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Abstract

Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such
shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and
obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed
because some asexual lineages maintain a residual production of males potentially able to mate with the females produced
by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with
quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ,300 molecular markers
and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this
state of character being recessive. A population genetic analysis (.400-marker genome scan) on wild sexual and asexual
genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong
signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic
data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating
from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between
populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent
parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and
asexual aphid lineages.
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Introduction

While sexuality is the dominant reproductive mode in

metazoans, parthenogenesis - the development of an embryo

from an unfertilized egg - occurs in most branches of the animal

kingdom (e.g. molluscs, insects, crustaceans, nematodes, fish,

reptiles) [e.g. 1,2,3]. Cyclical parthenogenesis (CP) represents a

mixed reproductive mode with an alternation of sexual reproduc-

tion and parthenogenesis, and is reported in many animal species

[4]. The loss of the sexual phase in CP species - leading to

permanently parthenogenetic taxa - have been shown to arise

from diverse mechanisms, including microbial infection, hybrid-

ization, contagion via pre-existing parthenogenetic lineages or

spontaneous mutations [5–9]. Nevertheless, in case of contagious

or mutational origin, the precise genomic regions responsible for

the transitions to obligate parthenogenesis (OP) remain largely

unknown, mostly because dissecting the genetic bases of that trait

using recombination-based approaches is not possible in strictly

asexual species. However several species show coexisting CP and

OP lineages, with OP lineages often retaining a residual

production of males. Such species offer ideal systems to decipher

the heredity and therefore the genetic basis of the loss of sexual

reproduction. In the rare cases where it has been explored, genetic

control of this trait has been shown to be rather simple, with the

involvement of one to four loci, depending on the studied

organisms [10–15]. However, the precise location and underlying

function of these genetic factors have not been elucidated.

The ancestral life-cycle of aphids is cyclical parthenogenesis

[16], which consists in an alternation of sexual and asexual

generations. In spring and summer, CP lineages produce asexual
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females through apomictic parthenogenesis. In autumn, asexual

females give birth to males and sexual females in response to

photoperiodic cues (note that CP lineages can also produce

asexual females to some extent [e.g. 17]). Sexual females are strict

clones of their asexual mothers, while one of the two X

chromosomes is randomly lost to generate males [17]. Eggs

produced by sexual females are the only frost-resistant stage in the

aphid cycle. Hence, a CP life cycle is required to survive in regions

with cold winters. In addition, many aphid species also encompass

OP lineages which are characterized by an altered response to sex-

inducing environmental cues as they produce only asexual females

(although they often produce some males [18,19]). These lineages

are thus cold-sensitive because of their inability to lay eggs. Yet,

OP lineages are favoured in regions with mild winters where they

have a major demographic advantage over CP lineages [20,21].

Accordingly, CP lineages dominate in cold areas and OP lineages

in warmer regions, and both coexist in regions with fluctuating

winter temperatures [18–20]. Because male production by OP

lineages is difficult to prove in the wild, it has been demonstrated

in a single study which also showed that these males actually

contribute to sexual reproduction with CP lineages [22,23]. While

the switch from clonal to sexual reproduction in CP aphids is

triggered by photoperiodic changes, the loss of sexual form

production in OP aphids is genetically determined, changes in

environmental conditions having little or no effect on their

reproductive phenotype [10,19].

Here, we combined QTL and genome scan approaches to

decipher the genetic bases of reproductive mode variation in the

pea aphid Acyrthosiphon pisum. This species conveniently shows

CP lineages (here defined as those able to produce sexual females)

and OP lineages (defined as those unable to produce sexual

females), and these two types of lineages locally co-occur in regions

with intermediate climate conditions [24]. These independent

QTL and genome scan approaches outlined the same genomic

region as controlling obligate parthenogenesis, this trait being

recessive and determined by an X-linked locus. Our data also

indicate that asexuality is transmitted in a contagious manner,

leading to the conversion of sexual lineages into asexual ones.

Results

Genetic maps and QTLs analyses
We produced F1 crosses between males of an obligate

parthenogenetic lineage (L21V1) and sexual females of two

cyclically parthenogenetic lineages (JML06 and LSR1) (Fig. 1).

Five F2 crosses (families 3 to 7) involving 6 F1 lineages were

performed to obtain a genetic map and to locate QTL controlling

the presence and proportion of sexual females by genotypes placed

under sex-inducing conditions. A total of 305 microsatellite

markers (out of 394) was successfully ordered on the genetic

maps. These loci clustered in four linkage groups that correspond

to the four chromosomes of the pea aphid [25]. 45 loci locate on

the X chromosome (LG1 following notation in [26]), and 85, 135,

and 40 on LG2, LG3 and LG4, respectively. Average map length

(over males and females) was 113, 95, 79 and 59 cM for LG1,

LG2, LG3 and LG4, respectively (Fig. 2). Of the 89 unmapped

loci (out of 394), 51 were monomorphic in the 3-generation

pedigree, five were homozygous in all F1 females, and 33 showed

null alleles at high frequencies or inconsistent genotypes (presum-

ably due to difficulties to score alleles).

By contrast with the 61 F1 progeny which all produced sexual

females (hence were classified as CP) segregation of reproductive

phenotype was observed among the five F2 families (Fig. 1,

families 3 to 7). All five families (203 F2 genotypes) comprised a

mixture of genotypes expressing either an OP (no sexual females

produced at all) or a CP (sexual female production ranged from

22% to 77%) phenotype. The percentage of OP F2 ranged from

7% to 35% depending on families (Fig. 1, see also S1 Figure).

Contrastingly, 97% of F2 lineages produced males: only 5 out of

35 OP lineages, and 2 out of 168 CP lineages did not produce

males (S1 Figure). QTLs analyses on these five F2 families revealed

one candidate genomic region located on the X chromosome

(LG1) for the control of reproductive mode variation (measured as

the proportion of sexual females or occurrence of sexual females),

as evidenced by likelihood-ratio (LR) values for these traits above

the LR thresholds corresponding to the null hypothesis of no

QTL. The QTL for the proportion of sexual females produced

locates at 38.0 cM on LG1 based on highest LR values. The 95%

confidence interval [CI] for QTL position is 34.0–43.2 cM

(Fig. 2). The QTL for presence/absence of sexual females locates

at 37.6 cM on LG1 and the 95% CI is 34.8–43.6 cM (Fig. 2). We

then accounted for the presence of a QTL at position ,38 cM to

test for a second QTL (see Methods). No significant support for a

second QTL was found for either traits, as LR values along the

four chromosomes were largely below the LR thresholds

corresponding to 5% significance at the genome level.

We then focused on the genomic region pinpointed by the QTL

analysis (,38 cM on LG1) and looked at the alleles inherited by

F2 individuals. In three F2 families (families 3, 4 and 6, Table 1),

the 29 F2 lineages that expressed an OP phenotype had the same

genotype as the OP lineage L21V1 (F0) at all markers located on

the X-chromosome between T_128012_2_G (34.8 cM) and

T_126075_3_Y (49 cM). For simplification, we refer to this

multilocus genotype as ‘‘op1/op2’’ (Table 1, see also S1 Figure).

Contrastingly, the 89 CP F2 individuals from families 3, 4 and 6 all

possessed at least one allele inherited from their CP grandmothers

in this genomic region (the four possible alleles from the two CP

grandmothers are collectively referred to as ‘‘CP’’). Hence these

individuals were either op1/CP, op2/CP or CP/CP (Table 1, S1

Figure). In these three F2 families, the op1 allele was transmitted

through the F1 fathers from the OP grandfather (L21V1, of

genotype op1/op2). Since chromosomes in male pea aphids do not

recombine [27], the entire X-chromosome of grandfather L21V1

that carries the op1 allele was transmitted to its grandchildren.

Conversely, the op2 allele was inherited from the F1 mothers,

which themselves inherited the whole op2-bearing X-chromosome

from their OP grandfather. Recombination of the op2-bearing X-

chromosome in the F1 mothers allowed reducing the region

controlling reproductive modes between markers T_128012_2_G

(34.8 cM) and T_126075_3_Y (49 cM) on the op2-bearing X

Author Summary

Asexual lineages occur in most groups of organisms and
arise from loss of sex in sexual species. Yet, the genomic
bases of these transitions remain largely unknown. Here,
we combined quantitative genetic and population geno-
mic approaches to unravel the genetic control of shifts
towards permanent asexuality in the pea aphid, which
conveniently shows coexisting sexual and asexual lineages.
We identified one main genomic region responsible for
this transition located on the X chromosome. Also, our
population genetic data indicated substantial gene ex-
change between these reproductively distinct lineages,
potentially leading to the conversion of some sexual
lineages into asexual ones in a contagious manner. This
genetic system provides new insights into the mechanisms
of coexistence of sexual and asexual lineages.
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chromosome (S1 Figure). Based on the results from QTL analyses,

we performed two additional crosses. Here only a subset of

individuals per cross were phenotyped (24 and 27, respectively),

chosen according to their genotype at 8 microsatellite markers in

the genomic region of interest. A F3 cross (cross 9, see Fig. 1 and

Table 1) confirmed the location of the QTL and allowed further

narrowing down its upper boundaries to marker 111865_3

[48.5 cM] (see S1 Figure). We finally crossed op1/CP2 females

with op2/CP3 males in order to recombine the op1-bearing X-

chromosome (cross 8, Table 1). All the 11 lineages that harboured

the op1 allele in combination with the op2-bearing X-chromosome

were OP, and recombination in the op1-bearing X-chromosome

showed that the region controlling reproductive phenotype lies

between markers 116879_10 (39.1 cM) and D_111865_3

(48.5 cM) on the op1-bearing X copy (see S1 Figure). These

different crosses revealed that op1 and op2 alleles are recessive

over CP alleles (since the 76 op1/CP and the 41 op2/CP lineages

are CP, and the 12 op2/op2 and 43 op1/op2 lineages are OP,

Table 1). Noteworthy we observed that op1/op1 genotypes can

have either a CP (11 lineages) or an OP (6 lineages) phenotype

(Table 1), suggesting that other genetic or environmental factors

mitigate the control of reproductive phenotype in lineages op1/op1
at the major candidate locus.

Genome scans of wild OP and CP populations of the pea
aphid

A 436-marker genome scan performed on 109 individuals from

wild populations collected in environments selecting for different

reproductive modes (OP or CP) revealed four loci having excessive

genetic differentiation (FCT) at the a= 0.01 threshold (ARLE-

QUIN 3.5 analysis, Table 2, S2 Figure). FCT between populations

under selection for different reproductive modes ranged from 0.14

to 0.31 at these four outlier loci, while the median FCT value

estimated over the 436 markers was 0.014 (average 0.025). Among

these four outliers, T_111491_2 was also identified as outlier

under balancing selection in the populations from CP-selecting

environment (FST among CP populations was 0.0003, and He
0.56) when ARLEQUIN analyses were performed among

populations assumed to share the same reproductive mode

(Table 2). This locus was not successfully genotyped in the families

so its genomic location remains unknown. Interestingly, the three

other outliers co-locate on the X-chromosome and within the

same genomic region identified with the experimental (QTL)

approach (Fig. 2). Accordingly, FCT values along the genetic map

of the four chromosomes show a clear peak of genetic

differentiation in the QTL region (Fig. 2). In this region, expected

heterozygosity in OP populations was lower than in CP

populations (S3 Figure), while heterozygosity values of the three

CP populations and the three OP populations were similar along

other regions of the chromosomes.

Discussion

We have shown here that a key ecological trait – the variation in

reproductive mode – was controlled by one main genomic region

in the pea aphid. This ,9 cM-wide X-linked region was identified

by two independent and complementary approaches: the co-

Figure 1. Crossing design and reproductive phenotype of the F1, F2 and F3 progeny. The name of each lineage is shown below the aphid
picture and the color of the aphid picture stands for the reproductive phenotype of each lineage used as parent in crossings (grey for obligately
parthenogenetic [OP] and black for cyclically parthenogenetic [CP]). The lines show which individuals were crossed (the cross ID is shown below),
plain lines indicating that the lineage was used as female and dotted lines, as male. For each cross, the number of progeny determined as CP and OP
is also shown. Only crosses 3 to 7 were included in the QTL analyses (crosses 8 and 9 - identified with an asterisk - were not used because progeny
was selected according to genotype at the candidate region and was genotyped only at a subset of markers).
doi:10.1371/journal.pgen.1004838.g001
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Figure 2. Localization of the genomic region controlling reproductive phenotype on genetic maps of the pea aphid. On these maps of
each chromosome (LG1 to LG4), we show results from two independent approaches to identify genomic regions that control reproductive mode
variation (i.e. the production of sexual females) in the pea aphid. 1) QTL approach: Likelihood ratio (LR) along chromosomes for the presence of a QTL
are shown (solid blue curves correspond to LR values for % of sexual females, and solid black curves to LR values for occurrence of sexual females).
The LR thresholds corresponding to a p-value of 0.05 at the genome-level (i.e. adjusted for multiple testing) are also shown (dashed blue line for % of
sexual females and dashed black line for occurrence of sexual females). Threshold lines for the two traits are almost superimposed. The blue and
black bars show the location of the 95% CI of the QTL for % of sexual females and occurrence of sexual females, respectively. 2) Population genomic
approach: a hierarchical genome scan was performed using ARLEQUIN 3.5 to identify genomic regions involved in reproductive mode variation. The

Genetics of Asexuality in Aphids
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segregation of molecular markers and phenotypes in experimental

crosses and a large scale population genomic survey (genome

scans). Interestingly, 100% of phenotypic variation was explained

by the genotype at the candidate locus in five crosses (crosses 3, 4,

6, 8, 9, Table 1). In the two remaining families (crosses 5 and 7),

this genomic region was also strongly associated with reproductive

phenotype (as all six OP F2 were op1/op1 at this candidate region)

but linkage was not absolute (as 11 op1/op1 individuals are

nevertheless CP) (Table 1). Two hypotheses can be invoked for

this lack of association in some F2 genotypes. First, an additional

locus with minor effects might contribute to the control of

reproductive mode variation, its contribution being only visible in

individuals op1/op1 at the major locus (all 68 individuals from

crosses 5 and 7 that are not op1/op1 are CP). A second hypothesis

is that the production of sexual females depends on a threshold

concentration of some unknown factor (e.g. transcript, protein,

hormone). Under this assumption, minor environmental variation

could have drastic effect on reproductive phenotype determination

around the concentration threshold. We tested for the presence of

a second QTL (first hypothesis), and found no statistical support

for it. Yet, power to detect such an additional QTL was low (due

to the small sample size of op1/op1 genotypes) so we cannot at the

moment disentangle these two hypotheses. Nevertheless, the

mostly single-locus recessive inheritance of obligate parthenogen-

esis in the pea aphid is in line with the few similar studies which

showed that the transition from sexual to asexual reproduction is

determined by a small number of loci [10–14].

Transitions from cyclical parthenogenesis (CP, i.e. the alterna-

tion of asexual and sexual generations) to obligate parthenogenesis

(OP) in aphids probably occur through loss-of-function mutations

leading to an inability of lineages to produce females in response to

the environmental cues that normally trigger the sexual phase.

Hence, any mutation (i.e. point mutation, indel or rearrange-

ments) that disrupts the pathway leading to the production of

sexual females might be responsible for this transition. In theory,

these loss-of-function mutations could occur repeatedly in the

same gene, or on different genes involved in the same molecular

cascade, these genes being either neighbours or scattered on the

genome. Herein, the OP grand-parent used for QTL mapping

harbours two distinct alleles (op1 and op2) at the identified QTL

and the phenotype of homozygotes op2/op2 and op1/op1
significantly differs (all 12 op2/op2 but only 6 of the 17 op1/op1
individuals are OP, test of proportion: p = 0.0016). This indicates

that at least two independent mutations in the same region are

involved in the loss of sexual reproduction. Remarkably, the

genome scan demonstrates that the region identified by the QTL

approach also shows signatures of divergent selection between

populations under different selective regimes for reproductive

mode. This indicates that the QTL identified with three laboratory

clones is also involved in the control of reproductive mode in wild

populations originating from a large-scale geographic area

(populations were collected up to 700 km apart). These population

genomic data give further insights into the transitions from CP to

OP. In particular, the occurrence of outliers in the QTL region,

combined with their low genetic diversity in OP- compared to CP-

selecting environments, reveal that only one or a few mutations

leading to the OP phenotype have reached high frequencies in

OP-selecting environments (otherwise this genomic region would

not have been identified as FST-outlier). Outside the candidate

region, populations from CP- and OP-selecting environments are

weakly differentiated and show highly correlated levels of genetic

diversity along chromosomes, suggesting important gene flow.

The most likely scenario to explain these genomic patterns of

differentiation involves bidirectional gene exchanges between CP

and OP lineages: Let us consider that the rare males produced by

OP lineages successfully mate with sexual females from CP (as it is

the case in laboratory conditions and presumably into the wild),

producing CP offspring heterozygous at the candidate region (op/
CP). These heterozygous CP lineages may produce OP progenies

(those homozygote for the op alleles) that would survive if they

encounter mild winter environments. Some minimal amount of

gene flow can maintain a low genetic differentiation between

populations from OP- and CP-selecting environments at the scale

of the genome since divergence for neutral loci at a migration drift

equilibrium is prevented when Nm.1, N being the effective

population size and m the migration rate [28,29]. Such bi-

directional gene flow between OP and CP lineages may occur in

the geographical regions with intermediate winter conditions

where both CP and OP lineages coexist [22,30]. Another scenario

to consider relies on unidirectional gene flow from CP to OP.

Under the hypothesis that recessive op alleles are relatively

frequent in CP populations, CP lineages will regularly produce

new OP lineages (those homozygous at the op alleles). If such OP

linages are generated frequently, low differentiation between

populations from OP- and CP-selecting environments along the

genome is expected, except at the candidate region. This scenario

is however less parsimonious than the former. First, it requires very

frequent production of OP lineages by CP ones in order to prevent

genomic differentiation between these two compartments likely to

result from the strong clonal fluctuations (due to neutral factors

and/or selection) typical of asexual populations [31,32]. Second,

in absence of reciprocal gene flow from OP to CP lineages,

positive selection on op alleles in CP populations should be

invoked to maintain these alleles. Yet, we know that op alleles are

associated with a cost in CP selecting environments (homozygous

op/op individuals do not survive cold winters) and therefore their

frequencies are expected to decrease under these conditions. Our

data are thus best explained by bidirectional gene flow between

populations of distinct reproductive modes and support the

hypothesis of contagious asexuality in wild pea aphid populations.

Contagious asexuality has important consequences on the

evolvability of the OP lineages. Indeed, the bi-directional gene

flow between CP and OP lineages allows genomes and alleles

evolved under an asexual regime to enter the ‘‘sexual’’ pool via the

few males produced by OP clones. Once introgressed in a CP

lineage, a genomic region evolved under an asexual regime will

recombine, allowing the purging of deleterious alleles. Later, if

some of the CP individuals produce OP progeny (those

homozygous at the op/op genomic region), some of the alleles

evolved under the asexual regime might then reintegrate an OP

lineage. Hence, contagious asexuality has the potential to combine

the beneficial effects of sex (purging of deleterious mutations and

combination of beneficial mutations within the same genome

[33,34]) with the advantages of clonal reproduction that avoid the

two-fold cost of sex [34] and can ‘‘freeze’’ a genome (avoiding

recombination load) [35]. This genetic system could thus favour

the regular emergence of well fit OP lineages, which would be so

fit because they would reuse alleles that competed and evolved

genetic differentiation values (FCT) among three OP and three CP populations are shown along chromosomes. Loci identified as significant outliers
(hence candidate loci for reproductive mode variation) at 1%, 5% or 10% are shown in red, orange and yellow, respectively, and non-outlier markers
with a cross. The black line corresponds to a moving average on FCT (calculated on a 15 cM window).
doi:10.1371/journal.pgen.1004838.g002
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under an OP-selecting environment (during their long stay within

OP lineages) and that would have been separated from linked

deleterious mutations during their sojourn in CP lineages.

The physical size of the ,9 cM candidate region, that

represents ,2.6% of the whole genome in term of recombination

units (cM), is still unknown because scaffolds from the pea aphid

genome sequence are not yet ordered on chromosomes [36].

Hence the exact number and nature of the genes that are

comprised within the candidate region are not known. Neverthe-

less, already 66 genes encoding proteins have been identified in the

three scaffolds covering part of the 9 cM genomic region of

interest (S1 Table). It is too early to designate candidate genes

responsible for the CP/OP phenotypes, mostly because half of

them have no predicted functions. However, recent works on the

genetic programs involved in the seasonal switch from clonal to

sexual reproduction in CP lineages allow highlighting in the

candidate region three predicted genes putatively involved in

photoperiod perception and brain signalling (e.g. rhodopsin

specific isomerase, insulin), two pathways identified as differen-

tially expressed in aphids exposed to either clonal or sex induction

regimes [37]. Two genes putatively involved in the melavonate

pathway (farnesyl-pyrophosphate synthase like and hydroxy-

metharyglutaryl-CoA synthase) upstream of the juvenile hormone

synthesis, which is known as being a key regulator of reproductive

orientation in aphids [38,39], also locate within the candidate

region.

To conclude, here we combined population genomics and

quantitative genetics to identify the genetic bases of a key trait for

aphid adaptation to climate - the loss or maintenance of sexual

reproduction. We found this trait to be controlled by one main

genomic region located on the X chromosome. The widespread

geographical distribution of a few alleles associated with obligate

asexuality suggests that these alleles might be particularly

advantageous for OP lineages, and might have outcompeted

previously established op alleles, a hypothesis that deserves further

investigations.

Materials and Methods

Experimental crosses and assessment of reproductive
phenotype

We crossed individuals from three genotypes (clones LSR1,

L21V1, JML06) that present contrasted reproductive phenotypes.

These three F0 lineages were chosen based on their ability to

produce or not sexual females under standard sex-inducing

conditions (i.e. short photoperiod with 12 h light) [37]. All aphids

were reared on Vicia faba (broad bean) because it is a universal

host for all known host races of the pea aphid species complex

[40,41] and also because this plant is easier to grow compared to

Medicago ssp. LSR1 (collected on Medicago sativa in New-York,

USA in 1998 and used for complete genome sequencing [36])

produces males (21%), sexual females (54%) plus some partheno-

genetic females (25%) under standard sex-inducing conditions.

Under the same inducing conditions, JML06 (sampled on

Medicago lupulina in Jena, Germany in 2006) produces only

sexual individuals (70% males and 30% sexual females). Contrast-

ingly, L21V1 (sampled on M. sativa in Rennes, France in 2003)

produces only parthenogenetic females (89%) and a few males

(11%). LSR1 and JML06 are therefore classified as cyclical

parthenogens (CP) and L21V1 as obligate parthenogen (OP).

Crosses between males from the OP and (sexual) females from the

CP lineages were performed. For this, one L4 larva from each of

the three grandparent clones was moved to a new broad bean

plant and transferred to a climatic chamber with a 12 h

photoperiod (18uC) to trigger the production of sexual females

and males in CP lineages (and males in the OP lineage) [37].

Then, for each lineage, three larvae of the next clonal generation

were isolated on three different broad bean plants. Once the larvae

reached adulthood and started to give birth to nymphs, groups of

10 larvae of the next generation were isolated on new broad bean

plants until the asexual female stopped reproducing and died. The

morph of each individual of this second clonal generation (i.e.

male, sexual females, asexual females) was determined at adult

stage based on morphological characters (males are slender than

females, and the legs of sexual females are longer that those of

asexuals). The few individuals that died before reaching the adult

stage (hence before being sexed) were also counted. Then a total of

50 males from the clone L21V1 and 50 sexual females from the

clone JML06 were put together on broad bean plants (Vicia faba)

to generate a F1 family (cross 1: JML06 R6L21V1 =, Fig. 1). The

50 sexual females used in the cross are clonal. However, males

consist of two different genotypes because they inherit randomly

one of the two X copies from their asexual mother (approximately

half of males are expected to bear the first X copy of their mother

and the second half the other copy) [17]. A second F1 family was

generated similarly by crossing 50 L21V1 males with 50 LSR1

sexual females (cross 2, Fig. 1). In Fig. 1, dotted lines show lineages

used as male and plain lines those used as female. Eggs were kept

at 4uC (80% humidity) for 85 days and were then transferred at

18uC for hatching. A few days after the first eggs hatched, 50

parthenogenetic larvae for each cross were isolated on new broad

bean plants. Each F1 lineage was kept for 7 to 9 months under

conditions sustaining clonal reproduction (16 h light, 18uC).

Reproductive phenotype of the F1 lineages was then assessed

similarly.

Six F1 lineages (three per cross) were then chosen to produce

the next F2 generation (Fig. 1). All F1 produced sexual females

(with from 27% to 71% and 28% to 64% sexual females for cross

1 and 2, respectively), hence were CP. The 6 F1 clones were thus

chosen to cover the diversity in terms of the production of males

(that ranged from 0–73% and 0–55% males for cross 1 and 2,

respectively) and asexual females (that ranged from 0–42% and

1–53% for cross 1 and 2, respectively). Five F2 crosses (crosses 3

to 7 in Fig. 1) were performed using the same protocol as for the

F1. 44 to 47 F2 lineages per family (hence 229 F2 lineages in

total) were then isolated and kept for subsequent assessment of

reproductive mode phenotype (same protocol as for the F0 and

F1). Twenty-six F2 lineages (out of 229) died before being

phenotyped.

Genotyping, genetic map and detection of QTLs
The three grand-parents, the six F1 parents and the 229 F2

individuals from families 3 to 7 were typed at 401 microsatellite

loci (see S2 Table for loci used and [42–44] for primer sequences).

We first checked for the presence of null alleles by looking at the

inheritance of alleles in the 3-generation pedigree. Homozygous

individuals originating from parents displaying a null allele were

transformed into missing data. Loci located on the same

chromosome were identified based on their complete linkage in

males (2n = 8 in the pea aphid and chromosomes in males do not

recombine) [27,45]. Genetic maps were then constructed for each

of the four chromosomes with Crimap 2.53 [46] using Kosambi

mapping function. Linkage maps were drawn using MAPCHART

v. 2.1 [47]. QTL detection was then performed with the interval

mapping method implemented in QTLmap, using the LDLA

approach [48]. The phenotypic traits analysed for each F2 lineage

(from crosses 3 to 7) were the occurrence (binary variable) and the

percentage (quantitative variable) of sexual females in the
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parthenogenetically produced offspring. We focused on these traits

because the production of sexual female is the most relevant

variable to predict whether a population is able to reproduce

sexually or not [10,49]. In our analyses, we set parameter ndmin to

200 so that no information from males meioses was used to locate

QTLs (since chromosomes do not recombine in males, males are

not informative to locate QTLs within chromosomes). QTLs were

detected based on likelihood-ratio (LR) along chromosomes. LR

values corresponding to a significance level of 0.05 for each

chromosome were empirically determined from 1,000 simulations

under the null hypothesis of the test (i.e. no QTL). Genome-wide

significance levels (i.e. LR values corresponding to adjusted p-

values) were computed to account for multiple testing (i.e. four

tests, corresponding to the four chromosomes). The drop-off

method implemented in QTLmap was applied to obtain 95%

confidence intervals of the QTL location. Similarly to the

reduction of x-LOD when using LOD scores, the maximum LR

value was reduced by 3.84 (corresponding to a Chi2 distribution

with one degree of freedom for p,0.05) to determine a threshold.

Region boundaries were then defined by the LR locations crossing

this threshold upstream and downstream of the peak LR [as

described in 50,51] to identify the 95% CI of the QTL. After

identifying the first QTL (see Results), we tested for the presence of

a second QTL. For this, genotype at locus T_121775_26 (the

closest marker from the peak of the QTL on LG1) was introduced

as a fixed effect in the model. This marker is highly discriminative

as each of the three grandparents possesses different alleles. LR for

the presence of a QTLs against the hypothesis of no QTL was

then compared to LR thresholds corresponding to a 5%

significance determined by 1000 simulations in QTLmap.

Dominance of alleles controlling reproductive mode
The QTL approach led to the identification of a single

genomic region, located on the X chromosome, which controls

reproductive mode (see Results). Yet, in the three F2 crosses that

were highly informative, all lineages used as mother inherited by

chance the same X chromosome copy from their OP father

(remind that chromosomes do not recombine in male aphids).

From these crosses and from recombination events, we

determined that the gene(s) that control(s) reproductive mode

locate(s) between markers T_128012_2_G (34.8 cM) and

T_126075_3_Y (49 cM) on this X copy (see Results). The

segment of this X chromosome copy is referred to as ‘‘op2 allele’’

hereafter. However, we had little power to test whether the same

region also controls this trait on the second X copy from the OP

grandparent (that we refer to as ‘‘op1 allele’’). We therefore

performed an additional F2 cross (cross 8: X2_25=6X1_3 R) to

recombine the X-chromosome bearing the op1 allele (the mother

X1_3 R bears one op1 allele). We also crossed X6_2=6X3_4R
(that each possesses an op2 allele, cross 9) to produce homozygous

individuals at this X chromosome region (i.e. op2/op2) to assess

the dominance status of the different alleles in the candidate

region (i.e. op1, op2, and those inherited from CP clones, referred

to as CP1, CP2, CP3 and CP4). Since these two crosses were

performed after we had identified the genomic region controlling

reproductive mode variation, only a subset of individuals were

phenotyped (24 and 27, respectively), chosen accordingly to their

genotype at 8 microsatellite markers in the genomic region of

interest (see S1 Figure for markers used).

Genome scan approach
Pea aphid individuals were collected in alfalfa fields from six

sampling sites (S3 Table). All A. pisum individuals were sampled

from the same plant species (Medicago sativa) to prevent

confounding effects of plant or reproductive mode specialization

on genetic divergence [52]. Three of the sites locate in north-east

France or Switzerland and correspond to regions with cold

winters (‘‘temperate continental climate’’ as defined in [53]). In

these areas, pea aphid populations consist mainly of CP lineages,

because eggs are the only stage that survives cold winters [19] (we

thus consider these areas as CP-selecting environment). Individ-

uals were collected in spring 2008, a few weeks after egg hatching

to maximize the probability to sample locally overwintering

populations (these samples have been used in [43,44]). The three

other sampling sites locate in south-west France, and correspond

to regions characterized by mild winters (i.e. ‘‘temperate oceanic

climate’’ as defined in [53]). These areas are considered as OP-

selecting environment. Here, sampling took place in winter 2008–

2009 because at this season, OP lineages can be discriminated

from CP ones, since the former overwinter as parthenogenetic

females while the latter spend winter as eggs. Parthenogenetic

females were collected from the six populations (see [43] for

further details). To obtain sufficient amounts of DNA for

genotyping hundreds of microsatellites, field-collected aphids

were grown individually in controlled conditions ensuring

continuous clonal reproduction (16 h light/day, 18uC). In each

of the 6 geographic populations we then kept 20 individuals

(except for one population for which only 15 individuals

successfully established in the lab to provide sufficient DNA) on

which all further analyses were conducted. These 115 individuals

were genotyped at 443 microsatellite loci (301 of them were

positioned in the genetic maps, see S2 Table). Six individuals (out

of 115) with more than 15% missing genotypes were removed as

well as seven markers (out of 443) with more than 30% missing

data.

To detect loci that depart from neutral expectation, and

which are therefore potentially involved in reproductive mode

variation, we used a hierarchical method [54] implemented in

ARLEQUIN 3.5 [55]. The distribution of the genetic differen-

tiation among populations characterized by different reproduc-

tive mode expected under neutrality was estimated by means of

coalescent simulations. The among-reproductive mode differ-

entiation was characterized by the parameter FCT, which

accounts for the geographical structure within populations

(three populations originate from OP-selecting environments

and the three other from CP-selecting environments). 100 000

coalescent simulations were performed conditionally on the

multilocus estimate of FCT at the 436 microsatellite loci,

assuming 50 groups and 100 demes per group. The observed

data from each locus were compared with the simulated

distribution, and a particular locus was classified as a significant

outlier if it fell outside the 99% confidence envelope. We

focused here on loci putatively involved in divergence between

populations with contrasted reproductive mode; hence, we

considered in this analysis only the loci falling above the upper

confidence limit. As we were interested in identifying outlier loci

involved in the variation of reproductive mode, and not in

adaptation to local environmental conditions, we checked that

the outliers identified from this global analysis (in which the two

types of populations were included simultaneously) were not

classified as outliers (either under divergent or balanced

selection) among populations sharing the same reproductive

phenotype. To that end, we ran two independent analyses for

the detection of outliers within populations sharing the same

reproductive mode. We also checked that the outcomes of

genome scan analysis were not affected by the inclusion of

markers with .10% missing data (58 loci). Since the confidence

interval was similar when including or not markers with .10%
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missing data and because our aim was to screen the genome

with the highest number of markers, we present only the

analysis based on the whole dataset (436 markers).

Supporting Information

Figure S1 Phenotype and genotypic data from the 4-generation

pedigree. For each of the 263 F0, F1, F2 or F3 lineage, we show the

percentage of sexual females (SF), males (M) and asexual females (AF)

produced when the lineage is placed in environmental conditions

known to induce the production of sexual forms in cyclically

parthenogenetic (CP) lineages. The fecundity (sum of the number of

males, sexual females and asexual females produced) and the number

of individuals that died before reaching the adult stage (i.e. that were

not phenotyped) is also given. These values represent average over

three replicates for each lineage (in all cases the three replicates gave the

same response regarding the presence or absence of sexual females).

Lineages were classified according to the production of sexual females

(no sexual female produced: obligate parthenogenetic lineage [OP,

showed in pink], sexual female produced: cyclical parthenogenetic

lineage [CP]). We also show for each individual its genotype around

the genomic region that contains the candidate locus for the production

of sexual females (the 95% CI for the QTL ranges from ,34 cM to

,43 cM, and the portion of the X chromosome shown here span from

32 cM to 54 cM). Genotypes were phased and each of the different

grandparental haplotype (op1, op2, CP1, CP2, CP3 and CP4) is

shown with a different colour. The upper haplotype (in the F1 to F3

generations) corresponds to fragment of chromosome inherited from

the father (i.e. without recombination since male aphids do not

recombine). The lower haplotype was inherited from the mother

(recombination might occur). Numbers correspond to the size of the

allele at each microsatellite marker. Loci not successfully genotyped are

indicated as 0 (in grey). Crosses 8 (F2) and 9 (F3) were performed after

the identification of the candidate region, with the aims of further

validation and to investigate the dominance of the two OP alleles (op1
and op2). Hence, only a subset of loci surrounding the QTL was

genotyped in these two crosses (markers 1107, D_118783_1,

T_128012_2, T_121775_26, D_116808_1, 116879_10,

D_111865_3, 112301_9). These crosses confirmed previous results

and allowed to further narrow down the candidate region to the

portion of chromosome located between markers 116879_10

(38.9 cM) and D_111865_3 (48.5 cM) based on individuals X8_52

and X8_96). We inferred the putative genotype of each individual at

this candidate locus (see the black rectangle and also column

‘‘genotype’’) by minimizing the number of recombination. In cases

where recombination occurred between the markers flanking the

candidate region, we considered the phenotypic data to determine the

most probable genotype assuming that only op1/op2 and op2/op2
genotypes lead to obligate parthenogenesis (e.g. see F2 lineage X6_45,

cross 6). When the phenotype was not informative (e.g. see F2 lineage

X3_29 from cross 3, in which the two possible genotypes [op2/CP2 or

CP1/CP2] are expected to result in cyclical parthenogenesis) the two

possible genotypes are mentioned (in that case the rectangle is white for

the allele inherited from the female). Yet only the genotype

corresponding to the left region (38.9 cM) is kept in Table 1 because

both QTL and genome scan analyses suggest the causal locus is closer

from marker 116879_10 (38.9 cM) than D_111865_3 (48.5 cM).

Since the lineage (X3_4) used as mother for cross 9 recombined at

position 49 cM, recombinant alleles are shown in red in this lineage

and in its progeny.

(DOC)

Figure S2 Genome scans of wild OP and CP populations to

identify outlier markers. Genetic differentiation (FCT) among six

wild populations (,18 ind/pop) experiencing selection for CP

(those collected in North-east France and Switzerland) and

selection for OP (those collected south-west France) as a function

of heterozygozity for each of the 436 microsatellite loci estimated

with ARLEQUIN 3.5. In this hierarchical analysis, populations

were grouped according to reproductive strategy (three OP and

three CP populations). The line represents the 99th quantile of the

neutral envelope. Black dots: non outlier loci; yellow, orange and

red dots represent outliers at a= 0.1, 0.05 and 0.01, respectively.

Locus name is shown for the four 1% outliers.

(TIF)

Figure S3 Genetic diversity along chromosomes. Expected

heterozygosity calculated over OP populations (pink line) and

CP populations (black line) along chromosomes on a 15-cM sliding

window is shown. The black bar shows the location of the 95% CI

of the QTL for reproductive mode variation.

(TIF)

Table S1 Predicted functions of genes located on the three scaffolds

that lay within the candidate region. Putative functions were inferred

from comparisons to the NR peptide database (NCBI, July 2013

version) and based on the identification of protein domains using

Interproscan 5 (Interpro database version of January 2014). Genes in

bold are those referred to in the discussion. Scaffolds GL350218,

GL350005 and GL350062, respectively, carry microsatellite markers

D_116808_1 (located at 38.9 cM on the X chromosome), 116879_10

(39.1 cM) and D_111865_3 (48.5 cM), respectively.

(DOC)

Table S2 List of markers used in genetic mapping/QTL and

genome scan approaches. Primer sequences are given in [42–44].

See [44] for PCR conditions.

(DOC)

Table S3 Geographical origin of populations used in the

genome scan approach. The number of individuals used in the

analyses is shown. All individuals were collected on Medicago
sativa host plant. CP: cyclical parthenogenesis, OP: obligate

parthenogenesis.

(DOC)
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