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Abstract

Fecal pollution indicators are essential to identify and remediate contamination sources and 

protect public health. Historically, easily cultured facultative anaerobes such as fecal coliforms, 

Escherichia coli, or enterococci have been used, but these indicators generally provide no 

information as to their source. More recently, molecular methods have targeted fecal anaerobes, 

which are much more abundant in humans and other mammals and some strains appear to be 

associated with certain host sources. Next-generation sequencing and microbiome studies have 

created an unprecedented inventory of microbial communities associated with fecal sources, 

allowing reexamination of which taxonomic groups are best suited as informative indicators. The 

use of new computational methods, such as oligotyping coupled with well-established machine 

learning approaches, is providing new insights into patterns of host association. In this review we 

examine the basis for host-specificity and the rationale for using 16S rRNA gene targets for 

alternative indicators and highlight two taxonomic groups, Bacteroidales and Lachnospiraceae, 

which are rich in host-specific bacterial organisms. Finally, we discuss considerations for using 

alternative indicators for water quality assessments with a particular focus on detecting human 

sewage sources of contamination.
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Sanitation, health, and rationale for alternative indicators

Fecal pollution carries a myriad of pathogens, and contamination of water is a global public 

health problem [1]. In developing countries, sanitation issues are overt, with 2.4 billion 

people, approximately 30% of the world’s population, lacking access to sewage disposal [2, 

3]. Urban areas can have inadequate sewage treatment infrastructure and in rural areas, 

residential sewage is routinely handled by piping it directly to rivers and streams that are 
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also impacted by agricultural runoff, resulting in a mixture of human and animal sources [2]. 

In the United States (US), fecal pollution of waterways is a subtle but persistent problem. 

More than 44% of the nation’s rivers and 30% of the bays and estuaries are deemed 

impaired, with pathogens often cited as the number one cause of these impairments [4]. 

Pathogens are not directly measured because there are numerous possible agents and 

methods for their detection are time consuming and expensive. Instead pathogen presence is 

assumed based on detection of fecal indicator bacteria. Many rivers run through a 

combination of agricultural, suburban, and heavily urbanized areas before discharging to 

bays and estuaries, therefore, sources of fecal pollution are not easily assigned based on land 

use. Given the regulatory and public health implications of such assignments, empirical 

measurements of fecal pollution sources are needed.

The use of fecal indicators to detect fecal contamination has evolved over the past 100 years, 

but has primarily focused on coliforms, fecal coliforms, Escherichia coli, or enterococci [5]. 

These traditional indicators are commonly found in mammals and birds and continue to be 

widely used because detection methods are relatively fast, easy, and inexpensive. The advent 

of molecular methods allowed for non-cultured organisms to be used as ‘alternative’ fecal 

indicators (see Glossary). Until recently, only a few taxonomic groups such as Bacteroidales 

and Bifodobacterium have been explored. Next-generation sequencing technologies have 

given us an unprecedented inventory of the microbial community in a variety of 

environments. Prior to this, clone libraries only captured the most abundant community 

members, unless a large effort was undertaken [6]. Deep sequencing of the microbiome of 

humans and animals creates a new opportunity to explore a whole range of bacterial 

taxonomic groups suited for host-specific indicators. Comparison of microbial communities 

in humans and animal sources not only will validate the robustness of currently employed 

indicators, but will also allow us to identify new human and animal fecal pollution indictors.

Development of alternative indicators

In an effort to create more informative fecal pollution indicators, several aspects need to be 

considered. What organisms should be targeted? How are organisms that are uniquely 

associated with a host source best distinguished and detected? Promising targets for these 

efforts are organisms that dominate the microbiome but are not easily cultured. While 

functional genes may be responsible for the specialized activities of host-specific organisms, 

universal genes such as the 16S rRNA gene could be used to track these populations. In 

addition, some fecal pollution sources are a high priority for development of indicators. 

Discerning human sources (i.e., sewage) from other animal sources is important because of 

the implicit health risk posed by human sewage and the very different types of mitigation 

strategies needed to remediate sewage contamination compared with animal waste that is 

carried in surface runoff.

Fecal anaerobes as indicators

The intestinal track of humans and many animals are dominated by fecal anaerobes [6], 

making these organisms ideal targets for alternative indicators. By far, the most explored 

taxonomic group are the Bacteroidales [7–10], which are detailed later. Studies have also 

focused on Firmicutes [11, 12], Bifidobacteria [11, 13–16], and Methanobrevibacter smithii, 
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a common archaeon in the intestine [17, 18]. Fecal anaerobes may be more indicative of the 

presence of pathogens because it is unlikely they will grow once released from their host 

into the environment, in contrast to E. coli and enterococci, which have been shown to 

persist and even grow in beach sand [19–22], algal mats [20, 23], and sediment [24–26].

The 16S rRNA gene as a marker

The 16S rRNA gene has several advantages as a genetic marker for host fecal indicators 

including high resolution, sensitivity and specificity, particularly when used as a 

combination of markers (Box 1). The use of multiple indicators and assessment of 

covariance patterns of host communities could untangle complex fecal pollution signals in 

watersheds that have multiple sources contributing to poor water quality [27, 28]. 

Employing the 16S rRNA gene as a genetic marker lends itself to community approaches, 

where fecal pollution sources without a known marker can be characterized at minimum by 

their unique signature of 16S rRNA gene sequences [29].

Box 1

Targets for alternative indicators: a case for 16S rRNA

The 16S rRNA gene has long been recognized as a chromatic clock, distinguishing 

organisms from different lineages [109]. Recent studies have shown that high-resolution 

analysis of 16S rRNA gene sequences in closely related organisms reveals host related 

patterns (see Oligotyping section). Employing the 16S rRNA gene as a genetic marker 

for alternative fecal indicators has several advantages:

• The 16S rRNA gene is the gold standard for defining bacterial community 

structure in the host and physical environment and is widely used in research 

studies.

• It is universally present in bacterial genomes and contains hyper-variable 

regions that can distinguish closely related organisms.

• The 16S rRNA gene usually occurs in multiple copies and therefore is 

potentially a more a sensitive target than single copy genes for detecting fecal 

bacteria in the environment.

• Differential abundance and co-variance patterns across hosts can guide accurate 

classification of host sources based on 16S rRNA gene-based community 

structure even when there are no host-specific organisms.

• Multiple levels of resolution, from phylum-level groupings to single nucleotide 

variation, can be employed to examine distinguishing patterns among the 

microbial community in different hosts.

• The presence of highly abundant and diverse targets lends itself to innovative 

detection strategies.

Targets other than the 16S rRNA gene have been identified and have utility to detect 

specific sources. Subtractive hybridization or genomic enrichment has been used to find 
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microbial sequences uniquely associated with a host source [30–32]. Identifying functional 

genes that are involved in microbial associations with their host is a promising approach, 

particularly when microbial populations that might differ between host sources cannot be 

distinguished by the 16S rRNA gene sequences [33]. While functional gene markers are 

highly specific, they may occur at lower abundances than 16S rRNA targets, and therefore 

may not be as sensitive for detection purposes [34]. Nevertheless, they can be employed to 

detect a specific source of fecal pollution and complement 16S rRNA targets.

Detecting sewage in the environment

Humans and animals each have different pathogens uniquely associated with them; 

therefore, the relationship between fecal indicators and pathogens is highly dependent on the 

source of fecal pollution and the disease prevalence in that population [35]. One important 

division in assessing health risk is distinguishing human vs. non-human sources. 

Epidemiological studies support a stronger association between fecal indicators and 

waterborne disease when there is sewage present compared with fecal pollution from non-

human sources (i.e., animals contributing to non-point pollution) [36, 37]. Sewage 

contamination can be a subtle but chronic problem in urban areas [38–40]. High abundance 

commensal organisms may be sensitive and specific measures of unrecognized sewage 

contamination in surface waters and were found to be 3–4 orders of magnitude more 

abundant than pathogens or viral markers in sewage sources [41, 42].

Host microbiomes and specificity of commensal organisms

Research to identify alternative indicators is predicated on the assumption that at least some 

members of the fecal bacterial community are either specifically adapted to or selected for 

by the host gut environment. However, deciphering similarities and differences in the 

microbiome among host groups requires a deeper understanding of the functional basis for 

community differences, and high resolution approaches to track the key community 

members that might be most informative as indicators for a particular host source. Some of 

the issues and approaches for selecting candidates for alternative indicators are discussed 

below, including issues related to tracking human sources of fecal pollution.

Host microbiome patterns

Whole community analysis based on 16S rRNA gene sequencing of the fecal microbial 

community provides strong evidence that there are host patterns in bacterial assemblages 

[43, 44]. Diet has been shown to play a major role in shaping the gut microbiome with clear 

distinctions between herbivores and carnivores [27, 43, 44]. Diet also modulates the 

composition of the community in humans [45–48] and studies illustrate differences in 

community structure with a plant-based versus a westernized diet [49]. Cattle reared on 

different feeds also showed distinct gut communities [50]. Host genetics is also thought to 

influence microbiome composition [51, 52]. Although it is difficult to disentangle all 

contributing factors that account for host microbiome patterns, within some bacterial genera 

there is evidence of host adapted lineages [53], illustrating host physiology combined with 

long term dietary preferences can create ecotypes, i.e., strains in a ecological niche, that are 

associated with a particular host.
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Understanding the basis for microbiome patterns found in a particular host would allow us 

to choose organisms that are host-adapted and therefore inherently stable or specific to a 

single host. Ideal indicators for a particular host source may be ‘core’ community members, 

which have been suggested to fulfill a critical role within the host [54–56]. For humans, the 

microbiome of individuals can be highly variable [57], therefore using untreated sewage as 

an integrated sample of the human population is a useful approach to identify possible 

human associated indicators [12]. The ever growing datasets from microbiome studies will 

be useful for host to host comparisons, however prospective studies are needed that control 

for confounding factors such as co-habitation or short term dietary influences, which can 

overprint organisms onto communities that are shaped by selective, adaptive, and 

evolutionary processes.

Bioinformatic challenges to distinguish closely related organisms

Choosing an appropriate level of resolution is critical when assessing similarities and 

differences among the microbial communities using the 16S rRNA gene. Defining shared 

members across different hosts depends on the sensitivity of the taxonomic units employed. 

The most common approaches to partition 16S rRNA gene reads are (i) taxonomic 

assignments via classifiers such as Ribosomal Database Project (RDP) classifier [58] or 

GAST [59], or (ii) de novo cluster analyses without the requirement of a curated taxonomic 

database (see [60] for a review of taxonomy-independent methods).

In most cases operational taxonomic units (OTUs) created by clustering 16S rRNA genes at 

a 97% sequence similarity threshold creates a more highly resolved dataset than sequence-

based taxonomic assignments alone, and is enough to explain patterns in a given dataset. 

However, these OTUs often are phylogenetically mixed units [61] and fail to explain the 

distribution of very closely related organisms across samples. Identifying markers that can 

distinguish fecal sources requires the use of more sensitive approaches, as even one 

nucleotide difference at the 16S rRNA gene-level may correspond to remarkable genomic 

variation [62, 63], and organisms that are more than 99% similar at the 16S rRNA gene level 

can occupy different ecological niches [64, 65].

Oligotyping: a new method to distinguish closely related organisms

Oligotyping is a recently introduced computational method that allows the identification of 

closely related but distinct organisms that would fall into one OTU or taxon [65]. The 

method relies on Shannon entropy [66] for the identification of highly variable nucleotide 

positions among reads, and defines oligotypes by concatenating nucleotides from positions 

of interest. Several studies have used oligotyping to explain the distribution patterns of 

closely related organisms that are lumped together into one taxon [67–69]. Figure 1 

exemplifies the power of this approach with high-resolution results for 30 million sequence 

reads classified as genus Bacteroides from human fecal samples. Some Bacteroides 

oligotypes identified in this dataset showed differential distribution patterns between 

geographically distinct human populations where clustering reads into 97% OTUs did not 

distinguish these sub-populations [65]. Below, we highlight the use of oligotyping to recover 

host related patterns in the genus Blautia across human and six animal hosts [70].
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Defining presence/absence and differential abundance schemes

The identification of host sources may not be as straightforward as relying on strict 

presence/absence of a particular organism or defined taxonomic unit, and classification of 

host sources using community data may need to rely upon differential abundance patterns. 

The distribution patterns of microbial organisms among hosts vary, and a common 

terminology for the identification of these classes is a necessary step for communication. For 

instance, the term ‘host-specific’ is used broadly in the current literature, where, in some 

cases it describes a taxon that strictly occurs in samples from only one host species; in other 

cases it describes a taxon that is differentially more abundant or prevalent in samples from 

one host species. Although both definitions of host-specificity are important to classify the 

origin of the fecal pollution, they pose different theoretical and practical meanings.

Recently, we suggested four terms to describe patterns of occurrence across different 

species: cosmopolitan, host-preferred, host-associated, and host-specific [70]. The term 

cosmopolitan identifies taxonomic units that do not show any discernible preference for a 

host. A host-preferred distribution describes an organism that is significantly more abundant 

in samples from one host species while it may occur in other hosts at lower abundances. A 

host-associated taxonomic unit occurs only in one host species, but not necessarily in every 

individual of that host species. Finally, the term host-specific (i.e., strictly host-specific) is 

reserved for taxonomic units present in every sample from one host species, i.e., they are 

core members, and absent in every other host organism. Figure 2 demonstrates four 

distribution profiles coinciding with these terms. In this schema, a host-preferred organism 

can be used to generate an accurate model for host identification using the entire microbial 

community, however, host-specific and host-associated markers can accommodate more 

targeted molecular approaches.

Computational methods for interpreting host microbiome patterns

In some cases, strictly host-specific markers may be rare in a host species. More likely, 

differential abundance patterns will need to be used to accurately identify hosts. There are 

numerous machine learning algorithms, including support vector machines [71], artificial 

neural networks [72], and random forests [73] that can be trained with known microbial 

community structures to classify environmental samples of unknown origin. Random forest 

have successfully been used in the context of source tracking using phenotypic data of E. 

coli [74] and classifying hosts according to Blautia profiles [70], and its applicability to 

microbiome data is shown in a recent review by Statnikov et al. [75]. The random forest 

algorithm can handle very large input datasets, tolerate outliers in the input data, and 

generate an unbiased estimate of the classification error.

Computational tools have also been specifically designed for determining sources of 

organisms. PyroMiST [76] is a custom online tool using next-generation 16S rDNA 

sequencing data of total bacterial communities or Bacteroidetes and identifies shared OTUs 

between sources and contaminated water. SourceTracker [77] utilizes a Bayesian approach 

to estimate the proportion of contaminating sequences in a given community that come from 

possible source environments. SourceTracker was originally designed to detect 

contamination in high throughput sequence datasets, but may have interesting applications 
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for identifying fecal bacteria sources in water samples as contaminant-derived organisms are 

often a minor component compared to the abundance of the natural community [28].

Identification of host-preferred taxonomic units is another important aspect of studies that 

seek to identify individual indicators for fecal pollution in complex microbiome datasets. No 

standard difference in relative abundance has been established to define whether an 

organism is considered shared between two samples or two hosts, or if it is simply a 

transient member in one of the communities. In one study, community members were 

considered shared when they did not vary by more than two orders of magnitude [57], which 

may be a practical threshold when identifying host preferred taxonomic units for microbial 

source tracking. Although correlations between the relative abundance of an organism and a 

host species may be statistically meaningful, findings may not translate to biological 

relevance [78]. However, host-preferred taxonomic units can still be viable targets for more 

focused analyses. One software package that can be used to explore host-preferred 

organisms in a dataset is STAMP [79], which provides a user-friendly graphical 

environment for comparative metagenomics. Another alternative is LEfSE [80], which also 

can identify taxonomic units that are highly associated with a previously defined class in a 

dataset and quantify their effect size.

Promising alternative indicator groups and water quality applications

Below we provide an overview of two groups of fecal anaerobes that contain several 

members that are good candidates for alternative indicators and discuss using community 

analysis directly as an approach for assessing water quality. Bacteroidales was one of the 

first taxonomic groups explored [7, 81] and multiple studies whose aim was to develop 

alternative indicators have focused on this group. Other groups such as Lachnospiraceae are 

just beginning to be explored for new indicators [12]. As databases grow from microbiome 

research and new studies seek host-specific indicators, we may find that no single indicator 

can provide 100% specificity for a host source. Under this scenario, combinations of 

alternative indicators from different taxonomic groups or whole community profiling may 

be needed to resolve pollution sources.

Bacteroidales

Early studies using terminal restriction fragment length polymorphisms to characterize 

populations of Bacteroidales provided evidence that members of this group had a high 

degree of host-specificity [8]. Cloning and sequencing of the V1–V3 region of 16S rRNA 

genes in Bacteroidales has led to development of PCR and quantitative real-time PCR 

(qPCR) assays where the V2 region is used to differentiate Bacteroidales from different 

hosts [9, 10, 82–85].

Currently, the most widely used assays for sewage contamination employ the HF183 primer 

sequence first described by Bernard and Field [86] and are reported to be the most specific 

and sensitive of the human fecal pollution assays [87–90]. Assays that utilize the HF183 

primer and others that target closely related variants [83, 84, 91, 92] detect a recently 

described species within Bacteroides, B. dorei [84]. Ruminant markers [85, 93] have proven 

to be both sensitive and specific [94, 95] suggesting a core Bacteroidales population in 
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ruminant hosts [95]. Genetic markers that detect bovine hosts (i.e., cattle or cows) generally 

have been found to cross-react with other ruminants or horses [94], suggesting the 16S 

rRNA gene maybe not be a discriminatory target for microbiome members unique to bovine 

sources [33]. Assays targeting pigs and dogs [82, 83], as well as those targeting wildlife 

have been described [96, 97].

A recent evaluation study involving 41 laboratories in the US and EU and 13 different 

Bacteroidales host genetic markers (among 27 different assays assessed) overall 

demonstrated human-specific markers have minimal cross reactivity with animals, with 

other non-human markers showing some diminished specificity or sensitivity for their hosts 

[94]. In a geographically expansive comparison study that spanned 16 countries and six 

continents, results suggested that ruminant markers were robust worldwide, but human 

markers seem to be less prevalent and stable in some regions of the world and could be 

improved for global applications [95] (Box 2).

Box 2

Geographic considerations: a case study

Differences in the microbiome of humans across geography and cultures have been 

reported [49, 110], which needs to be taken into account when developing human fecal 

pollution indicators. One of the most cited differences in humans in worldwide 

comparisons is the higher relative abundance of Bacteroides in those exposed to a 

westernized diet [49]. A case study was conducted in Jenipapo, in the state of Bahia, 

Brazil, which is a small rural village with a population of ~2,500 in the north central 

region of the country [111]. In this study, next-generation sequencing of sewage from the 

major city of Salvador and human fecal samples from village residents demonstrated that 

the microbiome of humans in Brazil were dominated by Prevotella and multiple species 

within Lachnospiracae and Ruminococcaceae, which collectively accounted for nearly 

75% of the fecal microbial community, whereas Bacteroides comprised <1%. The 

microbiome composition of human fecal samples was reflected in deep sequencing 

profiles of the microbial community in polluted river water. A transect of the river from a 

sparsely populated area upstream to sites downstream of the village demonstrated 

increasing relative abundance of Prevotella and Lachnospiraceae with increasing density 

of village residences. Oligotypes within Prevotella and Blautia indicative of humans 

were found to be low or absent in pig, dog, horse and cow feces and could be traced with 

increased residential density in the river transect (Figure I). Microbiome studies on 

geographically distinct human and animal populations will provide further insights into 

new targets for indicators of human fecal pollution that have global applicability.
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Figure I. 
Traditional indicators and Prevotella and Lachnospiraceae oligotypes demonstrating 

human fecal pollution inputs. River sampling transect in the Jiquiriçá River and 

increasing human Prevotella and Lachnospiraceae oligotypes with increasing residential 

density. Map shows residential structures along the river transect. Colored circles in the 

table are proportional to the relative abundance of human Prevotella or Lachnospiraceae 

oligotypes (red) or the relative abundance of sequences classified as E. coli or 

Enterococci sp. as a measure of overall fecal pollution (purple). Data were originally 

reported in Koskey et al. [111].

Lachnospiraceace

The Fimicutes, and in particular Clostridiales, have only recently been explored for host 

indicators despite the fact that they are a major constituent of the fecal microbiome of 

humans and other animals [6, 43, 98]. Lachnospiraceae, analogous to Clostridium cluster 

XIVa or C. coccoides group [99], is highly abundant in untreated human sewage from major 

US cities [12, 100, 101]. Examination of Lachnospiraceae population structure in humans 

and sewage, as well as cattle and chickens for comparison, revealed host-related structure 

with many oligotypes abundant in humans or sewage, and low or absent in these animals 

[12]. Further, comparison of sewage samples and a dataset of 48 human samples revealed 

that sewage can serve as a population level assessment of human sewage contamination 

[12]. One assay designated Lachno2 was designed to target the second most abundant 

Lachnospiraceae sequence (affiliated with the genus Blautia) in a sewage dataset, and this 

sequence unlike the most abundant Lachnospiraceae sequence could differentiate between 

human and cattle fecal contamination [42]. However, more extensive testing is needed to 

determine what other host types cross-react with the assay. Lachnospiraceae appears to be 

rich in human related indicators, more so than other families within Clostridiales, including 

Ruminococcaceae and Clostridiaceae [12].

A more extensive study focusing on the genus Blautia in seven hosts with greater than 57M 

sequence reads of the V6 region of the 16S rRNA gene revealed a population structure that 
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could resolve hosts into different groups [70]. Figure 3 shows clustering of host groups, and 

a heat map of Blautia oligotypes with their differential abundance pattern in the host types. 

A random forest classifier trained with the Blautia oligotypes resulted in zero generalization 

error for all sample groups except deer (where one deer sample was confused with cows), 

and the cat group (where one cat sample was confused with dogs). In that study, 13 host-

specific oligotypes were found to identify humans, swine, cow, deer, and chickens, however, 

most oligotypes (171 of 200 total) showed host-preference rather than host-specificity. 

Similar to another report of microbiome patterns [102], humans or sewage and pigs were 

more similar to each other than other host groups, including samples from both the US and 

Brazil.

Microbial source tracking using community analysis

In addition to identifying candidates for genetic markers, community analysis can be used 

directly to assess fecal pollution sources. Advantages include gaining information about all 

sources that are present and their relative contribution, even those that do not have genetic 

markers. Surface water community profiles can also provide information about changes in 

the natural community in contaminated waters [27]. Community approaches can 

complement single marker investigations and answer the question of “have we identified all 

the pollution sources present?”.

Whole community approaches cover a range of methodologies with various levels of 

resolution and were recently evaluated in a multi-lab comparison study [29, 94]. Terminal 

restriction fragment length polymorphism (TRFLP) has been used to track sewage signals 

across a gradient from upstream drain locations to downstream creek sites [103]. With 

TRFLP, differences in community members are defined by a restriction site within an 

amplified gene (in this case the 16S rRNA gene), which could equate to a single base pair 

difference between two community members. A second approach using published sequences 

in a microarray (i.e., PhyloChip) and identified more than 500 OTUs associated with human 

fecal pollution [104]. The subsequent study of 42 samples from wastewater treatment plants 

and septic collection tanks, and cows, horses, elk, various birds, sea lions and seals 

demonstrated a clustering of samples according to sources [27]. The abundance of Bacilli 

and Gammaproteobacteria clearly discriminated birds from mammals, which in contrast to 

birds, were primarily dominated by Clostridia and Bacteroidales [27]. One limitation to this 

approach is that some sources may be under-characterized in 16S rRNA databases [27], 

however, with rapidly expanding marker gene surveys, this may be a short-term limitation.

Next-generation sequencing data has been used directly to characterize fecal sources and 

contaminated water. Unno et al. [105] sequenced the V1 and V3 regions of the 16S rRNA 

gene and noted marked differences between human and domesticated animals compared 

with wild geese, which were dominated by Proteobacteria. In this study, human and swine 

sources were implicated in the Yeongsan river basin (Jeonnam Province, South Korea) by 

identifying shared OTUs between fecal sources and river sites. These authors noted that 

targeted sequencing of Bacteroidetes or Firmicutes in environmental samples would reduce 

the number of reads needed to identify sources and allow for more sites to be analyzed 

[105]. In another study, Lee et al. [102] sequenced the V2 region to characterize fecal matter 
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from humans, chickens, cows, geese, and pigs and suggested that OTUs within Fimicutes 

were primarily responsible for the host-associated clustering patterns observed. This study 

found that while the general composition of host microbiomes was similar, specific 

organisms from a particular fecal origin were found. Taken together, these studies highlight 

the power of next-generation sequencing to directly identify sources or to choose indicators 

specifically tailored for water quality applications.

Concluding remarks and future directions

E. coli or enterococci have applications as fecal indicators when basic information is needed 

to determine if fecal pollution is present. Simple measurements of these indicators can 

answer public health questions such as “should I drink this water?” or “should I swim at this 

beach?”. However, these measurements are not useful when there is evidence of chronic 

contamination and fecal pollution sources need to be identified to address the problem, such 

as gull feces on beaches (Box 3). Ultimately, source identification and remediation of 

contamination rather than simple detection will protect public health and improve 

recreational opportunities afforded by our natural resources.

Box 3

Addressing chronic contamination of beaches by shorebirds and waterfowl

Demonstrating the absence of sewage indicators is not particularly useful for monitoring 

beaches with evidence of chronic fecal pollution. Beachgoers have direct contact with 

water so the causes of elevated E. coli or enterococci levels need to be explained and 

addressed. Gulls, other shorebirds and waterfowl are suspect fecal pollution sources at 

many beaches. Gulls appear to harbor very different fecal microbial communities than 

humans, one that is dominated by enterococci and E. coli, with a limited number of fecal 

anaerobes [27, 112, 113]. Based on cloning of the microbial community, a genetic 

marker targeting Catellicoccus marimammalium was described by Lu and colleagues 

[112]. Deep sequencing demonstrated this organism was the dominant community 

member (in some cases comprising >90% of the total community) in gull feces and much 

more abundant then traditional enterococci fecal indicators [113]. Comparison with 

sewage samples that were also deeply sequenced [100] suggested this target was 

completely absent in sewage and therefore potentially a reliable marker to complement 

sewage indictors at beaches. In this instance, the depth of next-generation sequencing 

shed light on the usefulness of the gull genetic marker targeting Catellicoccus 

marimammalium.

Instead of looking for one genetic marker at a time, we are now able to step back and 

examine the whole community to assess various targets. In addition, new technologies are 

lending themselves to innovative approaches for water quality applications. Detection 

strategies could employ the entire community or a broad taxonomic group such as 

Bacteroidales or Clostridiales as a fingerprint. Assays could target key, specific members 

either singly or in combination using qPCR, hybridization, sequencing, or could employ 

other strategies not yet envisioned. The 16S rRNA gene is a robust genetic marker that maps 
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to microbial members within host niches. We need to learn more about the genomic basis 

for host colonization and specialization to better understand selection, adaption, and drivers 

of the microbiome (Box 4). The Human Microbiome Project [106], the Earth Microbiome 

Project [107], and the growing number of other microbiome research studies provide a 

resource for the development of new indicators for fecal pollution. Minimal marker gene 

survey metadata [108] can provide some information about the source of samples but gaps 

in knowledge likely need to be filled with studies designed to answer specific questions. 

Prospective studies are needed to systematically catalog microbiome data of humans and 

animals and control for diet, geographic distributions, and other external factors.

Box 4

Outstanding questions

• What is the variation in the microbiome of individuals and geographically 

disbursed populations of human and animal hosts?

• Are there core microbiome members and are these specific to a host species or 

do they have a broader distribution among other hosts (i.e., are core organisms 

specialists or generalists)?

• How do cultured representatives currently capture host-specific sub-populations 

and what additional culture efforts are needed for genomic studies?

• What is the biological relevance of the host patterns observed in fecal taxa (i.e., 

Clostridales or Bacteroidales)?

• What is the functional basis for host-specificity? Do strictly host-specific 

organisms fulfill a key metabolic function or are they selected for by host 

physiology?

As microbiome research advances, further understanding of the ecology and forces that 

shape the gut microbiome will accelerate discovery and validation of new indicators. 

Likewise, the studies directed at identifying host-specific organisms for environmental and 

public health applications provide glimpses into basic questions in microbial ecology. We 

suggest that microbial source tracking studies, taken as a whole, could be seen as the ‘field 

experiment’ that tests for host structure in natural host populations. Integration across 

disciplines will enhance our understanding of human and animal microbiomes and expedite 

discovery of alternative indicators of fecal pollution.

Acknowledgments

We thank Mitchell Sogin for contributing insights into 16S rRNA evolution in microbial populations and Ryan 
Newton for discussion and suggestions for this review. We also thank Ronald Blanton and Rafael Ponce Terashima 
for working with us in collaborative studies in Salvador and Jenipapo, Brazil. Finally, we thank lab members Jen 
Fisher, Deb Dila, Patricia Bower, Danielle Cloutier, Morgan Schroeder, Ryan Bartleme, Hayley Templer and 
Amber Koskey for contributing to the review of literature.

McLellan and Eren Page 12

Trends Microbiol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Glossary

Alternative 
indictor

an organism or non-biological constituent of fecal pollution or sewage 

that is used to indicate the presence of fecal pollution. Constituents can 

range from commensal organisms found only in one type of host 

species to viruses, caffeine, or optical brighteners. These indicators are 

often used to the complement traditional indicators including fecal 

coliforms, Escherichia coli or enterococci in investigative studies. In 

this review, we examine commensal organisms as indicators that can 

provide information on the host source

Core 
community 
member

an organism that is found in all individuals of a host species or related 

group of host species (i.e., ruminants). Core community members are 

hypothesized to fulfill a critical role in the host or be specifically 

adapted to the host’s physiology. A core member is not necessarily 

exclusive to the host species in which they are found, but may be 

found in other hosts as either an essential or transient member of the 

community

Cosmopolitan refers to the ubiquitous distribution of an organism among samples of 

different host species, where they occur in almost all individuals and 

hosts at varying relative abundances, with no distinctive pattern

Entropy variation in the nucleotide sequence of a position in aligned sequences. 

Entropy at certain positions can correspond to a phylogenetic signal

Genetic marker a DNA sequence that can be used to track an organism or closely 

related subpopulation of organisms that share the marker. A genetic 

marker is the sequence that can be targeted by primers to make an 

assay specific for a host source

Host-associated refers to the abundance pattern of an organism found in one host 

species, but not every individual of that host, and is absent in other 

host species

Host-preferred describes the abundance pattern of an organism that is dominant in all 

individuals of a host species and low or absent in other host species

Host-specific may be used as a general reference to organisms that are indicative of 

host sources. In describing different abundance patterns of host 

microbial communities, we define host-specific more stringently, to 

mean strictly host-specific, where organisms are present in all 

individuals of a host species and absent in all other hosts

Microbial 
source tracking

the process of determining the source of fecal bacteria found in 

contaminated environments. General indicators such as fecal 

coliforms, E. coli and enterococci in most cases do not provide 

information as to the host in which they originated. Alternatives to 

these general indicators, i.e., alternative indicators, are based on 

commensal bacteria specifically associated with a host
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Oligotyping a supervised computational method to analyze closely related 

sequences based on only considering high entropy positions. 

Oligotypes can be any length and could use the entire 16S rRNA gene 

sequence, but generally consist of 20–30 bps chosen from a sequence 

read of 60–250 bp depending on the sequencing platform. Oligotyping 

complements OTU clustering methods as it can resolve ecologically 

distinct organisms that may only vary by a single bp in regions of a 

selected 16S rRNA region used for community analysis

Operational 
taxonomic units 
(OTUs)

taxonomic units typically defined by a sequence-similarity based 

criterion. The most commonly used criterion, is 16S rRNA gene 

sequence clustering at a 97% similarity threshold. This approach 

minimizes inflated diversity because of sequencing errors while 

preserving resolution of closely related organisms

Taxonomic unit a general designation for different levels of resolution in classifying 

organisms (family, genus, species, strain, or operational taxonomic 

unit defined by sequence analysis). In this review we introduce 

oligotype as a taxonomic unit. The abbreviated term ‘taxa’ is often 

used
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Highlights

• Microbiome research affords new opportunities for choosing indicators of fecal 

pollution.

• Highly resolved 16S rRNA gene sequences reveal host patterns in closely 

related organisms.

• Bacteriodales and Clostridiales are rich in host specific indicators.
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Figure 1. 
Resolution of three Bacteroides OTUs using oligotyping to discern differences in human 

populations across a wide geographic distance. The top panel shows the entropy analysis of 

30,637,709 101 nt long V4 reads that are identified as Bacteroides in a publicly available 

dataset by Yatsunenko et al. [49]. Red dots on entropy bars indicate the nucleotide positions 

used for oligotyping analysis. Lower panel exemplifies three OTUs that could be further 

resolved with oligotyping. Colored bars represent the prevalence of a given oligotype in gut 

samples, where a full bar indicates that the oligotype was found in all individuals from the 

given region. Each group has two oligotypes that show remarkable differential distribution 

patterns among human populations that is missed by taxonomical analysis and OTU 

clustering at 97%. These results were originally reported by Eren et al. [65].
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Figure 2. 
Possible differential abundance patterns of organisms in host species. We propose 

terminology to describe different abundance patterns of members in the microbial 

community of host species, as originally reported in [70]. Cosmopolitan refers to organisms 

prevalent in all host species with no distinguishing patterns of abundance. Organisms that 

highly abundance in one host species and have low abundance or are absent in other hosts 

are designated as ‘host-preferred’. Organisms that are in only one host species but not 

detected in all individuals are designated ‘host-associated’. When describing occurrence 

patterns, the term host-specific is reserved for organisms that are present in all individuals of 

a host and absent in other host species. Many other patterns are possible; these terms are 

working definitions that can be used to assess candidate alternative indicators.
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Figure 3. 
Blautia populations in sewage, humans and animals display host preference and specificity. 

Heatmap analysis of Blautia oligotypes. The dendrogram (top) shows the hierarchical 

clustering of samples based on Morisita-Horn dissimilarity index. The samples are ordered 

based on clustering according to their oligotype profiles, and the oligotypes were ordered 

based on their occurrence patterns in samples. Blue color identifies oligotypes that are 

absent or represented by a very small number of reads in a sample. Data are originally 

presented in McLellan et al. [12].
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