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Abstract

The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual 

household asset survey in order to quantify household socio-economic status (SES) in a rural 

population living in northeast South Africa. The survey contains binary, ordinal and nominal 

items. In the absence of income or expenditure data, the SES landscape in the study population is 

explored and described by clustering the households into homogeneous groups based on their asset 

status.

A model-based approach to clustering the Agincourt households, based on latent variable models, 

is proposed. In the case of modeling binary or ordinal items, item response theory models are 

employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial 

probit model, is used. Both model types have an underlying latent variable structure—this 

similarity is exploited and the models are combined to produce a hybrid model capable of 

handling mixed data types. Further, a mixture of the hybrid models is considered to provide 
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clustering capabilities within the context of mixed binary, ordinal and nominal response data. The 

proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD).

The MFA-MD model is applied to the survey data to cluster the Agincourt households into 

homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov 

chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-

economic strata within the Agincourt region.
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1. Introduction

The Agincourt Health and Demographic Surveillance System (HDSS) [Kahn et al. (2007)] 

continuously monitors the population of 21 villages located in the Bushbuckridge subdistrict 

of Mpumalanga Province in northeast South Africa. This is a rural population living in what 

was, during Apartheid, a black “homeland.” The Agincourt HDSS was established in the 

early 1990s with the purpose of guiding the reorganization of South Africa’s health system. 

Since then the goals of the HDSS have evolved and now it contributes to evaluation of 

national policy at population, household and individual levels. Here, the aim is to study the 

socio-economic status of the households in the Agincourt region.

Asset-based wealth indices are a common way of quantifying wealth in populations for 

which alternative methods are not feasible [Vyas and Kumaranayake (2006)], such as when 

income or expenditure data are unavailable. Households in the study area have been 

surveyed biannually since 2001 to elicit an accounting of assets similar to that used by the 

Demographic and Health Surveys [Rutstein and Johnson (2004)] to construct a wealth index. 

The SES landscape is explored by analyzing the most recent survey of assets for each 

household. The resulting data set contains binary, ordinal and nominal items.

The existence of SES strata or clusters is a well established concept within the sociology 

literature. Weeden and Grusky (2012), Erikson and Goldthorpe (1992) and Svalfors (2006), 

for example, expound the idea of SES clusters. Alkema et al. (2008) consider a latent class 

analysis approach to exploring SES clusters within two of Nairobi’s slum settlements; they 

posit the existence of 3 and 4 poverty clusters in the two slums, respectively. In a similar 

vein, here the aim is to examine the SES clustering structure within the set of Agincourt 

households, based on the asset status survey data. Interest lies in exploring the substantive 

differences between the SES clusters. Thus, the scientific question of interest can be framed 

as follows: what are the (dis)similar features of the SES clusters in the set of Agincourt 

households? This paper aims to answer this question by appropriately clustering the 

Agincourt households based on asset survey data. The resulting socio-economic group 

membership information will be used for targeted health care projects and for further 

surveys of the different socio-economic groups. The SES strata could also serve as valuable 

inputs to other analyses such as mortality models, and will serve as a key tool in studying 

poverty dynamics.
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To uncover the clustering structure in the Agincourt region, a model is presented here which 

facilitates clustering of observations in the context of mixed categorical survey data. Latent 

variable modeling ideas are used, as the observed response is viewed as a categorical 

manifestation of a latent continuous variable(s). Several models for clustering mixed data 

have been detailed in the literature. Early work on modeling such data employed the location 

model [Lawrence and Krzanowski (1996), Hunt and Jorgensen (1999), Willse and Boik 

(1999)], in which the joint distribution of mixed data is decomposed as the product of the 

marginal distribution of the categorical variables and the conditional distribution of the 

continuous variables, given the categorical variables. More recently, Hunt and Jorgensen 

(2003) re-examined these location models in the presence of missing data. Latent factor 

models in particular have generated interest for modeling mixed data; Quinn (2004) uses 

such models in a political science context. Gruhl, Erosheva and Crane (2013) and Murray et 

al. (2013) use factor analytic models based on a Gaussian copula as a model for mixed data, 

but not in a clustering context. Everitt (1988), Everitt and Merette (1988) and Muthén and 

Shedden (1999) provide an early view of clustering mixed data, including the use of latent 

variable models. Cai et al. (2011), Browne and McNicholas (2012) and Gollini and Murphy 

(2013) propose clustering models for categorical data based on a latent variable. However, 

none of the existing suite of clustering methods for mixed categorical data has the capability 

of modeling the exact nature of the binary, ordinal and nominal variables in the Agincourt 

survey data, or the desirable feature of modeling all the survey items in a unified framework. 

The clustering model proposed here presents a unifying latent variable framework by 

elegantly combining ideas from item response theory (IRT) and from factor analysis models 

for nominal data.

Item response modeling is an established method for analyzing binary or ordinal response 

data. First introduced by Thurstone (1925), IRT has its roots in educational testing. Many 

authors have contributed to the expansion of this theory since then, including Lord (1952), 

Rasch (1960), Lord and Novick (1968) and Vermunt (2001). Extensions include the graded 

response model [Samejima (1969)] and the partial credit model [Masters (1982)]. Bayesian 

approaches to fitting such models are detailed in Johnson and Albert (1999) and Fox (2010). 

IRT models assume that each observed ordinal response is a manifestation of a latent 

continuous variable. The observed response will be level k, say, if the latent continuous 

variable lies within a specific interval. Further, IRT models assume that the latent 

continuous variable is a function of both a respondent specific latent trait variable and item 

specific parameters.

Modeling nominal response data is typically more complex than modeling binary or ordinal 

data, as the set of possible responses is unordered. A popular model for nominal choice data 

is the multinomial probit (MNP) model [Geweke, Keane and Runkle (1994)]. Bayesian 

approaches to fitting the MNP model have been proposed by Albert and Chib (1993), 

McCulloch and Rossi (1994), Nobile (1998) and Chib, Greenberg and Chen (1998). The 

model has also been extended to include multivariate nominal responses by Zhang, 

Boscardin and Belin (2008). The MNP model treats nominal response data as a 

manifestation of an underlying multidimensional continuous latent variable, which depends 

on a respondent’s covariate information and some item specific parameters. Here a factor 
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analysis model for nominal data, similar in nature to the MNP model, is proposed where the 

observed nominal response is a manifestation of the multidimensional latent variable which 

is itself modeled as a function of both a respondent’s latent trait variable and some item 

specific parameters.

The structural similarities between IRT models and the MNP model suggest a hybrid model 

would be advantageous. Both models have a latent variable structure underlying the 

observed data which exhibits dependence on item specific parameters. Further, the latent 

variable in both models has an underlying factor analytic structure through the dependency 

on the latent trait. This similarity is exploited and the models are combined to produce a 

hybrid model capable of modeling mixed categorical data types. This hybrid model can be 

thought of as a factor analysis model for mixed data.

As stated, the motivation here is the need to substantively explore clusters of Agincourt 

households based on mixed categorical survey data. A model-based approach to clustering is 

proposed, in that a mixture modeling framework provides the clustering machinery. 

Specifically, a mixture of the factor analytic models for mixed data is considered to provide 

clustering capabilities within the context of mixed binary, ordinal and nominal response 

data. The resulting model is termed the mixture of factor analyzers for mixed data (MFA-

MD).

The paper proceeds as follows. Background information about the Agincourt region of 

South Africa as well as the socio-economic status (SES) survey and resulting data set are 

introduced in Section 2. IRT models, a model for nominal response data and the 

amalgamation and extension of these models to a MFA-MD model are considered in Section 

3. Section 4 is concerned with Bayesian model estimation and inference. The results from 

fitting the model to the Agincourt data are presented in Section 5. Finally, discussion of the 

results and future research areas takes place in Section 6.

2. The Agincourt HDSS data set

The Health and Demographic Survey System (HDSS) covers an area of 420 km2 consisting 

of 21 villages with a total population of approximately 82,000 people. The infrastructure in 

the area is mixed. The roads in and surrounding the study area are in the process of rapidly 

being upgraded from dirt to tar. The cost of electricity is prohibitively high for many 

households, though it is available in all villages. A dam has been constructed nearby, but to 

date there is no piped water to dwellings and sanitation is rudimentary. The soil in the area is 

generally suited to game farming and there is virtually no commercial farming activity. Most 

households contain wage earners who purchase maize and other foods which they then 

supplement with home-grown crops and collected wild foodstuffs.

To explore the SES landscape in Agincourt, data describing assets of households in the 

Agincourt study area are analyzed. The data consist of the responses of N = 17,617 

households to each of J = 28 categorical survey items. There are 22 binary items, 3 ordinal 

items and 3 nominal items. The binary items are asset ownership indicators for the most 

part. These items record whether or not a household owns a particular asset (e.g., whether or 

not they own a working car). An example of an ordinal item is the type of toilet the 
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household uses. This follows an ordinal scale from no toilet at all to a modern flush toilet. 

Finally, the power used for cooking is an example of a nominal item. The household may 

use electricity, bottled gas or wood, among others. This is an unordered set. A full list of 

survey items is given in Appendix A. For more information on the Agincourt HDSS and on 

data collection see www.agincourt.co.za.

Previous analyses of similar mixed categorical asset survey data derive SES strata using 

principal components analysis. Typically households are grouped into predetermined 

categories based on the first principal scores, reflecting different SES levels [Vyas and 

Kumaranayake (2006), Filmer and Pritchett (2001), McKenzie (2005), Gwatkin et al. 

(2007)]. Filmer and Pritchett (2001), for example, examine the relationship between 

educational enrollment and wealth in India by constructing an SES asset index based on 

principal component scores. Percentiles are then used to partition the observations into 

groups rather than the model-based approach suggested here. In a previous analysis of the 

Agincourt HDSS survey data, Collinson et al. (2009) construct an asset index for each 

household. How migration impacts upon this index is then analyzed, rather than the 

exploration of SES considered here. The routine approach of principal components analysis 

does not explicitly recognize the data as categorical and, further, the use of such a one-

dimensional index will often miss the natural groups that exist with respect to the whole 

collection of assets and other possible SES variables. The model proposed here aims to 

alleviate such issues.

3. A mixture of factor analyzers model for mixed data

A mixture of factor analyzers model for mixed data (MFA-MD) is proposed to explore SES 

clusters of Agincourt households. Each component of the MFA-MD model is a hybrid of an 

IRT model and a factor analytic model for nominal data. In this section IRT models for 

ordinal data and a latent variable model for nominal data are introduced, before they are 

combined and extended to the MFA-MD model.

3.1. Item response theory models for ordinal data

Suppose item j (for j = 1, …, J) is ordinal and the set of possible responses is denoted {1, 2, 

…, Kj}, where Kj denotes the number of response levels to item j. IRT models assume that, 

for respondent i, a latent Gaussian variable zij corresponds to each categorical response yij. A 

Gaussian link function is assumed, though other link functions, such as the logit, are detailed 

in the IRT literature [Fox (2010), Lord and Novick (1968)].

For each ordinal item j there exists a vector of threshold parameters γ̲j = (γj,0, γj,1, …, γj,Kj), 

the elements of which are constrained such that

For identifiability reasons [Albert and Chib (1993), Quinn (2004)] γj,1 = 0. The observed 

ordinal response, yij, for respondent i is a manifestation of the latent variable zij, that is,
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(1)

That is, if the underlying latent continuous variable lies within an interval bounded by the 

threshold parameters γj,k− 1 and γj,k, then the observed ordinal response is level k.

In a standard IRT model, a factor analytic model is then used to model the underlying latent 

variable zij. It is assumed that the mean of the conditional distribution of zij depends on a q-

dimensional, respondent specific, latent variable θ̲i and on some item specific parameters. 

The latent variable θ̲i is sometimes referred to as the latent trait or a respondent’s ability 

parameter in IRT. Specifically, the underlying latent variable zij for respondent i and item j 

is assumed to be distributed as

The parameters λ̲j and μj are usually termed the item discrimination parameters and the 

negative item difficulty parameter, respectively. As in Albert and Chib (1993), a probit link 

function is used so the variance of zij is 1.

Under this model, the conditional probability that a response takes a certain ordinal value 

can be expressed as the difference between two standard Gaussian cumulative distribution 

functions, that is, P(yij = k|λ ̲j, μj, γ̲j, θ̲i) is

(2)

Since a binary item can be viewed as an ordinal item with two levels (0 and 1, say), the IRT 

model can also be used to model binary response data. The threshold parameter for a binary 

item j is γ̲j = (−∞, 0, ∞) and, hence,

3.2. A factor analytic model for nominal data

Modeling nominal response data is typically more complicated than modeling ordinal data 

since the set of possible responses is no longer ordered. The set of nominal responses for 

item j is denoted {1, 2, …, Kj} such that 1 corresponds to the first response choice while Kj 

corresponds to the last response choice, but where no inherent ordering among the choices is 

assumed.

As detailed in Section 3.1, the IRT model for ordinal data posits a one-dimensional latent 

variable for each observed ordinal response. In the factor analytic model for nominal data 

proposed here, a Kj −1-dimensional latent variable is required for each observed nominal 

response. That is, the latent variable for observation i corresponding to nominal item j is 

denoted

McParland et al. Page 6

Ann Appl Stat. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The observed nominal response is then assumed to be a manifestation of the values of the 

elements of z̲ij relative to each other and to a cutoff point, assumed to be 0. That is,

Similar to the IRT model, the latent vector z̲ij is modeled via a factor analytic model. The 

mean of the conditional distribution of z̲ij depends on a respondent specific, q-dimensional, 

latent trait, θ̲i, and item specific parameters, that is, z̲ij |θ̲i ~ MVNKj−1(μ̲j + Λjθ̲i, I), where I 
denotes the identity matrix. The loadings matrix Λj is a (Kj − 1) × q matrix, analogous to the 

item discrimination parameter in the IRT model of Section 3.1; likewise, the mean μj̲ is 

analogous to the item difficulty parameter in the IRT model.

It should be noted that binary data could be regarded as either ordinal or nominal. The model 

proposed here is equivalent to the model proposed in Section 3.1 when Kj = 2.

3.3. A factor analysis model for mixed data

It is clear that the IRT model for ordinal data (Section 3.1) and the factor analytic model for 

nominal data (Section 3.2) are similar in structure. Both model the observed data as a 

manifestation of an underlying latent variable, which is itself modeled using a factor analytic 

structure. This similarity is exploited to obtain a hybrid factor analysis model for mixed 

binary, ordinal and nominal data.

Suppose Y, an N × J matrix of mixed data, denotes the data from N respondents to J survey 

items. Let O denote the number of binary items plus the number of ordinal items, leaving J − 

O nominal items. Without loss of generality, suppose that the binary and ordinal items are in 

the first O columns of Y while the nominal items are in the remaining columns.

The binary and ordinal items are modeled using an IRT model and the nominal items using 

the factor analytic model for nominal data. Therefore, for each respondent i there are O 

latent continuous variables corresponding to the ordinal items and J − O latent continuous 

vectors corresponding to the nominal items. The latent variables and latent vectors for 

respondent i are collected together in a single D-dimensional vector zi̲, where 

. That is, underlying respondent i’s set of J binary, ordinal and 

nominal responses lies the latent vector

This latent vector is then modeled using a factor analytic structure:
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(3)

The D × q-dimensional matrix Λ is termed the loadings matrix and μ̲ is the D-dimensional 

mean vector. Combining the IRT and factor analytic models in this way facilitates the 

modeling of binary, ordinal and nominal response data in an elegant and unifying latent 

variable framework.

The model in (3) provides a parsimonious factor analysis model for the high-dimensional 

latent vector z̲i which underlies the observed mixed data. As in any model which relies on a 

factor analytic structure, the loadings matrix details the relationship between the low-

dimensional latent trait θ̲i and the high-dimensional latent vector z̲i. Marginally, the latent 

vector is distributed as

resulting in a parsimonious covariance structure for z̲i.

3.4. A mixture of factor analyzers model for mixed data

To facilitate clustering when the observed data are mixed categorical variables, a mixture 

modeling framework can be imposed on the hybrid model defined in Section 3.3. The 

resulting model is termed the mixture of factor analyzers model for mixed data. In the MFA-

MD model, the clustering is deemed to occur at the latent variable level, that is, under the 

MFA-MD model the distribution of the latent data zi̲ is modeled as a mixture of G Gaussian 

densities

(4)

The probability of belonging to cluster g is denoted by πg, where  and πg > 0 ∀g. 

The mean and loading parameters are cluster specific.

As is standard in a model-based approach to clustering [Fraley and Raftery (1998), Celeux, 

Hurn and Robert (2000)], a latent indicator variable, ℓ̲i = (ℓi1, …, ℓiG), is introduced for each 

respondent i. This binary vector indicates the cluster to which individual i belongs, that is, lig 

= 1 if i belongs to cluster g; all other entries in the vector are 0. Under the model in (4), the 

augmented likelihood function for the N respondents is then given by

(5)

where  and Λ̃
g is the matrix resulting from the combination of μ ̲g and Λg 

so that the first column of Λ̃
g is μ̲g. Thus, the dth row of Λ̃

g is .
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The likelihood function in (5) depends on the observed responses Y through the indicator 

functions. In the ordinal part of the model, the observed yij restricts the interval in which zij 

lies, as detailed in (1). In the nominal part of the model,  is restricted in one of three 

ways, depending on the observed yij. The three cases (case s|yij) for s = 1, 2, 3 are defined as 

follows:

•
case 1|yij) = 1 if yij = 1, that is, .

• case 2|yij) = 1 if yij = k, that is,  and .

• case 3|yij) = 1 if yij ≠ 1 ∧ yij ≠ k, that is, .

An example of how this latent variable formulation gives rise to particular nominal 

responses is given in Appendix B.

The MFA-MD model proposed here is related to the mixture of factor analyzers model 

[Ghahramani and Hinton (1997)] which is appropriate when the observed data are 

continuous in nature. Fokoue and Titterington (2003) detail a Bayesian treatment of such a 

model; McNicholas and Murphy (2008) detail a suite of parsimonious mixture of factor 

analyzer models.

The MFA-MD model developed here provides a novel approach to clustering the mixed data 

in the Agincourt survey in a unified framework. In particular, the MFA-MD model has two 

novel features: (i) it has the capability to appropriately model the exact nature of the data in 

the Agincourt survey, in particular, the nominal data, and (ii) it has the capability of 

modeling all the survey items in a unified manner.

4. Bayesian model estimation

A Bayesian approach using Markov chain Monte Carlo (MCMC) is utilized for fitting the 

MFA-MD model to the Agincourt survey data. Interest lies in the cluster membership 

vectors L and the mixing proportions π̲, and in the underlying latent variables Z, the latent 

traits Θ, the item parameters Λ̃
g(∀g = 1, …, G) and the threshold parameters Γ.

4.1. Prior and posterior distributions

To fit the MFA-MD model in a Bayesian framework, prior distributions are required for all 

unknown parameters. As in Albert and Chib (1993), a uniform prior is specified for the 

threshold parameters. Conjugate prior distributions are specified for the other model 

parameters:

In terms of latent variables, it is assumed the latent traits θi̲ follow a standard multivariate 

Gaussian distribution while the latent indicator variables, ℓ ̲i, follow a Multinomial(1, π̲) 

distribution. Further, conditional on membership of cluster g, the latent variable 

. Combining these latent variable distributions and prior 
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distributions with the likelihood function specified in (5) results in the joint posterior 

distribution, from which samples of the model parameters and latent variables are drawn 

using a MCMC sampling scheme.

4.2. Estimation via a Markov chain Monte Carlo sampling scheme

As the marginal distributions of the model parameters cannot be obtained analytically, a 

MCMC sampling scheme is employed. All parameters and latent variables are sampled 

using Gibbs sampling, with the exception of the threshold parameters Γ, which are sampled 

using a Metropolis–Hastings step.

The full conditional distributions for the latent variables and model parameters are detailed 

below; full derivations are given in McParland et al. (2014a):

• Allocation vectors. For , where p̲ is defined in 

McParland et al. (2014a).

• Latent traits. For 

.

•
Mixing proportions: π̲| ⋯ ~ Dirichlet(n1 + α1, …, ng + αG) where .

• Item parameters. For g = 1, …, G and 

, where z̲gd = {zid} for all respondents i in cluster g and Θg̃ is a matrix, the rows of 

which are  for members of cluster g.

The full conditional distribution for the underlying latent data Z follows a truncated 

Gaussian distribution. The point(s) of truncation depends on the nature of the corresponding 

item, the observed response and the values of Z from the previous iteration of the MCMC 

chain. The distributions are truncated to satisfy the conditions detailed in Section 3. Thus, 

the latent data Z are updated as follows:

• If item j is ordinal and yij = k, then

where the distribution is truncated on the interval (γj,k−1, γj,k).

• If item j is nominal, then

where  is the row of Λ̃
g corresponding to  and the truncation intervals are 

defined as follows:
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– if yij = 1, then  for k = 1, …, Kj −1.

– if yij = k > 1, then:

1.  where .

2. for l = 1, …, k − 2, k, …, Kj −1 then .

Note that, in the case of yij = k > 1 above, the values  considered in the evaluation of τ in 

step 1 are those from the previous point in the MCMC chain. The value of  in step 2 is 

that sampled in step 1.

As a uniform prior is specified for the threshold parameters, the posterior full conditional 

distribution of γ̲j is also uniform, facilitating the use of a Gibbs sampler. However, if there 

are large numbers of observations in adjacent response categories, very slow mixing may be 

observed. Thus, as in Cowles (1996), Fox (2010), Johnson and Albert (1999), a Metropolis–

Hastings step is used to sample the threshold parameters; the overall sampling scheme 

employed is therefore a Metropolis-within-Gibbs sampler.

Briefly, the Metropolis–Hastings step involves proposing candidate values υj,k (for k = 2, …, 

Kj − 1) for γj,k from the Gaussian distribution  truncated to the interval 

, where  is the value of γj,k+1 sampled at iteration (t − 1). The threshold 

vector γ̲j is set equal to the proposed vector, υ̲j, with probability β = min(1, R), where R is 

defined in McParland et al. (2014a). The tuning parameter  is selected to achieve 

appropriate acceptance rates.

This Metropolis-within-Gibbs sampling scheme is iterated until convergence, after which 

the samples drawn are from the joint posterior distribution of all the model parameters and 

latent variables of the MFA-MD model.

4.3. Model identifiability

The MFA-MD model as described is not identifiable. One identifiability aspect of the model 

concerns the threshold parameters. If a constant is added to the threshold parameters for an 

ordinal item j and the same constant is added to the corresponding mean parameter(s), the 

likelihood remains unchanged. Therefore, as outlined in Section 3.1, the second element γj1 

of the vector of threshold parameters, γ̲j, is fixed at 0 for all ordinal items j.

The model is also rotationally invariant due to its factor analytic structure. Many approaches 

to this identifiability issue have been proposed in the literature. A popular solution is that 

proposed by Geweke and Zhou (1996) where the loadings matrix is constrained such that the 

first q rows have a lower triangular form and the diagonal elements are positive. This 

approach is adopted by Quinn (2004) and Fokoue and Titterington (2003), among others. 

However, this approach enforces an ordering on the variables [Aguilar and West (2000)] 

which is not appropriate under the MFA-MD model.
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Here, the approach to identifying the MFA-MD model is based on that suggested by Hoff, 

Raftery and Handcock (2002) and Handcock, Raftery and Tantrum (2007) in relation to 

latent space models for network data. Instead of imposing a particular form on the loadings 

matrices, the MCMC samples are post-processed using Procrustean methods. Each sampled 

Λg is rotated and/or reflected to match as closely as possible to a reference loadings matrix. 

The latent traits, θi̲, are then subjected to the same transformation. The sample mean of these 

transformed values is then used to estimate the mean of the posterior distribution.

Conditional on the cluster memberships on convergence of the MCMC chain, a factor 

analysis model is fitted to the underlying latent data within each cluster. The estimated 

loadings matrix obtained is used as the reference matrix for each cluster. Only the saved 

MCMC samples need to be subjected to this transformation, which is done post hoc and is 

computationally cheap.

5. Results: Fitting the MFA-MD model to the Agincourt data

In order to describe and understand the SES landscape in the Agincourt region, the MFA-

MD model is fitted to the asset survey data. Varying the number of clusters G and the 

dimension of the latent trait q allows consideration of a wide range of MFA-MD models. 

Choosing the optimal MFA-MD model is difficult, as likelihood based criteria, such as the 

Bayesian Information Criterion or marginal likelihood approaches, are not available since 

the likelihood cannot be evaluated. However, within the sociological setting in which the 

MFA-MD is applied here, the existence of SES clusters is well motivated [Weeden and 

Grusky (2012), Erikson and Goldthorpe (1992), Svalfors (2006), Alkema et al. (2008)]. 

Further, the literature suggests small numbers (≈ 3) of such SES clusters typically exist. 

Hence, to examine the (dis)similar features of the SES clusters in the Agincourt region, 

MFA-MD models with G = 2, …, 6 and q = 1, 2 are fitted to the data. Models in which q > 2 

were not considered for reasons of parsimony.

Trace plots of the Markov chains were used to judge convergence and examples are 

presented in Appendix C. To achieve satisfactory mixing in the Metropolis–Hastings 

sampling of the threshold parameters, γ̲j, a small proposal variance was required. 

Acceptance rates of 20–30% were observed. The Jeffreys prior, Dirichlet , was 

specified for the mixing weights π̲. A multivariate normal prior with mean μ ̲λ = 0 and 

covariance matrix Σλ = 5I was specified for . In the absence of strong prior information, 

this relatively uninformative prior was chosen. It should be noted, however, that flat priors 

can lead to improper posterior distributions in the context of mixture models [Frühwirth-

Schnatter (2006)]. To assess prior sensitivity, different values for the hyperparameters were 

trialled, namely, μλ ∈ {0, 0.5} and Σλ ∈ {I, 1.25I, 2.5I, 5I}. All hyperparameter values 

produced similar substantive clustering results, indicating that prior sensitivity does not 

appear to be an issue, however, a more thorough exploration may prove informative. The 

label switching problem was addressed using methods detailed in Stephens (2000).
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5.1. Model assessment

Given the question of interest [i.e., what are the (dis)similar features of the SES clusters in 

the set of Agincourt households?], and due to the unavailability of a formal model selection 

criterion for the MFA-MD model, focus is placed on models which are substantively 

interesting and fit well. Model fit is assessed in an exploratory manner using three 

established statistical tools: posterior predictive checks, clustering uncertainty and residual 

analysis.

5.1.1. Posterior predictive checks—A natural approach to assessing model fit within 

the Bayesian paradigm is via posterior predictive model checking [Gelman et al. (2003)]. 

Replicated data are simulated from the posterior predictive distribution and compared to the 

observed data. Given the multivariate and discrete nature of the observed survey data, a 

discrepancy measure which focuses on response patterns across the set of assets is employed 

to compare observed and replicated data. Erosheva, Fienberg and Joutard (2007) and Gollini 

and Murphy (2013) employ truncated sum of squared Pearson residuals (tSSPR) to assess 

model fit in the context of clustering categorical data. The standard SSPR examines 

deviations between observed and expected counts of response patterns; the truncated SSPR 

evaluates the SSPR only for the T most frequently observed response patterns.

In the MFA-MD setting, however, computing expected counts is intractable since this 

involves evaluating response pattern probabilities, which requires integrating a 

multidimensional truncated Gaussian distribution, where truncation limits differ and are 

dependent across the dimensions. Hence, here posterior predictive data are used to obtain a 

pseudo tSSPR. Replicated data sets Yr for r = 1, …, R are simulated from the posterior 

predictive distribution and for each the tSSPR is computed where

Here ot = observed count of response pattern t and pt = predicted count of response pattern t 

in replicated data set Yr. Response patterns observed 30 times or more are considered here, 

which is equivalent to a truncation level of T = 20. This measure is computed for R = 1500 

replicated data sets across MFA-MD models with G = 1, …, 6 and q = 1, 2. The G = 1 case 

is included for completion. The median of the R tSSPR values for each model considered is 

illustrated in Figure 1(a), along with the quantile based interquartile range.

Based on the median tSSPR values, the improvement in fit from q = 1 to q = 2 across G was 

felt to be insufficient to substantiate focusing on the q = 2 models, given the reduction in 

parsimony. Examination of the parameters of the q = 2 model for a fixed G also provided 

little substantive insight over the q = 1 model. Models with G = 2, G = 3 and G = 4 (with q = 

1) all seem to fit equivalently well; this observation is also apparent under other truncation 

levels T, as illustrated in McParland et al. (2014a). Further, the median tSSPR values 

support the literature’s assertion that SES clusters exist, that is, that G > 1.
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5.1.2. Clustering uncertainty—Clustering uncertainty [Bensmail et al. (1997), Gormley 

and Murphy (2006)] is an exploratory tool which helps assess models in the context of 

clustering. The uncertainty with which household i is assigned to its cluster may be 

estimated by

If household i is strongly associated with cluster g, then Ui will be small.

Box plots of the clustering uncertainty of each household under models with G = 2, …, 6 

(and q = 1) are shown in Figure 1(b). The uncertainty values are low in general, indicating 

that households are assigned to clusters with a high degree of confidence. Low values are 

observed for the G = 2 and G = 3 models, with a notable increase for higher numbers of 

clusters.

5.1.3. Bayesian latent residuals analysis—The posterior predictive checks and the 

clustering uncertainties suggest that models with G = 2, G = 3 and G = 4 (and q = 1) appear 

to fit well and are relatively parsimonious. Focus is given to these models, and Bayesian 

latent residuals [Johnson and Albert (1999), Fox (2010)] are employed to investigate their 

model fit. Bayesian latent residuals, defined by , should follow a standard 

normal distribution. The Bayesian latent residuals follow their theoretical distribution 

reasonably well for the three models under focus; Figure 2 shows kernel density estimate 

curves of the Bayesian latent residuals corresponding to the cattle item for a random sample 

of 100 households. The curves are estimated based on the residuals at each MCMC iteration. 

Residuals which do not appear to follow a standard normal distribution correspond to 

responses which were unusual given the household’s cluster membership. Further examples 

of such residual plots are given in McParland et al. (2014a).

The three approaches to assessing model fit suggest that focus should be given to models 

with G = 2, G = 3 and G = 4, and q = 1. As the G = 3 and G = 4 models give deeper insight 

to the SES structure of the Agincourt households than the G = 2 model, the G = 3 model is 

explored in detail in Section 5.2; a substantive comparison with the G = 4 model is provided 

in Section 5.3, in which the G = 2 model is also discussed.

5.2. Results: Three-component MFA-MD model

The clustering resulting from fitting a 3-component MFA-MD model, with a one-

dimensional latent trait, divides the Agincourt households into 3 distinct homogeneous 

subpopulations, with intuitive socio-economic characteristics.

The conditional probability that household i belongs to cluster g can be estimated from the 

MCMC samples by dividing the number of times household i was allocated to group g by 

the number of samples. A “hard” clustering is then obtained by considering maxg ℙ (cluster 

g|household i), ∀i, and assigning households to the cluster for which this maximum is 

achieved.
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The modal responses to items for which the modal response differed across groups are 

presented in Table 1. These statistics only tell part of the story, however, and the distribution 

of responses will be analyzed later.

It can be seen from Table 1 that cluster 1 is a modern/wealthy group of households. The 

modal responses indicate that households in this cluster are most likely to possess modern 

conveniences such as a stove, a fridge and also some luxury items such as a television.

In contrast, cluster 3 is a less wealthy group. Households in this group are likely to have 

poor sanitary facilities—the modal response to the location of toilet facilities and the type of 

toilet are “bush” and “none,” respectively. Households in cluster 3 are also less likely to own 

modern conveniences such as a fridge or television.

The socio-economic status of cluster 2 is somewhere between that of the other two groups, 

but closer to cluster 1 than 3. Households in cluster 2 are likely to have better sewage 

facilities and larger dwellings than those in cluster 3 but lack some luxury assets such as a 

video player. They are also likely to keep poultry and cook with wood rather than electricity, 

which suggests this group may be less modern than cluster 1 to some degree.

It is interesting to note that the largest group is the wealthy/modern cluster 1, while the 

smallest group is cluster 3 who have the lowest living standards.

An almost identical table to Table 1 was produced for a 3-component model with a 2-

dimensional latent trait. There were some further differences in the Power for Lighting and 

Cell Phone items but the clusters have the same substantive interpretation.

A more detailed picture of how the groups differ from each other is presented in Figures 3 

and 4. Box plots of the MCMC samples of the cluster specific mean parameter μ̲g are shown 

in these figures. The box plots for the binary/ordinal items (Figure 3) have a different 

interpretation to those for the nominal items (Figure 4). The binary and ordinal responses 

have been coded with the convention that larger responses correspond to greater wealth. 

Thus, a higher mean value for the latent data corresponding to these items is indicative of 

greater wealth. To interpret the box plots for the nominal items, all latent dimensions for a 

particular item must be considered. If the mean of one dimension (k, say) is greater than the 

means of the others for a particular cluster, then the response corresponding to dimension k 

is the most likely response within that cluster. If the means for all dimensions for a particular 

item are less than 0, then the most likely response by households in that cluster is the first 

choice.

The box plots corresponding to the binary and ordinal items are shown in Figure 3. The 

elements of the mean of cluster 1 (the wealthy/modern cluster) μ ̲1 can be seen to be greater 

than those for the other clusters in general; this reflects the greater wealth observed in cluster 

1 compared to the other groups. Similarly, the elements of μ̲3 (the least wealthy group) are 

lower than those for the other groups, reflecting the lower socio-economic status of 

households in cluster 3. The difference between cluster 3 and clusters 1 and 2 is particularly 

stark on the location of toilet facilities (ToiletFac) and the type of toilet facilities 

(ToiletType) items. The means for clusters 1 and 2 are notably higher than the mean for 
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cluster 3 since the responses for groups 1 and 2 are typically a number of categories higher 

on these items.

Figure 4 shows box plots of the MCMC samples of the dimensions of the cluster mean 

parameters, μ̲g, corresponding to the nominal items. Focusing on the latent dimensions 

corresponding to the PowerCook item, say, it can be seen that the highest mean for cluster 1 

is on the “electricity” dimension followed closely by the “wood” dimension, and that these 

means are greater than 0. This implies that the most likely response to the PowerCook item 

for cluster 1 is electricity but that a significant proportion of the households in this group 

cook with wood. The highest means for clusters 2 and 3 are on the “wood” latent dimension. 

Thus, most of the households in these clusters cook with wood in contrast to the wealthy/

modern cluster 1. This difference is indicative of a socio-economic divide. In a similar way, 

the mean parameters for the PowerLight item suggest that electricity is the most likely 

source of power for lighting for households in all clusters; the parameter estimates 

associated with the Roof item suggest corrugated iron roofs are the predominant roofing type 

on dwellings in the Agincourt region.

To further investigate the difference between the 3 clusters, the response probabilities to 

individual survey items within a cluster are examined. For example, Table 2 shows the 

probability of observing each possible response to the Stove item, conditional on the 

members of each cluster.

The distances between the cluster specific item response probability vectors can be used to 

make pairwise comparisons of groups. The distance measure used here is Hellinger distance 

[Le Cam and Yang (1990), Rao (1995), Bishop (2006)]. Pairwise comparisons between 

clusters are illustrated in Figure 5. The Hellinger distance between response probability 

vectors for each item is plotted. The groups that are most different are clusters 1 (the 

wealthy/modern cluster) and 3 (the least wealthy cluster). The sum of the Hellinger 

distances between these groups across all items is 7.316. The items for which the Hellinger 

distance between the response probability vectors is largest are ToiletType, ToiletFac, Stove 

and PowerLight, highlighting the areas in which households in these clusters differ most. 

There are noteworthy Hellinger distances for many other items also. The difference in 

response patterns for these items is also evident in the box plots in Figures 3 and 4.

The sum of the Hellinger distances between clusters 1 and 2 (the wealthier two clusters) 

across all items is 3.544, making these two groups the most similar. There are some notable 

differences, however, the Hellinger distance between the groups on the items Stove and 

PowerCook are 0.501 and 0.556, respectively, which accounts for almost 30% of the total 

distance.

Clusters 2 and 3 are quite different and the sum of the Hellinger distances between these 

groups is 5.643. As was the case for clusters 1 and 3, the items ToiletType and ToiletFac 

provide the largest Hellinger distances between groups 2 and 3. In contrast, however, there 

are much smaller differences for the items Stove and PowerCook. Again these results 

highlight the specific areas in which the socio-economic status of households within each 

cluster differ. A similar pattern was observed in Table 1 and Figures 3 and 4.
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5.3. Results: Four- and two-component MFA-MD models

Many of the substantive results returned by the 4-component model are similar to those 

inferred from the 3-component model. Notably, the items listed in Table 1 (i.e., those items 

for which the modal response differs across groups in the 3-component solution) are a subset 

of those items for which the modal response differs across groups in the 4-component 

solution [details provided in McParland et al. (2014a)]. Groups A, B and C in the 4-

component model are substantively similar to groups 1, 2 and 3 from the 3-component 

model, respectively. Group D returned by the 4-component model is interesting, however. It 

is similar to group A in that households in this cluster possess many modern conveniences 

but the standard of their dwelling is not at the same level as those in group A. The standard 

of dwellings in group D is similar to those in group C, however, the households differ from 

group C in terms of the modern conveniences they possess. Further investigation revealed 

that households in group C are either in group 1 (wealthy) or group 3 (poor) of the 3-

component solution. Figure 6 plots the Hellinger distance between groups A and C and 

groups C and D, illustrating the differences and similarities between these clusters. It can be 

seen that the largest distances between groups A and C concern items related to the dwelling 

while the largest distances between groups C and D concern modern convenience 

ownership.

Interestingly, group 2 and group B, under the 3- and 4-component solutions, respectively, 

consist of almost exactly the same households. These groups are deemed to be wealthy but 

less modern than group 1 and group A, under the 3- and 4-component solutions, 

respectively. Indeed, under the 5- and 6-component models, the essence of this cluster 

remains intact.

Similar substantive results are inferred from the two-component MFA-MD solution. Again, 

it is notable that those items for which the modal response differs across groups in the 2-

component solution [detailed in McParland et al. (2014a)] are a subset of those items for 

which the modal response differs across groups in the 3-component solution (detailed in 

Table 1). Groups A and B under the 2-component solution relate generally to clusters 1 and 

2 in the 3-component solution. The poorer cluster B in the 2-component solution separates to 

create clusters 2 and 3 in the 3-component solution.

5.4. Comparison to existing methodology

Several other approaches to exploring the SES landscape based on asset survey data are 

detailed in the demography literature. It is therefore of interest to compare the results 

obtained when exploring the Agincourt SES landscape using the proposed MFA-MD model 

to those obtained when existing methods are applied. In particular, two existing methods for 

analyzing mixed type socioeconomic data are considered, that of Filmer and Pritchett (2001) 

and that of Collinson et al. (2009), mentioned in Section 2.

The Filmer and Pritchett (2001) approach codes ordinal and nominal responses using 

dummy binary variables and a principal component analysis (PCA) is applied to the 

resulting data matrix. The Collinson et al. (2009) approach constructs a continuous asset 

index from the raw data. Figure 7 shows the standardized first principal component scores 
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plotted against the standardized asset index of Collinson et al. (2009) when these methods 

were applied to the Agincourt data. The points are colored by the three-group clustering 

solution considered here. The two alternative scores do seem to broadly agree. In addition, 

the 3-cluster solution appears to roughly correspond to the gradation of the first principal 

component scores. However, Filmer and Pritchett (2001) partition households into the 

lowest 40%, middle 40% and top 20% based on these principal component scores; their 

choice of percentiles is arbitrary. Comparing the allocation based on this criterion to that 

from our model results in a Rand and adjusted Rand index of 0.61 and 0.15, respectively. 

Thus, the clustering solution using the MFA-MD model is quite different than that currently 

in use. Clustering households is not the primary goal for Collinson et al. (2009), though they 

do classify households as “chronically poor” if they have below the median asset index 

score. The MFA-MD model allocates households using a more preferable objective model-

based approach, while recognizing the different data types and treating them accordingly.

6. Discussion

This paper set out to describe and understand the SES landscape in the Agincourt region in 

South Africa through clustering households based on their asset status survey data. The 

MFA-MD model described in this paper successfully achieved this aim by clustering 

households into groups of differing socio-economic status. Which households are in each 

group and what differentiates these clusters from each other can be examined in the model 

output. This information is potentially of great benefit to various authorities in the Agincourt 

region. The interpretation of the SES clusters could aid decision-making with regard to 

infrastructural development and other social policy. Further, the resulting clustering 

memberships and cluster interpretations will be used to aid targeted sampling of a particular 

cluster of households in the Agincourt region in future surveys. New questions in future 

surveys can be derived based on the substantive information now known about the SES 

clusters. The clustering output from the MFA-MD model could also be used as covariate 

input to other models, such as mortality models. There may be important differences in 

mortality rates in different socio-economic strata within the region; new health policies may 

need to take these differences into account. A key interest for the sociologists studying the 

Agincourt region is understanding social mobility, and substantively examining SES clusters 

is the first step in this process. Thus, the clustering exploration of the SES landscape in 

Agincourt will provide support to researchers in the Agincourt region, through the exposure 

of (dis)similar features of the clusters of households. The information provided about the 

SES Agincourt landscape is based on a statistically principled clustering approach, rather 

than ad hoc measures.

The MFA-MD model also provides a novel model-based approach to clustering mixed 

categorical data. The SES data used here is a mix of binary, ordinal and nominal data. The 

MFA-MD model provides clustering capabilities in the context of such mixed data without 

mistreating any one data type. A factor analytic model is fitted to each group individually 

and may be interpreted in the usual manner.

Future research directions are plentiful and varied. The lack of a formal model selection 

criterion for the MFA-MD model is the most pressing, and challenging. The provision of a 
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formal criterion would facilitate application of the MFA-MD model in settings in which an 

optimal model must be selected; a formal criterion which selects the most appropriate 

number of components and also the dimension of the latent trait would be very beneficial. 

Model selection tools based on the marginal likelihood [Friel and Wyse (2011)] are a natural 

approach to model selection within the Bayesian paradigm, but the intractable likelihood of 

the observed data Y poses difficulties for the MFA-MD model. This renders even 

approximate approaches such as BIC unusable. One alternative would be to approximate the 

observed likelihood using the underlying latent data Z, but this also brings difficulties and 

uncertainty [McParland and Gormley (2013)]. Other joint approaches to clustering and 

choosing the number of components are popular in the literature; using a Dirichlet process 

mixture model or incorporating reversible jump MCMC may provide fruitful future research 

directions. However, the applied nature of the work here and the requirement of 

interpretative clusters and model parameters motivated the use of a finite mixture model. 

Approaches to choosing the number of latent factors such as those considered in Lopes and 

West (2004) or Bhattacharya and Dunson (2011) could also have potential within the MFA-

MD context.

Additionally, there are several ways in which the MFA-MD model itself could be extended. 

Here, the last time point from the Agincourt survey was analyzed. However, there have been 

several waves of this particular survey—extending the MFA-MD model to appropriately 

model longitudinal data would be beneficial. In this way the Agincourt households could be 

tracked across time, as they may or may not move between socio-economic strata. As with 

most clustering models, the variables included in the model are potentially influential. The 

addition of a variable selection method within the context of the MFA-MD model could 

significantly improve clustering performance and provide substantive insight to asset 

indicators of SES. A reduction in the number of variables would also decrease the 

computational time required to fit such models. In a similar vein, the Metropolis–Hastings 

step required to sample the threshold parameters in the current model fitting approach could 

potentially be removed by using a rank likelihood approach [Hoff (2009)]. This could also 

offer an improvement in computational time.

Other areas of ongoing and future work include the inclusion of modeling continuous data 

by the MFA-MD model. This would facilitate the clustering of mixed data consisting of both 

continuous and categorical data [McParland et al. (2014b)], and requires little extension to 

the MFA-MD model proposed here. Allowing further correlations in the latent variable 

beyond those produced by the latent trait is an interesting model extension; this could be 

achieved by relaxing the unit variance in the probit link. Finally, covariate information could 

naturally be incorporated in the MFA-MD model in the mixture of experts framework 

[Gormley and Murphy (2008), Jacobs et al. (1991)]; such an approach could be insightful in 

understanding cause-effect relationships in the Agincourt SES clusters and should be a 

straightforward extension.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: SURVEY ITEMS

Table 3

A list of all survey items and the possible responses. The final three items in the table are 

regarded as nominal, all other items are binary or ordinal

Item Description Response options

Construct Indicates whether main dwelling is still under construction. (No, Yes)

Walls Construction materials used for walls. (Informal, Modern)

Floor Construction materials used for oor. (Informal, Modern)

Bedrooms Number of bedrooms in the household. (≤1, 2, 3, 4, 5, ≥6)

SepKit Indicates whether kitchen is separate from sleeping area. (No, Yes)

SepLiv Indicates whether living room is separate from sleeping area. (No, Yes)

ToiletFac Reports the physical location of toilet in the household. (Bush, Other House, In Yard, In House)

ToiletType Reports the type of toilet used. (None, Pit, VIP, Modern)

WaterSup Reports the water supply source. (From a tap, Other)

Stove Reports stove ownership status. (No, Yes)

Fridge Reports fridge ownership status. (No, Yes)

TV Reports television ownership status. (No, Yes)

Video Reports video player ownership status. (No, Yes)

SatDish Reports satellite dish ownership status. (No, Yes)

Radio Reports radio ownership status. (No, Yes)

FixPhone Reports fixed phone ownership status. (No, Yes)

CellPhone Reports mobile phone ownership status. (No, Yes)

Car Reports car ownership status. (No, Yes)

MBike Reports motor bike ownership status. (No, Yes)

Bicycle Reports bicycle ownership status. (No, Yes)

Cart Reports animal drawn cart ownership status. (No, Yes)

Cattle Reports cattle ownership status. (No, Yes)

Goats Reports goats ownership status. (No, Yes)

Poultry Reports poultry ownership status. (No, Yes)

Pigs Reports pig ownership status. (No, Yes)

Roof Construction materials used for roof. (Other informal, Thatch, Other modern, 
Corrugated iron, Tile)

PowerLight Main power supply for lights and appliances. (Other, Candles, Paraffin, Solar, Battery/
Generator, Electricity)

PowerCook Main power supply for cooking. (Other, Wood, Paraffin, Gas Bottle, 
Electricity)
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Fig. 8. Latent variable formulation of nominal responses.

APPENDIX B: LATENT VARIABLE FORMULATION OF NOMINAL 

RESPONSES

Suppose item j is nominal with Kj = 3 options: apple (denoted level 1), banana (denoted 

level 2) or pear (denoted level 3). Thus, .

Figure 8 shows what the marginal distributions of the latent variables might look like along 

with realizations from those distributions:

i. Both  and  are less than 0, thus , that is, apple.

ii.  and , that is, banana.

iii.  and , that is, pear.
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In the MCMC algorithm, these latent variables are sampled conditional on the observed data 

Y. Given the nominal response, the full conditional distributions are truncated appropriately.

APPENDIX C: CONVERGENCE OF MARKOV CHAINS

Fig. 9. Trace plots of Markov chains for selected parameters. The plots shown are of the 

thinned MCMC samples, post burn-in. (a) Trace plot of the MCMC samples for one of the 

threshold parameters of the ToiletFac item. (b) Trace plot of the MCMC samples of the 
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mixing weight for group 3. (c) Trace plot of the MCMC samples for the latent trait of the 

first household. (d) Trace plot of the MCMC samples of the first dimension of the mean 

vector for group 1. (e) Trace plot of the MCMC samples of one of the loadings parameters 

for nominal item Roof. (f) Trace plot of the MCMC samples of the loadings parameter for 

ordinal item Bedrooms.
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Fig. 1. 
Assessing model fit. (a) The median tSSPR, and its associated uncertainty, across a range of 

MFA-MD models. (b) Box plots of clustering uncertainty across models with between 2 and 

6 clusters, and a 1-dimensional latent trait.
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Fig. 2. 
Bayesian latent residuals, corresponding to the cattle survey item, for 100 randomly sampled 

households under the G = 3 model with a 1-dimensional latent trait. The dashed black line is 

the standard normal curve.
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Fig. 3. 
Box plots of MCMC samples of the dimensions of the cluster means, μ̲g, corresponding to 

binary and ordinal items.
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Fig. 4. 
Box plots of MCMC samples of the dimensions of the cluster means, μ̲g, corresponding to 

nominal items. The first plot shows box plots of the means of the latent dimensions relating 

to the PowerCook item, the second shows the means of the dimensions representing the 

PowerLight item and the third shows the means of the dimensions corresponding to the Roof 

item.
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Fig. 5. 
Pairwise comparisons of groups using Hellinger distance. (a) Hellinger distances between 

groups 1 and 2. Total distance is 3.544. (b) Hellinger distances between groups 1 and 3. 

Total distance is 7.316. (c) Hellinger distances between groups 2 and 3. Total distance is 

5.643.

McParland et al. Page 30

Ann Appl Stat. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. 
Hellinger distances between groups A and C (red) and groups C and D (blue). The total 

distances are 4.219 and 5.699 respectively.
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Fig. 7. 
Comparing the principal component based approach of Filmer and Pritchett (2001) to the 

asset index of Collinson et al. (2009). The gray line shows where both scores are equal and 

the points are colored according to the 3 group, 1-dimensional latent trait, MFA-MD 

solution.
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Table 1

The cardinality of each group and the modal response to items on which the modal response differs across 

groups

G 1 2 3

# 7864 6543 3210

# Bedrooms 2 2 ≤1

Separate Living Area Yes Yes No

Toilet Facilities Yard Yard Bush

Toilet Type Pit Pit None

Power for Cooking Electric Wood Wood

Stove Yes No No

Fridge Yes Yes No

Television Yes Yes No

Video Yes No No

Poultry No Yes No
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Table 2

Cluster specific response probabilities to the survey item Stove

G No Yes

1 0.005 0.995

2 0.509 0.491

3 0.626 0.374
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