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Abstract

Automated segmentation of electron microscopy (EM) images is a challenging problem. In this 

paper, we present a novel method that utilizes a hierarchical structure and boundary classification 

for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree 

is built for the representation of hierarchical region merging from the watershed algorithm. A 

boundary classifier is learned with non-local image features to predict each potential merge in the 

tree, upon which merge decisions are made with consistency constraints to acquire the final 

segmentation. Independent of classifiers and decision strategies, our approach proposes a general 

framework for efficient hierarchical segmentation with statistical learning. We demonstrate that 

our method leads to a substantial improvement in segmentation accuracy.

1. Introduction

Electron microscopy (EM) can generate high resolution image volumes with abundant 

cellular details for biological research, e.g. neural circuit reconstruction [5]. However, since 

images can be obtained from large volumes (up to 1 mm3) on nanoscale (approximately 5 × 

5 × 25 nm resolution), the amount of generated data is quite large (1012 to 1013 image 

pixels) making manual analysis infeasible [10]. Therefore, reliable automated or semi-

automated image analysis for neuron segmentation and neural structure tracking is in high 

demand. Along with all the merits of high resolution, the intricate cell textures and 

structures which consist of largely varying shapes and topologies, etc. [7], make the 

automated image analysis problem very challenging.

For the 3D neuron reconstruction problem, the anisotropic resolution suggests 2D 

segmentations of each slice be computed first. Among various other methods, supervised 

membrane detection approaches that utilize contextual information from neighborhood 

regions have been successful. Jain et al. [7] used convolutional neural network to restore 

neuron membranes with contextual information. Jurrus et al. [8] proposed a method that 

identifies membranes by learning a series of artificial neural networks (ANN). The work of 

Seyedhosseini et al. [9], which exploits multi-scale context, takes advantage of information 

from a larger area and improves the overall result of serial ANNs. Over-segmentation and 

region merging based methods have proven useful in general computer vision [2, 3] and are 

beginning to be applied to neuron segmentation problems. Notably, Andres et al. [1] 
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presented a hierarchical approach that over-segments the image using a watershed transform 

over a membrane detection map and then trains a classifier to determine region merging for 

the whole 2D neuron segmentation. This can, in some degree, address the problem of 

selecting a fixed good watershed water level. However, the region fragments from initial 

over-segmentation are usually small, which makes it infeasible to extract meaningful 

geometric and texture features. In addition, a fixed cutoff value has to be chosen throughout 

the whole image to threshold the predicted edge probability map. The work of Funke et al. 

[6], which motivated our work, used a tree structure as segmentation hypothesis for 

simultaneous intra- and inter-slice segmentation. However, their approach can only be 

applied to a 3D volume of consecutive slices and is not able to segment one single slice at a 

time. Also, the final optimization problem in their method can be huge given a set of 

complete trees of an image stack.

To address these problems, we propose a method that utilizes a tree structure to represent the 

hierarchical order of region merging from the watershed algorithm and uses a boundary 

classifier learned from various non-local features to predict each potential merge in the tree. 

Finally, merge decisions are made via resolving the tree using a greedy optimization 

strategy. In this way, we allow significant flexibility by getting rid of any pre-chosen fixed 

threshold. Moreover, our method describes a framework upon which a variety of decision 

strategies on resolving the merge tree can be applied to get different segmentation results.

2. Watershed Merge Tree

Our work uses a multi-scale context neuron membrane detection algorithm [9] as input. The 

general idea is to form a scale-space representation of the context images from the output of 

each discriminative model in the series and thus to extract membrane information from a 

large context efficiently. We train a series of MLP-ANNs by combining stencils of features 

from the original input image and patches of features from the previous classifier. The patch 

features are computed at different scales to incorporate diverse contextual information.

As shown in figure 1(b), the membrane detection output is a probability map, on which we 

can simply apply thresholding to get a segmentation. However, small mispredictions about 

membranes in pixels could lead to significant under-segmentation errors. To address this 

problem, we propose a watershed tree based method. Consider a probability map as a 3D 

terrain map with pixel probability as ridge height. Regions with low probabilities make an 

initial segmentation as shown in figure 1(c). With the water level rising, small regions merge 

into larger ones, and finally into one large region with the water level above the highest 

ridge in the map. This technique produces a hierarchy of segmentations that can be 

represented by a tree structure, which we call a watershed merge tree.

A watershed merge tree T = ({N}, {E}) is defined as a representation of region merging 

hierarchy: a node  at depth d corresponds to an image region ; an edge from a parent 

node  to its child node  means region  is a subregion of region ; a local tree 

structure ( , …) represents region  can be the merging result of all of its 
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subregion { , …}. For simplicity, we here consider the merge tree as a binary 

tree.

An initial water level l0 is used to merge some very small regions beforehand in the initial 

segmentation, and a preprocessing is conducted to remove regions smaller than nr pixels by 

merging them with their neighbor regions that have the lowest probability barrier.

3. Boundary Classifier

In order to make decisions in a merge tree, we need to know how confident we are about 

whether each potential merge could happen. A boundary classifier is trained to give a 

prediction. Our classifier takes a set of 141 features extracted from the two merging regions, 

including geometric features (region area, boundary lengths, region contour lengths, etc.) 

and image statistics features for boundary pixels (intensity statistics) and regions (EM image 

texton histogram and watershed region merging saliency) from original EM images and 

membrane detection maps. Here, pixels adjacent to another region are considered as 

boundary pixels. The watershed region merging saliency is defined as the difference 

between the minimum water level it takes to merge the two regions and the minimum value 

in the membrane detection probability map.

Labels indicating whether a region pair should merge or keep split are obtained by 

measuring the Rand error over the ground truth segmentation (see section 5). A random 

forest classifier [4] is trained with corresponding weights assigned to positive/negative 

examples so as to balance their contributions. For the testing data, the trained classifier is 

applied to make a prediction about how likely a region pair should merge.

4. Resolving Merge Tree

The boundary classifier predicts the probability for every potential merge in a merge tree, 

but this is not sufficient for generating a consistent segmentation of the whole image. We 

still need to resolve the tree in an optimization sense while preserving the consistency. We 

define consistency such that any pixel should be only labeled once. In other words, if a node 

in the merge tree is selected, all of its ancestors and descendants cannot be selected. Figure 2 

shows an artificial example. The watershed algorithm generates an initial segmentation 

shown in figure 2(a), from which a merge tree is built as in figure 2(c). Node 5, 6 and 7 are 

selected for a consistent final segmentation as shown in figure 2(b). Consequently, the other 

nodes cannot be picked, because we can never have both the red region (node 6) and region 

1 (or 2) at the same time, otherwise region 1 (or 2) would be labeled more than once as 1 (or 

2) and 6, which is inconsistent by our definition.

Let us consider a certain region in the final segmentation: it exists because it neither splits 

into smaller regions nor merges with others into a larger region. Since each prediction that 

the classifier makes depends only on the two merging regions, we compute the possibility 

that a node  is picked for the final segmentation as the probability that its two child nodes 
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 and  merge and at the same time  does not merge with its sibling node  at 

the next higher water level to their parent node . We define a potential for  as

(1)

where  is the predicted probability that the two child nodes  and  merge (see 

section 3), and  is the probability that node  merge with its sibling node . In the 

example shown in figure 2(c), the potential of node 6 is P6 = p1,2(1 − p6,8). Since leaf nodes 

have no children, their potentials are defined as the probability that they do not merge 

penalized into half. Similarly, the root node has no parent, so its potential is half of the 

probability that its children will merge.

In this way, every node in the merge tree is assigned a potential, and the next step is to select 

a subset of the nodes to form a complete consistent segmentation. Here we use a greedy 

approach. The node with the highest potential in the merge tree is picked. Then all of its 

ancestors and descendants are regarded as inconsistent choices and removed from the tree. 

This procedure is repeated until there are no nodes left in the tree. The set of all the picked 

nodes makes up a complete consistent final segmentation.

5. Experimental Results

We use a set of 70 700 × 700 mouse cerebellum EM images (one slice shown in figure 1(a)) 

along with the corresponding ground truth images annotated manually by an expert. These 

images are divided into five bins randomly with 14 images in each bin. A multi-context 

MLP-ANN classifier [9] is trained with bin 1, and used for membrane detection for the other 

four bins. To test our method, we train the boundary classifier with four bins consisting of 

bin 1 and three bins out of bin 2 to 5. Then we test on the remaining one bin.

With the membrane probability maps, initial watershed segmentations are generated and 

merge trees are built. The initial water level l0 for each image is set as one percent of the 

maximum value in the corresponding probability map. Regions smaller than nr = 50 pixels 

are removed in the initial segmentations. 7 × 7 texture patches are extracted from the EM 

images for generating the texton dictionary and building texton histograms as boundary 

classifier features. A random forest with 255 trees is trained for boundary classification.

To train a boundary classifier, we assign a label from ground truth segmentations that 

indicates if a region pair ( ) should merge or not. We use the Rand error to measure 

whether two regions should merge. It is defined as

(2)

where (xp, xq) represents any pixel pair from the union of the two merging regions, and
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(3)

(4)

(5)

The label indicating merge/split for ( ) is decided as

(6)

In this way, all the labels for the training data are generated automatically.

We also use Rand error as the measurement of segmentation quality. The Rand errors of the 

segmentations, obtained via thresholding the membrane detection probability maps with a 

best threshold for each bin respectively, are computed as comparison with our method. The 

results are shown in table 1, from which we can see that our method improves the 

segmentation substantially by reducing classification mistakes over more than 10 percent of 

the total pixel pairs.

Figure 3 shows some visual results of our test images. Our approach for resolving the 

watershed merge tree can make most initial over-segmentations merge accurately, and the 

complete method gives a good final segmentation.
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Figure 1. 
Example of (a) original EM image, (b) membrane detection and (c) initial watershed 

segmentation.
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Figure 2. 
Example of (a) initial segmentation, (b) consistent final segmentation and (c) corresponding 

merge tree.
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Figure 3. 
Segmentation results of two image regions (zoomed in).

Liu et al. Page 9

Proc IAPR Int Conf Pattern Recogn. Author manuscript; available in PMC 2014 December 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Liu et al. Page 10

T
ab

le
 1

Se
gm

en
ta

tio
n 

R
an

d 
er

ro
rs

. (
T

H
: t

hr
es

ho
ld

in
g;

 M
T

: m
er

ge
 tr

ee
 m

et
ho

d)
.

bi
n 

2
bi

n 
3

bi
n 

4
bi

n 
5

av
g.

T
H

0.
27

49
0.

24
19

0.
21

15
0.

27
17

0.
25

00

M
T

0.
15

29
0.

11
13

0.
10

29
0.

15
95

0.
13

16

Proc IAPR Int Conf Pattern Recogn. Author manuscript; available in PMC 2014 December 04.


