
Computational analysis of three-dimensional epithelial 
morphogenesis using vertex models

XinXin Du1,2,*, Miriam Osterfield3, and Stanislav Y. Shvartsman3,4

1Molecular and Cellular Physiology Department, Stanford University, Stanford, CA, USA

2Bioengineering Department, Stanford University, Stanford, CA, USA

3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA

4Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA

Abstract

The folding of epithelial sheets, accompanied by cell shape changes and rearrangements, gives rise 

to three-dimensional structures during development. Recently, some aspects of epithelial 

morphogenesis have been modeled using vertex models, in which each cell is approximated by a 

polygon; however, these models have been largely confined to two dimensions. Here, we describe 

an adaptation of these models in which the classical two-dimensional vertex model is embedded in 

three dimensions. This modification allows for the construction of complex three-dimensional 

shapes from simple sheets of cells. We describe algorithmic, computational, and biophysical 

aspects of our model, with the view that it may be useful for formulating and testing hypotheses 

regarding the mechanical forces underlying a wide range of morphogenetic processes.

Introduction

A common mode of metazoan development involves organizing cells into monolayers or 

sheets, and using these sheets to form structures with higher complexity; such sheets of cells 

are called epithelia. Cells within an epithelium are characterized by polarity along an axis 

defining the apical and basal side of the cell. The cells adhere to each other at their lateral 

surfaces and thus form a sheet; see Figure 1. Epithelial sheets and the processes by which 

they form complex morphological structures play key roles in evolution and development. 

Epithelial tissue is the most highly conserved tissue in multicellular animals. The 

mechanical integrity of epithelia compartmentalized early animals, allowing food to be 

captured and digested extracellularly in an enclosed space, and permitting the construction 

of complex, three-dimensional organs [1–3]. Due to the highly organized structure of 

*Corresponding xinxin@stanford.edu. 

Author Summary
During embryonic development in animals, many organs are shaped in part by folding and rearranging epithelial cell sheets. Forces or 
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epithelia, large-scale tissue shape changes, such as folding or bending, can be achieved by 

controlling the activities of individual cells. Such morphogenetic processes, often termed 

epithelial folding, are involved in a variety of important developmental processes, such as 

formation of the ventral furrow in Drosophila and the neural tube in vertebrates [4–6].

Epithelia share many properties with other disordered cellular materials such as foams and 

granular materials. For example, it has been discovered that cell positioning and sorting can 

be driven largely by the relative surface adhesion strengths of neighboring cells [7–10], 

which are phenomenologically equivalent to negative surface tension. As a result of such 

similarities, authors in these fields frequently borrow from each other’s approaches. A 

variety of models have been constructed to describe cellular materials, ranging from those 

describing cells as spheres with distance-dependent interaction forces [11,12], to those that 

include detailed geometry and shape of the cells but generally lack an explicit representation 

of realistic forces, such as cellular automata models and cellular Potts models [13], to 

models that take into account both cell shape and explicit forces describing interactions 

among cells [14–19]. We have chosen to implement a vertex model, which captures a 

somewhat simplified cell geometry but explicitly describes realistic forces such as surface 

tension and pressure.

Vertex models (see Figure 1) represent an epithelium as a set of polygonal cells that can be 

assigned an energy based on geometry, typically designed to represent the cohesive forces 

from adhesion molecules, elasticities due to active actin-myosin networks, and effective 

elasticities that serve to constrain cell volumes. In a variety of biological [20–23] and non-

biological [24,25] applications, the dynamics are largely driven by surface tension and 

pressure. Additionally, discrete rearrangements of vertex connectivity are prescribed to 

simulate common empirically observed cellular rearrangements. The vertex model gives a 

simple framework under which forces may be combined with geometry to 

phenomenologically describe the physics of cellular structures.

In previous work, vertex models of epithelia have been mostly confined to two dimensions. 

In many cases of epithelial morphogenesis, however, it appears that a two-dimensional 

nonuniform spatial pattern of gene expression results in a nonuniform pattern of cell 

properties that helps transform a 2d sheet into a 3d structure. Motivated by work on dorsal 

appendage formation in Drosophila [26], we have extended a previously described vertex 

model by embedding it in three dimensions. Using results from this model, we propose that 

the generation of 3D structures from flat epithelia might in some cases be driven not by 

differences in mechanical properties along the apical-basal axis as generally hypothesized 

[27], but from mechanical buckling to due to in-plane stresses. The purpose of this paper is 

to discuss the main aspects of our model formulation, computational implementation, and 

analysis of simulations.

Results

In this section, we will give four examples of biological applications of our vertex model. 

First, we will consider how in-plane tensions can cause buckling of a 2d sheet embedded in 

3d. Second, we carefully follow a single intercalation event and discuss the energetics of 
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canonical cell rearrangements. In the final two examples, we examine how including both 

buckling and cell rearrangements in the same model allows for generation of complex 

morphologies, and discuss biological applications.

The energy function for vertex models that we will use is:

(1)

The variables in this equation are described in detail in the Models section, along with a 

description of the calculations of these terms in 3d, expressions for force derived from the 

energy function, and details of implementation. Here, we briefly reiterate that the first term 

corresponds to area elasticity of each cell, the second term corresponds to perimeter 

elasticity of each cell, the third term corresponds to line tension along individual membrane 

edges of the epithelium, and the fourth term is a curvature term penalizing out-of-plane 

bending, which is non-zero only in 3d. Energy functions including the first three terms have 

been widely used in 2d models of epithelia [20, 21, 23, 28]; the fourth term is commonly 

used in other types of models to describe bending of thin membranes [29].

The implementation of our model described here calculates forces from the energy function 

and assumes overdamping to evolve the system in time. This approach, which has been also 

used by other authors [30], allows the model to describe overdamped dynamics explicitly 

through equations of motion. An important advantage over the Monte Carlo and similar 

methods is the ability of the model to incorporate time-dependent processes, for example, 

temporally regulated developmental signals or transport processes.

Analysis of buckling: from 2d to 3d

In our first set of examples, we demonstrate how non-uniform spatial patterning of 

parameters corresponding to individual cell properties can initiate 3d morphogenesis. It is 

widely known that compression within the two-dimensional plane of a physical sheet, for 

example due to inhomogeneities in the material, is linearly unstable with respect to any 

perturbations in the z direction, and the sheet will buckle much in the way that a blade of 

grass would become wrinkled if the thickness were non-uniform [31,32]. Therefore, we 

wanted to establish how our vertex model behaves when subjected to similar spatially non-

uniform forces.

First, we consider a model for a myosin cable enclosing a patch of cells, motivated by the 

myosin cables observed in Drosophila follicle cell appendage and trachea formation [26, 

33]. We model the tissue as a rectangular sheet of cells, fixed at the boundaries, and 

uniformly patterned with parameter values aα = a, bα = b, and σij = σ for all cells α and β 

and edges 〈ij〉 with the exception of the edges surrounding a smaller patch of cells. For these 

edges, which represent the myosin cable, a larger σij = Tσ is assigned with T > 1 (see Figure 

2A). Using these parameter specifications, we solve for equilibrium configurations of the 

sheet and obtain the critical values of T for which the sheet buckles.
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We obtain the equilibrium states and plot their maximum heights for four different cases, to 

illustrate the effects of boundary conditions and bending energy on model results (Figure 

2B:). First, with the boundary of the sheet fixed to its equilibrium size as calculated in the 

Models section, we examine the effect of incorporating a bending parameter by setting it 

either to cαβ = 0 or cαβ = 0.03 (dark blue and light blue lines). In both cases, the small patch 

of cells buckles out-of-plane for large enough values of T, as illustrated in Figure 2A and 

Movie S1; as expected; the critical value of T is larger when cαβ > 0 as opposed to cαβ = 0. 

Next, we consider similar cases, except that the boundary of the entire model tissue is 

“stretched” by being fixed to approximately 1.04 times its equilibrium size; as before, the 

bending parameter is set to either cαβ = 0 or cαβ = 0.03 (dark red and light red lines). Note 

that this stretched epithelium example may be relevant in biological situations where an 

epithelium is under constant external force from certain geometric constraints, for example 

the follicular epithelium that is stretched over an oocyte in Drosophila egg chambers [26, 

34, 35]. As one might intuitively expect, the critical value of T at which the buckling 

transition occurs is larger for the “stretched” systems compared to the unstretched systems.

To formally show that the out-of-plane motion seen in Figure 2 reflects true buckling, we 

also performed linear stability analysis of the buckling transition. Figure 2C indicates the 

maximum real part λm of the eigenvalues of the Jacobian for the equilibrium state of the 

system confined to 2d geometry for the four respective situations; the value λm crosses from 

negative to positive as a function of T when the flat equilibrium configuration loses stability, 

as typical in cases of buckling instabilities due to compression. Note that near the buckling 

transition, equilibrium states are not bistable; that is, either a flat or a buckled state, but not 

both, is stable for a given set of parameters.

Next we consider a related set of examples, representing situations in which there is 

increased myosin activity throughout a patch of cells. This may be biologically relevant in 

cases such as in Drosophila ventral furrow invagination, where a meshwork of actin and 

myosin distributed across the apical surface of the epithelium appears to cause the required 

cell shape changes [36]. We model this situation as a similar rectangular sheet of cells, 

where cells in the small patch have vertex model parameter values aα = a, bα = b, and σij = σ 

for all cells α and edges 〈ij〉 within the patch, while outside the patch, parameter values for 

cells and edges are suppressed by a factor f < 1 to be aα = fa, bα = fb, and σij = fσ, and edges 

on the boundary of the patch are chosen to have tension values σ (see Figure 2D). As a 

function of f, we test this set of parameter values for the same variations in stretch and 

bending as described in the previous example; the results for maximum height of the patch 

are plotted with the same color schemes in Figure 2E. For small enough values of f, the 

patch of cells buckles out of plane as illustrated in Figure 2D and Movie S2. Again, changes 

in the critical value of f at which buckling occurs agree with intuition, in that more 

compliant cells are needed around the patch to cause out-of-plane buckling when there is 

already overall tension in the system or when the system is averse to bending. Results from 

linear stability analysis (Figure 2F) confirm that out-of-plane bending in these scenarios is 

again due to a buckling instability. Taken together, our results here show that two different 

spatial patterns of mechanical properties can be employed to yield similar qualitative 

configurations, a buckled patch of cells.
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Cell rearrangements in the Vertex model: analysis of intercalation and resolution of T1 
junctions

Vertex models typically specifiy not only energy-driven time-evolution, as described above, 

but also a set of discrete moves or rearrangements that may occur when vertices approach 

each other. Previous work has established a canonical set of rearrangements that can be used 

to represent cell neighbor exchange (also called cell intercalation), cell death, and cell 

division [21, 23]. In this section, we examine the two types of rearrangements (Figure 3A) 

that are incorporated into our model in subsequent examples: intercalation, and vertex 

“merging”, which other authors [37] have used to simulate rosette formation.

Biologically, intercalation reflects the ability of cells to move past one another in a plane. 

For example, in processes such as germband extension, cells need to move past one another 

to allow for global changes in tissue shape and dimension [38, 39]. Cell intercalation can 

arise passively as the tissue is stretched by external forces or be actively generated [40]. In 

the language of the vertex model, cell intercalation necessarily involves the formation of T1 

junctions. A T1 junction forms when an edge between two cells shrinks to length 0, and the 

two vertices involved become effectively one vertex belonging to four cells (a “4-vertex”). 

The T1 junction is “resolved” when the 4-vertex becomes two new 3-vertices, where the 

edge joining the two new 3-vertices forms an interface between two cells that originally did 

not border each other.

Our particular implementation is illustrated and described in Figure 3B. The threshold edge 

length for implementing a T1 transition should be chosen to be a minimum distance to 

ensure that two vertices do not arrive at the same position within the next time step. 

Specifically, we chose this threshold length to be twice the line tension of the edge 

multiplied by the mobility constant η and by the size of the adaptive time step during which 

the transition is implemented. However, the implementation may be chosen in a variety of 

ways as long as the choices allow for smooth numerical propagation of equations.

To illustrate how intercalation can affect the energy of a system, we analyze a large, nearly 

uniform 2d system (approximately 16 by 19 cells) with a single high tension bond near the 

center. Figure 4 shows plots of energy and force evolution of this system during a single cell 

rearrangement event. The higher tension bond is assigned the parameter value σij = 3 if the 

bond is formed horizontally, that is, in its intial configuration where it is an edge shared 

between upper and lower cells (shaded gray). Whenever the bond is instead vertical 

(forming an edge between left and right cells), it is assigned parameter value σij = 1. Below, 

we explore the total energy E (minus the energy of a completely uniformly patterned cell 

array) for the system as a function of time t for various prescribed dynamics (Figure 4, 

Movies S3–S6). We also examine the magnitude of the total concatenated force |F| as a 

scalar indicator of resultant force and its discontinuities, where the concatenated force F is 

defined as a large vector whose components are dE/dxi where xi is one coordinate degree of 

freedom.

First, we consider the simple case in which the highlighted bond is set to have tension σij = 3 

at time t = 0, see figure 4A and Movie S3. The energy E of this system decreases 

monotonically until a T1 junction is formed (black arrow), at which time a discrete 

Du et al. Page 5

Phys Biol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intercalation event occurs. At the moment of intercalaton, E exhibits a kink, while |F| 

exhibits a discontinuity or jump; after this, E decreases both smoothly and monotonically 

and approaches a constant value at time t → ∈. For comparison, we next considered a 

similar situation in which we disallow intercalations and instead require that T1 junctions 

result in merged 4-vertices; see figure 4B and Movie S4. In this case, E decreases 

monotonically until the formation of the 4-vertex (black arrow) as before, but then continues 

to decrease monotonically without a kink, since no discontinuous topological change is 

made, and approaches a slightly higher constant value at time t → ∈ than for the 

intercalating case. Furthermore, in the merging case, |F| does not exhibit a discontinuity as it 

did in the intercalating case.

Next, we consider two related simple cases in which vertex model parameter values can vary 

over time. Specifically, we consider the same array of cells, where tension of the highlighted 

bond is set to σij = 1 at time t = 0, then linearly increases until σij = 3. This increase in σij is 

imposed either quickly, reaching σij = 3 at time t = 1 (Figure 4C and Movie S5), or slowly, 

reaching σij = 3 at time t = 10 (figure 4D and Movie S6). There are several points about 

these different cases that may be useful to observe. First, it is apparent that implementations 

allowing for intercalation (cases A, C, and D) find mechanical equilibria of lower energy 

than implementations (case B) that do not allow for T1 junction resolution (Figure 4E). 

Also, the energy E generally remains continuous at the formation of T1 junctions but 

exhibits a kink; this reflects the discrete change in forces acting on the vertices after rewiring 

the vertex connectivity. Finally, as demonstrated in figures 4C–D, when parameters are 

allowed to vary during a time interval, for example by depending explicitly on time as in this 

example, or by depending on space as illustrated in later examples, the energy of a system 

can increase over that interval.

Alternative implementation of T1 junctions—In some cases, a T1 junction may form 

repeatedly if the configurations resulting from different resolutions of the junction are very 

similar energetically, or if the 4-vertex is temporarily stable. In order to resolve such 

“stubborn” T1 junctions without significantly slowing down the propagation of the 

equations of motion, which uses adaptive time-stepping, we introduce a particular stochastic 

implementation of T1 junction resolution that is discussed more in the Supplementary 

Materials and Figure S1. We note although that the dynamics of edge contraction may look 

quite different when noise is added (compare Movie S7 and Movie S8), the final changes in 

cell neighbor relationships are generally comparable when using either method. Since cell 

edge fluctuations seen in our stochastic simulations bear resemblance to those observed in 

vivo in some Drosophila mutants [41], it appears that systematically explored noise 

parameters that may realistically simulate biological fluctuations may be a future direction 

for research. For our purposes, however, we have simply chosen noise parameters that 

helped with computational performance. We further expect that the relative efficiency of 

implementing the model with versus without noise may vary due to the specific details of 

the system.
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Applications of the vertex model in 3d

Until this point, we have separately illustrated how non-uniform spatial patterning of 

parameters can lead to buckling, or to intercalation. This raises the question of what effect 

spatially patterned parameters would have in a model that includes both three-dimensional 

freedom of movement and cell rearrangements. Answers to this question may be important 

in understanding how 3d structures form from epithelial sheets. For example, myosin cables 

have been observed in a variety of developmental contexts, where they appear to serve a 

variety of functions, such as forming or maintaining straight compartment boundaries, 

driving tissue elongation through cell rearrangements, or inducing tissue buckling. At this 

point, however, it remains unclear what factors determine which of these possible outcomes 

is realized in any particular circumstance [42]. Here, we show how our model may be used 

to address these issues in the context of intrinsically 3d phenomena by presenting two 

simple examples, one with relevance to follicle cell appendage formation, and the other to 

invagination or budding phenomena.

Appendage formation and discussion of energy and active force—Previously, 

we used a version of the model described here to investigate appendage formation in the 

follicle cell epithelium of the Drosophila egg [26]. Here, we present a smaller version of a 

similarly patterned epithelium to provide a more clear view of the mechanisms underlying 

ordered intercalation in this system (Figure 5A); the parameters are described in detail in the 

figure legend. Importantly, the edges along the “outer cable” of the patch of cells (red line in 

Figure 5A) have line tensions that are position-dependent. Namely, To = 1.4 + 2e−ϕ2/200, 

where ϕ, in degrees, is the angle from the central vertical line. This means that as the red 

edges move closer to the central vertical line, the assigned value of the line tension 

parameter increases. This corresponds to energy being added to the system through active 

force generation (biologically, for example, by myosin activity and use of ATP), similarly to 

the increasing energies in Figure 4C–D.

In this example, we follow the energy profile of the system as the appendage is formed from 

a near-flat sheet (Figure 5B–C and Movie S13). Initially, the energy drops smoothly since 

decreases in energy due to cell shape-changes are greater than increases in energy from 

edges moving closer to the central line (frames 1–2 in Figure 5C–D). Next, several 

rearrangements occur, including ones involving repeated formations of T1 junctions that are 

resolved with noise, as discussed in Figure S1 (frames 2–3 in Figure 5C–D). Following that, 

there is a period of no intercalations in which cells move significantly out-of-plane 

(contributing to decreasing energy) as well as move toward the central line (contributing to 

increasing energy); here, the energy goes up and down smoothly depending on which of 

these contributions is greater (frames 3–4 in Figure 5C–D). Finally, in frames 4 and 5 of 

Figure 5C–D, intercalations occur in which two appendage cells (to the right and left of the 

central appendage cell respectively), lose contact with the orange cells and therefore lose the 

high tension edge. This causes kinks in the energy plot, much like the kinks in Figure 4A, 

C–D. The final configuration of a small appendage is in frame 6 of Figure 5C–D. Due to the 

numerical noise introduced in the simulations, different iterations of the same simulation 

produce different plots of energy as a function of time. However, the general features of 
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these different iterations are very similar, as indicated by the energies of 12 different 

iterations all plotted together as a function of time in Figure 5B.

Budding: multiple intercalations at the edge of a patch of cells—In the example 

above, active forces appear to play an important role, raising the question of whether active 

forces are required to generate complex 3d structures. To address this question, we decided 

to examine a simpler model. This model is motivated by the spatial pattern of myosin in 

Drosophila tracheal pits [33], a highly-studied example of budding, which is a common 

form of morphogenesis in branched tissues. We consider a model with parameters that 

combine the features of Figure 2A and B; a visual representation of the parameter patterning 

is shown in Figure 6A. More specifically, we consider a patterned domain in which cells 

within a patch of the domain have model parameters that are a factor of 1/f larger than cells 

outside the patch, with f ≤ 1, and also such that a “cable” of high line tension runs between 

any patch and non-patch cells. The edges forming the boundary of the patch, or the cable, 

are assigned line tension values T + ΔT, with ΔT a random number selected initially (and re-

selected after intercalation events) from a uniform distribution between −0.15T and 0.15T in 

order to break symmetry. We start simulations with an initial configuration of cells in which 

vertices have a small non-zero z component and repeat several times to control for effects of 

choosing particular sets of ΔT’s. The reason the initial configuration includes some non-zero 

z components is that buckling relies on an instability of the flat state to infinitesimally small 

perturbations. Therefore, to obtain a buckled state in a simulation, small z-perturbations 

must be introduced at some point; for simplicity, we chose to perturb the initial vertex 

positions.

From such simulations, we find that for relatively small values of T, the patch of cells 

buckles out of plane and eventually reaches an equilibrium, with few to no cell intercalation 

events. However, above a large enough value of T (which we call Tcrit), given a particular f, 

first, the patch of cells buckles out-of-plane, then intercalations appear at the edge of the 

patch along the cable (Figure 6C), and finally, the ring of tension shrinks down to a point 

due to subsequent intercalation events, and the patch of cells pinches off the sheet. Our 

formulation of the vertex model does not provide for cells pinching off to form a 

disconnected tissue, therefore, the simulation ends at this point without reaching equilibrium 

(Figure 6E). We explored the critical cable tension Tcrit as a function of the bending 

parameter cαβ for various values of f, indicated in Figure 6B, D and simulations in Movies 

S9–S12. We found that the required Tcrit is larger for larger values of cαβ as well as for 

larger values of f. This makes intuitive sense since for tissue more averse to bending and for 

non-patch cells that are less compliant, there should be more cable tension required to pull a 

patch of cells inward and pinch it off.

Both the appendage formation and budding examples discussed above demonstrate that 

combining 3d freedom of motion and cell intercalations in the same model can result in 

morphogenetic changes not easily predicted when considering these effects separately. This 

is due to an iterative process in which buckling in 3D allows for the initiation of cell 

intercalation events that would be energetically unfavorable if the cells were confined to 2d, 

and the cell intercalation events allow the tissue to deform further into previously 

inaccessible morphologies.
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Discussion

We have described a model for packed epithelial cells that is capable of representing a 

variety of morphogenetic events. Many elements of this model borrow from previously 

established vertex models, but the introduction of three-dimensional freedom of movement 

and 3d elements such as bending energy increase the scope of biological problems that can 

be addressed.

In this manuscript, we showed how our model may be used to explore buckling of a sheet in 

3d due to simple patterns of 2d surface anisotropies. Supplementing other research [43, 44], 

we gave a careful energetic analysis of a single intercalation in the setting of a 2d vertex 

model. Finally we combined these approaches to examine how cell rearrangements and 3d 

tissue deformations can interact to produce complex 3d shapes from mechanically patterned 

2d sheets.

Although vertex and other models have previously been used to examine three-dimensional 

epithelial morphogenesis, the approach we described here is novel in representing an 

epithelial sheet as a two-dimensional object that moves in three dimensions. In recent years, 

a number of fully 3d models of morphogenesis have been introduced [45–49], with some 

models taking into account subcellular elements such as gene regulation [50]. However, at 

this point, it is not entirely clear which of these formulations best captures the subcellular 

forces most important to shaping epithelial morphology. Furthermore, the relative 

magnitudes of these forces are so far relatively unexplored experimentally, resulting in 

poorly constrained model parameters. Additionally, the implementation of these models may 

be computationally demanding and mathematically complex. Our model captures at least 

some phenomena of 3d epithelial deformations using the computational complexity of 2d 

models.

As an alternative to fully 3d models, several published models, including ones for 

Drosophila ventral furrow formation and ascidian endoderm invagination, describe only a 

cross-section of the tissue, reducing the problem to two dimensions [14–16, 51–54]. Those 

approaches are useful, but are limited to geometrically simple cases. The model we present, 

in contrast, can be used to simulate morphogenetic changes that are intrinsically three-

dimensional. Additionally, the approach we describe here implies a different underlying 

mechanism for epithelial bending. In cross-sectional models, bending is driven by 

differences in properties on the apical and basal sides of cells [27]. In our model, bending 

arises from a buckling instability due to nonuniform in-plane tensions within a surface. In 

many epithelial morphogenesis events that have been studied, from tracheal formation in 

Drosophila to primary neurulation in vertebrates, myosin localization is patterned in 2d 

within the apical surface [33,55]. This suggests that, although fully three-dimensional 

models may be required to describe some developmental events, important insight into a 

variety of developmental processes may be obtained by our simpler, “deformable-sheet” 

model.

There are potentially useful changes and extensions to our model that are simple in 

implementation and do not alter the model’s general approach. For example, the choice of 
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energy function may be varied. Although the particular 2d vertex model on which we based 

our work has been demonstrated to fit experimental data [23], other energy formulations 

have been used, and future work is required to determine what functions may be appropriate 

for other cell types or tissue geometries. Additional extensions to our model could include 

cell proliferation and death, which are already incorporated in many 2d vertex models. This 

could be an important extension for a 3d model since buckling may arise from the over-

proliferation of cells.

Another, more complex extension may include taking chemical signaling and mechanical 

feedback into account. For example, as a tissue changes shape, an individual cell may 

encounter varying levels of chemical signals that influence its properties. Mechanical 

feedback is also likely to be important during epithelial morphogenesis [56], and in several 

systems, myosin appears to be recruited to cellular regions under tension [57]. Work has 

already been done to incorporate diffusible chemical signals, juxtacrine signaling, and/or 

mechanical feedback into 2d vertex models [37, 58–60]. Extending our 3d-embedded vertex 

model by incorporating these or similar approaches may greatly increase the scope of 

morphogenetic processes that can be usefully modeled.

Models

Model formulation

In modeling epithelial cells as a system of packed polygons, an energy function for a system 

consisting of any number of cells may be defined as a function of the coordinates and the 

connectivities of the vertices of the polygons [23]:

(2)

The first term in this expression corresponds to an area elasticity, where Aα is the area of cell 

α, the parameter  indicates the preferred area of cell α, and aα is its elasticity coefficient; 

this term, corresponding to a restoring force toward a resting area , may represent such 

biological constraints for volume or apical membrane area. Similarly, the second term 

corresponds to perimeter elasticity, where Lα is the perimeter and bα is the elasticity 

coefficient for the perimeter of cell α; this term also corresponds to a restoring force, with 

the resting perimeter set to 0, and might represent, for example, the elastic effect of the 

cortical actin ring around the apical surface of epithelial cells [23]. The sum over α indicates 

a sum over all cells. The third term describes line tension, where lij is the length of the edge 

connecting vertices indexed by i and j, and σij is the line tension coefficient for the bond 

connecting vertices i and j; this term corresponds to a constant surface tension force between 

vertices and comes from the empirical characterization of many types of interfaces including 

lipid membranes. The sum over 〈ij〉 indicates a sum over all bonds. The last term 

corresponds to a force that resists bending of the epithelial sheet in three dimensions with 

bending coefficient cαβ. The indices α and β indicate cells sharing an edge. The values Âα 

and Âβ represent unit normal vectors to the apical surfaces of the cells, defined in 3d in the 

sections below. This term has purely 3d effects. Note that in 2d, the value of Âα · Âβ would 
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always be 1, causing the last term of the energy expression to vanish. A dimensionless 

version of the energy function in equation 2 is presented in the Supplementary Materials.

Given a particular connectivity of vertices, the force on each vertex is determined by the 

negative gradient of the energy with respect to the coordinates of that vertex:

(3)

where fx denotes the force applied to a vertex whose position is x. Assuming that the vertex 

is a material element embedded in viscous medium that applies a drag force on it with 

mobility η, and using the limit of over-damped dynamics, we obtain the equations of motion 

for each vertex:

(4)

or

(5)

The mobility η simply determines the scale of time and does not alter steady states. A stable 

steady state configuration of vertex positions (dx/dt = 0, ∀x), that is, a mechanical 

equilibrium, corresponds to a stable local minimum of the energy E. If equations of motion 

are satisfied [22], we have

(6)

where the sum is over all vertices i. If no active forces are supplied to the system externally, 

that is, if ∂E/∂t = 0, then the total energy decreases: dE/dt ≤ 0. The total energy can, of 

course, increase, if energy is added to the system, that is, if ∂E/∂t > 0. The mechanical 

equilibria of Equation 5 depend on the positions and connectivities of the vertices. Our 

vertex model employs both time-evolution using Equation 5 for a particular connectivity as 

well as changing connectivities according to discrete transformations as described in 

previous sections.

Evaluation of forces

The force on a vertex is obtained as the negative gradient of the energy expression in 

Equation 2 with respect to the coordinates of that vertex. If a vertex at x is connected to 

vertices at {ri} and cells {αi}, then the force on this vertex depends only on the geometries 

of these bonds and cells. Let α ∈ {αi}, r ∈ {ri}, and 〈αβ〉 be adjacent cells with α, β ∈ {αi}. 

Letting fx denote the force on a vertex at x, we have:
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(7)

where fxα denotes the force on a vertex at x due to this vertex being part of cell α, with 

superscripts “a” and “p” indicating forces due to area and perimeter terms of Equation 2; 

here, fxr denotes force on a vertex at x due to a connected vertex at r, and  denotes the 

force on a vertex at x due to the bending energy of any two adjacent cells around x. The 

quantity  denotes any other external forces that are applied to the vertex at x, for example 

normal forces to simulate contact with an external surface or external pulling forces to 

simulate stretching experiments.

Expressions for forces

Below, we calculate each of the terms in equation 7. The force on a vertex at x due to a 

connected vertex at r is

(8)

where σxr denotes the line tension between vertices at x and r and ûrx = (r − x)/|r − x| is the 

unit vector from x to r.

The perimeter of an n-sided cell α is evaluated as:

(9)

where {x0, …, n−1} denote the vertices numbered in either a clockwise or counter clockwise 

order, and where xn is identified to x0. For notational simplicity, from now on, let xn be 

identified to x0, and let the sum  be denoted Σi. The force from the perimeter term 

contributed by cell α on a vertex at xi belonging to α is then:

(10)

The above expressions are defined the same way for vertex models in either two or three 

dimensions. However, the area of a cell in three dimensions is not obviously-defined given 

only the positions of the vertices, since vertices in 3d are not in general coplanar. Although 

the minimum surface area bounded by a polygon can be determined with high precision 

[61–63], the minimal area in the nearly flat hexagons of this model can be closely 

approximated by simple triangulation. In this case, a choice for triangulation for the vertices 

of a cell should be made in order to unambiguously define the area. As a choice, we may 

compute the average position (or centroid) of the vertices belonging to each cell as xc = Σi 

xi/n and use this position to define a triangulation among the vertices in order to calculate an 
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effective area. That is, in 3d, we might compute the cell area as the sum of the areas of small 

triangles emanating from the centroid:

(11)

Note that in two dimensions, this expression simplifies to:

(12)

assuming clockwise numbering of {xi} [64]. We now introduce a simplification. In 3d, 

assuming that the vertices defining a cell are approximately coplanar, we can approximate 

the right hand side of Equation 11 as:

(13)

This approximation is useful because now, the right hand side of Equation 13 does not 

depend on xc; that is, it does not depend on triangulation, so xc can be replaced with the 

origin of the coordinate system. The independence of the RHS of Equation 13 from 

triangulation is based on Stokes Theorem and is shown in the Supplementary Materials. The 

vectorial area expression with which we will proceed in our model is now modified to the 

vectorial expression within the RHS of Equation 13, with xc set to 0:

(14)

The scalar area will be notated Aα ≡ |Aα|. Note that we have dropped the label “3d” because 

the 2d and 3d area expressions are now the same. This approximation makes analytical 

expressions for force more tractable.

The force due to the area term in the energy expression, contributed by cell α on a vertex 

belonging to it with position xi is:

(15)

Explicitly,

(16)

where  is the kth component of Aα. It can be shown that
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(17)

where ek is a unit vector in the kth direction.

For the force due to bending, assume that the vertex at x participates in adjacent cells α and 

β. For the force, we have:

(18)

This derivative is easily evaluated using the usual product rule and the identities in 

Equations 16 and 17.

Equations 8, 10, 15, and 18 are substituted into Equation 7, with the specification of , 

and multiplied by the mobility constant η give the full expression on the right hand side of 

Equation 5. These forces completely determine the trajectories of all vertices given a 

particular connectivity. If an edge shrinks to length zero, then the equations become ill-

defined, the connectivity must be modified through a discrete transformation as described 

earlier, and the equations of motion effectively rewritten before equilibrium positions of the 

vertices can be found. We stress that the above presentation of the energy and force 

expressions apply for vertices existing in either two or three dimensions, while the object 

defined by the model is essentially 2d. That is, our vertex model represents an epithelium as 

a 2d sheet-like object that moves in a 3d world.

Providing for patterning in the model—A central aspect to the formulation of the 

mathematical model is the choice of parameters aα, bα, , σij, and cαβ for each cell and 

bond in Equation 2. The authors in [23] determined realistic values for the parameters aα, 

bα, , and σij for the Drosophila wing disc in 2d through comparison of numerical 

experiments with real experiments. Their method can be generalized and applied to a variety 

of biological systems.

To usefully employ the generic vertex model for specific biological systems, we need to 

distinguish cells of different types according to their properties. Applying patterning to the 

model, cells of different types are assigned parameter values that represent hypothesized 

differences in mechanical properties. This approach is taken in [65], where a pattern of high 

line tension is prescribed along edges of particular cells, representing a compartment 

boundary in the wing disc. We take a similar approach to describe a way for the the 2d 

patterning of epithelia to give rise to three-dimensional deformations.

Applying boundary conditions—Boundary conditions can be set at the edge of the 

simulation domain to suit the biological system under investigation. In some cases, an entire 

tissue may be simulated [37]; however, if only some part of the physical system is 

considered in a numerical simulation, boundary conditions need to be applied to vertices at 
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the boundary of the simulation in order to approximate reality. In many applications, we 

would like to simulate a local tissue inhomogeneity within a large or effectively infinite 

system of many cells. It is useful, in this case, to calculate the equilibrium size of cells 

within an infinite uniform system if we wish to used fixed boundary conditions on a smaller 

simulation domain. Here, we will assume that the fixed boundary will be in 2d, so that the 

equilibrium configuration is known to be flat with cαβ = 0. To do this, consider the 

following.

In an infinite system of identical hexagonal cells with given parameter values a, b, and A0 

for each cell, and σ for each of a cell’s six edges, the effective energy per cell as a function 

of ℓ, the length of a single cell edge, is:

(19)

where the factor of 1/2 in front of the last term comes from the fact that each edge is shared 

between two cells. The equilibrium side ℓ0 of a cell is computed by minimizing this per-cell 

energy expression. Computing a derivative of Ec with respect to ℓ, we get that the force on a 

cell of side ℓ0 vanishes if and only if:

(20)

Solving this cubic equation for ℓ0 and choosing a real and positive solution that gives a 

stable equilibrium for Ec, we can find the equilibrium side length ℓ0 for a hexagonal cell in 

an infinite system as a function of the parameters a, b, σ, and A0. As an example, using 

dimensionless values  and σ = 1 and scaled values a = 1 and b = 0.1 from [23], 

we have ℓ0 ≈ 0.77; note that here and throughout the remainder of this paper all parameter 

values are dimensionless, with scaling determined in the Supplementary Materials. Note that 

a stable minimum of the right hand side of Equation 19 at a positive value of ℓ does not exist 

for all values of a, b, A0, and σ. For example, it is intuitively clear that if the cells had no 

spring force associated with either area or perimeter, that is a = b = 0, and cell adhesion was 

sufficient for surface tension to be negative with σ < 0, the cells would spread to infinite 

size; mathematically, this can be seen from the fact that there are no real, positive, and stable 

solutions to equation 20 for this set of parameters. Similarly, if contracting forces on the cell 

outweigh the restoring force, for example if σ and b were large enough compared to a, then 

the cell will collapse to size zero.

Fixing the size of the simulation domain to its equilibrium size simulates embedding the 

system into an infinite system that has free boundary conditions. Extending this idea, fixing 

the size of the simulation domain to a size larger or smaller than its equilibrium size 

simulates embedding the system into an infinite system that is under tension or compression, 

respectively; see Results section and Figure 2 for an example of stretched systems. Other 

physical constrains and phenomena can also find rough representation in the setup of 

boundary conditions. For example, vertices at the boundary of a simulation can be restricted 
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to move in only one or two dimensions to simulate constraints imposed by a neighboring 

tissue, or an external force can be imposed on the vertices on one side of the simulation 

domain while the other side is held fixed to simulate stretching.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Descriptions of epithelia
A. Schematic of epithelium viewed from the apical side; cells adhere to each other laterally 

via adherens junctions (gray bars); within a cell, there is a cortical ring of actin around the 

perimeter as well as a meshwork of actin throughout the apical side (red lines). B. Schematic 

side view of a Drosophila epithelium. The apical side points up; cells adhere to each other 

laterally via adherens junctions (gray bars) and septate junctions (black bars); cell are 

attached on their basal side to a basement membrane. C. Follicle cell epithelium of 

Drosophila, visualized as the maximum projection of a confocal z-stack. E-cadherin (red) 

marks the subapical adherens junctions, while neuroglian (green) marks the septate 

junctions, which are located slightly basal to the adherens junctions. This epithelium is 

abstracted in the vertex model where cells are represented by polygons, with lateral 

membranes abstracted as bonds, and junctions of three or more cells abstracted as points.
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Figure 2. Out-of-plane buckling of a patch of cells
A–C. Equilibrium configurations and plots for a simulated system in which a patch of cells 

is surrounded by a “cable” of high line tension. Dimensionless parameter values were aα = 

1, bα = 0.1, σij = 1, and  for all cells α and bonds 〈ij〉 except for the bonds 

indicated by the yellow line whose tensions were σij = T, varied in parts B and C. A. 

Resulting equilibrium configuration for T = 2 with the simulation domain fixed to its 

equilibrium size (also see Movie S1). B. The maximum height h of the cells in the patch as a 

function of T. Dark blue solid line shows h for a system fixed to its equilibrium size with cαβ 

= 0; dark red solid line shows h for a system fixed to approximately 1.04 times its 

equilibrium size (a “stretched” system, as described in the main text) with cαβ = 0; light blue 

dotted line shows h for a system fixed to its equilibrium size with cαβ = 0.03; and light red 

dotted line shows h for the “stretched” system with cαβ = 0.03. C. The maximum λm of the 

real part of the eigenvalues of the Jacobian of the 3d system for the flat (z component equal 

to 0), but not necessarily stable, equilibrium state as a function of T. The transition of λm 

from negative to positive corresponds to the emergence of non-flat stable equilibria for the 

four situations described in part B (color schemes are also similar). D–F. Equilibrium 

configurations and plots for a simulated system in which there is increased stiffness and 

tension throughout a patch of cells compared to surrounding cells. Dimensionless parameter 

values were aα = 1, bα = 0.1, σij = 1, and  for all cells α and bonds 〈ij〉 within 

the patch of blue cells, and aα = f, bα = 0.1f, σij = f, and  for all cells α and 

bonds 〈ij〉 in the pink cells; the bonds between blue and pink cells were assigned to σij = 1; 

the factor f is varied in parts E and F. D. Resulting equilibrium configuration for f = 0.2 with 

the simulation domain fixed to its equilibrium size (also see Movie S2). E. The maximum 

height h of the cells in the patch as a function of f; the four lines correspond to the four 

situations described in part B. F. Similarly to part C, we plot the maximum λm of the real 
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part of the eigenvalues of the Jacobian of the 3d system for the flat equilibrium state. Again, 

the transition of λm from negative to positive corresponds to the emergence of non-flat stable 

equilibria.
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Figure 3. Schematics of discrete rearrangements
A. Cell intercalation and vertex merging are indicated. B. T1 transitions and merging in the 

context of cells are illustrated. In our implementation of T1 junctions, we set the new 

orientation of the intercalating bond to be parallel to the vector connecting the centers of the 

two cells that are finally separated after the T1 transition (dotted line); we set the new 

midpoint of the intercalated bond identical to the old midpoint (open circle), and we set the 

new length to 2.2 times the old length, i.e. d1 = 2.2d0.
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Figure 4. Analysis of a single intercalation event
A single intercalation event in a domain of 313 uniformly patterned cells, fixed to its 

equilibrium size at the boundaries. All parameters in the simulation, except for at the 

highlighted bond, have dimensionless values aα = 1, bα = 0.1, σij = 1, and ; 

fixed boundary conditions are implemented. For the highlighted, intercalating bond, σij = 3 

if the bond is formed between gray cells, and σij = 1 if the bond is formed between white 

cells. A–D. Plots of the system’s energy E, with the energy of uniformly patterned domain 

subtracted out, and magnitude of total concatenated force vector F as functions of time t for 

various dynamics. Small insets indicate configurations of the intercalating bond as a guide to 

the plots. A. The highlighted bond is set to have tension σij = 3 at time t = 0. The energy E of 
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the system decreases monotonically until a T1 junction is formed (black arrow), at which 

time a discrete intercalation event occurs; here, E exhibits a kink and |F| exhibits a jump 

(Movie S3). B. Same situation as part A, but the T1 junction is not allowed to resolve. In 

this case, E decreases until the formation of the T1 junction (black arrow), but continues to 

decrease without a kink, and |F| does not exhibit a discontinuity (Movie S4). C. The 

highlighted bond is set to have tension σij = 1 at time t = 0 with σij set to linearly increase to 

σij = 3 at time t = 1. Energy E of the system increases during the time that σij is increased; at 

time t = 1 (blue arrow), E starts to decrease; at t ≈ 1.4 (black arrow), an intercalation event 

occurs, and E exhibits a kink. The magnitude of force |F| exhibits a jump at the intercalation 

event at t ≈ 1.4 but does not exhibit a jump at t = 1 (Movie S5). D. Same situation as part C, 

but σij increases from 1 to 3 over the time t = 0 to t = 10. In this case, the intercalation event 

occurs before time t = 10; there is a kink in E and a discontinuity in |F| at time t ≈ 9.2 (blue 

and black arrows) (Movie S6). E. Energies in parts A–D plotted together with case A 

(purple), case B (blue), case C (yellow), and case D (green), such that it is apparent that the 

system allowing for intercalations in cases A, C, and D find mechanical equilibria at a lower 

energy than case B. The energy in cases A, C, and D all exhibit a kink at the energy value of 

the T1 junction (4-vertex) formation.
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Figure 5. Energy profile for a small appendage formation
A. Tissue patterning for small appendage simulation: the light green cells have aα = a = 1 

and bα = b = 0.1; the light gray cells have aα = 0.1a and bα = 0.1b; green edges have σij = σ 

= 1; gray edges have σij = 0.1σ; blue edges has σ = 1.4σ = 1.4, and red edges as position-

dependent tension To(ϕ) = 1.4 + 2e−ϕ2/200, where ϕ, in degrees, is the angle from the central 

vertical line. All cells have calphaβ = 0. B. When we pattern a sheet of cells according to part 

A, vertex model dynamics lead to the formation of a small appendage. Stages of appendage 

formation are marked on the plot of total system energy E as a function of time t. Here are 

plots of 12 energy profiles for small appendage formation, shown together. The profiles are 

slightly different due to the implementation of noise; however, they share many of the same 

features. C–D. Annotated example of an the energy profile from part B, with characteristic 

features labelled. 1–2: Period in which no intercalations occur, but the tissue changes shape. 

This includes cells changing shape to conform to the high tension cable at the pink line 

(contributing to energy decrease) as well as moving towards the middle of the tissue 

(contributing to energy increase); whether energy at an instant has net increase or decrease is 

a matter of which contribution is bigger at a particular instant; the same smooth feature is 

seen between points 3 and 4. 2. First intercalation occurs. 2–3. Several intercalations occur 

in which orange cells rearrange, including intercalations that require multiple attempts to 

resolve. 3–4. Period in which no intercalations occur, but the tissue changes shape 

significantly. This includes appendage cells moving significantly out of plane (contributing 

to energy decrease) as well as moving towards the middle of the tissue (contributing to 

energy increase). 4. Appendage cell right of central line intercalates and looses contact with 

orange cells. 5. Appendage cell left of central intercalates and losses contact with orange 

cells. For both points 4 and 5, there is a significant kink in E. 5–6. Non-appendage cells 

rearrange. 6. Final configuration of appendage cells.
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Figure 6. An example of an intrinsically 3d event, budding, simulated using our version of the 
vertex model
A. Initial configuration of cells in simulation; a small perturbation in the z direction is given 

to allow out-of-plane motion; the domain of cells is fixed at its equilibrium size at the 

boundaries. Color-coding denotes vertex model parameter patterning: blue cells have 

dimensionless parameter values aα = a = 1, bα = b = 0.1, and σij = σ = 1; gray cells have aα 

= fa = f, bα = fb = f0.1, and σij = fσ = f; pink line indicates edges with σij ≈ T ≥ 1 with some 

noise (see discussion in the main text). The ring of high tension at the boundary between 

patch and non-patch cells eventually causes the patch to “pinch off”. B. Plotted are the 

critical tension Tcrit as a function of the bending parameter cαβ required to cause the patch of 

cells to pinch off. The value Tcrit is explored for f = 1 (blue), f = 0.5 (green), f = 0.2 (orange), 

and f = 0.1 (red). It is clear that Tcrit is lower for smaller values of f, and Tcrit is larger for 

larger values of cαβ since tissues averse to bending will require larger tensions to pinch off. 

C. Frames from the simulation with parameters in part A, setting f = 0.5, T = 5.5 and cαβ = 

0.1, viewed from beneath the dome of cells (Movie S10); the row of patch cells initially 

contacting the non-patch cells are colored pink for easy identification. It is clear that several 

intercalations occur between initial and final configurations at the patch edge due to the 

presence high tension there. D. Final steady states of the system viewed from the side with 

parameters in part C except for cαβ which is varied as cαβ = 0, 0.1 and 0.2. While for cαβ = 0, 

0.1, the patch of cells pinches off (Movies S9–S10), for cαβ = 0.2, this does not occur 

(Movies S11–S12). E. Total energy E plotted as a function of time for cells time-evolved 

from an initial configuration, for cαβ = 0, 0.1, 0.2 and for a system confined to 2d (z 

component is 0). While for cαβ = 0, 0.1 the energy drops sharply when the patch of cells 

pinch off, for cαβ = 0.2 and for the cells confined to 2d, the energy equilibrates to a stable 
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value. Note that the final stable energy E is lower for the cases where cells are allowed to 

move in 3d than for the case where the cells are confined to 2d. Note also that the final 

pinched-off configuration for the cαβ = 0 and cαβ = 0.1 cases are not equilibrium states.
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