nutrient/metabolic 

signals, and specifically respond to regulate a subset of target genes.

A key feature of the O-GlcNAc modification is that the levels of its sugar donor, UDP-

GlcNAc, are directly responsive to the changes in cellular glucose flux. A nutrient sensing 

ability is valuable for the cell because it prevents it from being a slave to its extracellular 

environment [12]. Because altering glucose flux readily modulates global protein O-GlcNAc 

levels and not just the O-GlcNAc modification on specific proteins, many O-GlcNAc studies 

to date are correlative. Specific mechanistic and functional studies that show O-GlcNAc 

modification is indispensable for protein function are beginning to appear in the literature, 

primarily in relationship to transcriptional control (illustrated above). Advances in the O-

GlcNAc site-mapping technology along with the initial experiments for understanding 

targeting mechanisms for OGT and OGA substrate recognition and the highlighted recent 

“smoking gun” experiments should facilitate increased interest in understanding functional 

mechanisms for O-GlcNAc on a wider range of proteins in an increasing number of systems.
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ABBREVIATIONS

CBP CREB-binding protein

CID Collision-induced dissociation

CREB Cyclic adenosine 3′-5′ monophosphate (cAMP) response element

CRTC2 Cyclic adenosine 3′-5′ monophosphate response element (CREB) protein 2

CTD Carboxyl terminal domain

ER-β Estrogen receptor β

FMRP Fragile X Mental Retardation protein

FoxO1 Forkhead box other-1

G6Pase Glucose-6-phosphatase
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GalT β-1,4-galactosyltransferase

GFAT Glutamine-fructose-6-phosphate transaminase

GSK-3 Glycogen Synthase Kinase-3

HBP Hexosamine biosynthetic pathway

HDACs Histone deacetylases

IFRD1 Interferon-related developmental regulator 1

IKK IκB kinase

IRF interferon regulatory factor

NeuroD1 Neurogenic differentiation 1

NFκB Nuclear factor κB

OGA O-GlcNAcase, neutral β-N-acetlyglucosaminidase (HexC)

O-GlcNAc O-linked β-N-acetylglucosamine

OGT O-GlcNAc transferase

PDX-1 Pancreatic/duodenal homeobox-1 protein

PGC1α Peroxisome proliferator activated receptor γ co-activator 1α

PTMs Post-translational modifications

PUGNAc O-(2-acetamido-2-deoxy-D-glucopyrano-sylidene)amino-N-

phenylcarbamate

RA Retinoic acid

TBK1 TANK-Binding Kinase 1

TBKBP1 TANK-Binding Kinase 1 (TBK1)-binding protein 1

TPR Tetratricopeptide repeat
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Fig. 1. Modulation of cellular O-GlcNAc levels using HBP flux and specific enzyme inhibitors
The end product of the HBP, UDP-GlcNAc, is sensitive to changes in nutrient levels. 

Glucosamine enters the HBP downstream of the rate-limiting enzyme GFAT to elevate 

UDP-GlcNAc levels. The use of the amidotransferase inhibitors azaserine or DON decreases 

UDP-GlcNAc levels. Proteins can be reciprocally modified by glycosylation and 

phosphorylation. However, unlike phosphorylation, which is regulated by hundreds of 

kinases and phosphatases, O-GlcNAc modification is cycled by the result of gene products 

from only two genes, ogt and oga. OGT transfers the GlcNAc onto serine and threonine 

residues of nuclear and cytosolic proteins and is responsive to changes in UDP-GlcNAc 

concentrations. Global O-GlcNAc levels can also be raised by the use of OGA inhibitors 

PUGNAc, NButGT and GlcNAc-statin. Enzymes are depicted in bold and biological 

pathways are in italics.
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Fig. 2. Site-mapping of O-GlcNAc sites is facilitated by electron dissociation techniques
UL32, a synthetic O-GlcNAc modified protein, is efficiently fragmented and the site of 

modification (from three possible sites) is easily assigned via electron capture dissociation. 

When comparing the spectra from unglycosylated (top) and glycosylated peptide (bottom), 

singly charged fragments retaining the O-GlcNAc modified serine (shown in BLUE) show 

an increase in mass to charge of 203 daltons, the weight of a single GlcNAc residue.
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Fig. 3. Transcriptional regulation by O-GlcNAc can occur via seven different mechanisms
The O-GlcNAc modification has been demonstrated to regulate transcription by modulating 

proteins involved in chromatin remodeling and transcriptional initiation, as well as protein-

protein associations, localization, stability, DNA binding, and transactivation capacity of 

individual transcription factors.
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