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Abstract

Background—With limited funding and biological specimen availability, choosing an optimal 

sampling design to maximize power for detecting gene-by-environment (G-E) interactions is 

critical. Enriched sampling is often used to select subjects with rare exposures for genotyping to 

enhance power for tests of G-E effects. However, exposure misclassification (MC) combined with 

biased sampling can affect characteristics of tests for G-E interaction and joint tests for marginal 

association and G-E interaction. Here, we characterize the impact of exposure-biased sampling 

under conditions of perfect exposure information and exposure MC on properties of three methods 

for conducting these tests.

Methods—We assess the power, Type I error, bias, and mean squared error of case-only, case-

control, and empirical Bayes methods for testing G-E interaction and a joint marginal G (or E) 

effect and G-E interaction across three biased sampling schemes. Properties are evaluated via 

simulation. We also consider the role of gene-environment independence.

Results—With perfect exposure information, enriched sampling schemes enhance power as 

compared to random selection of subjects irrespective of exposure prevalence but yield bias in 

estimation of the G-E interaction and marginal E parameters. G-E independence affects the 

relative properties of the interaction detection methods, with the case-only approach suffering 

most severely. Exposure MC distorts the relative performance of sampling designs when 

compared to the case of perfect exposure information.
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Conclusions—Those conducting G-E studies should be aware of exposure MC properties and 

the prevalence of exposure when choosing an ideal sampling scheme and method for detecting G-

E interactions and joint effects.
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exposure misclassification

BACKGROUND

Elucidating the role of interactions between genes and the environment in complex disease 

etiology has become a recent focus of many epidemiologic investigations [1, 2]. This 

expansion upon traditional genetic association studies that examine the relation between 

genetic variants and disease status is driven both by biological interest in the interplay 

between these genetic and environmental risk factors and by the potential increase in power 

that interactions may offer for detecting the existence of any genetic effect [3, 4]. Further, 

joint tests for marginal environmental and gene-environment (G×E) interaction effects may 

be helpful for identifying genetic subgroups among which the effects of environmental 

exposures are enhanced. Several approaches for estimating/testing for multiplicative G×E 

interaction have been proposed in the literature; the case-only, case-control, and empirical 

Bayes methods have been widely used in the post genome-wide association study (GWAS) 

era [5–8]. The case-only and empirical Bayes approaches capitalize on gene-environment 

independence to improve power to detect gene-environment interaction, with the empirical 

Bayes approach achieving this goal in a more robust, data-adaptive manner.

Despite the potential for G×E interaction studies to unravel clues about the multi-factorial 

etiology of a complex disease, a significant obstacle in conducting a successful study lies in 

achieving enough power to detect potentially modest effect sizes. Thus, during the design 

stage, practical considerations including the optimization of constrained financial and 

biologica l sample resources remain a strategic challenge. While a power-maximizing 

sampling scheme for selecting GWAS subjects from specific exposure risk groups has been 

described for testing marginal association of the genes with disease, this approach is valid 

only when a lack of strong G×E interaction can be assumed [9]. When the goal of the study 

is actually to detect an interaction, some have proposed that leveraging environmental 

exposure information during sample selection for genotyping provides power advantages 

[10]. Exposure-enriched sampling designs may increase power by allowing for the 

oversampling of subjects from relatively rare exposure categories. However, the benefits of 

exposure-biased sampling designs for G×E interaction detection have not been rigorously 

evaluated. Further, it is known that non-differential misclassification (MC) of environmental 

exposure data can lead to biased estimates of interaction effects and can affect the power and 

type I error properties of statistical tests for interaction [11–14]. In addition, because 

differences in exposure recall between cases and controls are frequently noted, differential 

MC of exposure by disease status poses more severe of a concern for bias in estimation and 

inflated type 1 error as well as reduced power for statistical testing [13, 15, 16]. It remains 

unclear how either form of MC impacts the relative performance of different exposure 
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enrichment designs implemented during the sampling phase, as the sampling strategy is now 

based on a contaminated exposure instead of a perfect exposure.

This report presents the results from a simulation study that examines the statistical 

advantages and disadvantages of various exposure-enriched sampling schemes for detecting 

G×E interactions and joint tests of both marginal and interaction effects. In addition, we aim 

to describe how exposure misclassification impacts the choice of such designs. Our focus 

here is to examine the influence that study design and sample selection decisions have on 

power/type 1 error for testing and efficiency/bias in estimation, with the goal of informing 

future analytic approaches.

It is true that the literature on two-phase or biased sampling design is now rich and methods 

for appropriately handling such data for inference about effects of the exposure are readily 

available (particularly in the absence of MC) [17–19]. For instance, a simple offset term 

using known sampling fractions for cases and controls can be derived to separate the effect 

of exposure under a biased sampling scheme from the actual effect of exposure under a 

logistic regression for case-control studies. The various estimators considered in this paper 

can likewise be modified to appropriately account for the biased sampling design. Thus, a 

relevant analytic issue here would be to obtain an optimal design using the corrected 

estimators/tests that fully account for the biased sampling scheme. However, we do not 

adopt that strategy and simply illustrate the consequences of what is typically done in testing 

for genetic effects in large GWA studies where the design is optimized to enhance power for 

discovery (rightfully so, as the interest lies in detection of susceptibility loci and not 

estimating the true effect size very precisely) and standard analytic tools without finer 

adjustments for biased sampling are used. The effect of MC on such a design and analysis 

strategy is not present in the literature. Two sources of potential bias, exposure-enriched 

sampling and misclassification of exposure, are explored simultaneously in this study, 

adding new knowledge to the existing literature.

METHODS

Simulation Design: Generation of the 2×4 table

We consider the analysis of simulated data generated from an unmatched case-control study 

with a binary genetic factor (G), assuming a dominant genetic model, and a binary 

environmental variable (E). G takes a value of 1 for a genetically susceptible subject and 0 

for a subject without a copy of the risk allele. For power comparisons, binary G is a 

reasonable assumption to consider because dichotomization maintains the relative 

performance of the methods and sampling designs expected from the more general co-

dominant or additive scenario. In terms of exposure, E = 1 signifies exposed, and E = 0 

designates unexposed subjects. Similarly, D represents disease status, where D = 1 indicates 

affected, and D = 0 denotes unaffected. Table 1 describes the distribution of cell counts in 

the underlying case-control study base. Using the notations in Table 1, the vectors of cell 

frequencies for cases and controls are realizations from two independent multinomial 

distributions, r1 ~ Multinomial (n1, p11, p12, p13, p14) and r0 ~ Multinomial (n0, p01, p02, p03, 

p04), respectively. OR11 = (p01 p14)/(p04p11) denotes the odds ratio for individuals with G = 

1 and E = 1 in relation to those baseline subjects with G = 0 and E = 0. OR01 = (p01p13)/
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(p03p11) signifies the G-D odds ratio among the unexposed, capturing the main effect of G, 

and OR10 = (p01 p12)/(p02p11) represents the E-D association among the genetically non-

susceptible, capturing the main effect of E. The multiplicative interaction parameter under 

study is represented by OR11/OR10OR01. We generate the control frequency vector first 

using given values of the prevalence of G, prevalence of E and odds ratio of gene-

environment association in controls, namely ORge. Using the control probability vector and 

given values of the main effect and interaction parameters, the case frequency vector is then 

generated [7].

Tests for G×E interaction

The three tests for G×E interaction employed here have been thoroughly described in the 

literature. In brief, we utilize the case-control (CC) approach leveraging simple logistic 

regression, maximum likelihood estimation, and a standard Wald test for the null hypothesis 

of βg×e = 0. In addition, we conduct a case-only (CO) analysis using a retrospective 

likelihood-based test that requires an assumption of gene-environment (G-E) independence. 

Finally, we employ the Empirical Bayes (EB) method which provides a trade-off between 

bias and efficiency of the previous two approaches (CC and CO) using a shrinkage estimator 

with adaptive weights attached to the CC and CO estimators. The adaptive weights for the 

EB estimator are identical to the one proposed in [7], with more weight towards CC if gene-

environment independence is violated. Thus, the EB estimator is less susceptible to bias and 

Type 1 error than a CO estimator if there is gene-environment dependence.

Joint test for marginal genetic (or environmental) association and G ×E interaction

We employ the recently published approach that combines the use of two models (1 and 2 

below) to test the marginal effect of G (or E) and the G×E interaction [3]. The key 

differences between this method and a two degrees of freedom (df) likelihood ratio test for 

H0 : βg = βg×e = 0 for G (or H0 : βe = βg×e = 0 for E) as proposed in [4] are that this approach 

tests for the marginal association of G (or E), as in (1), rather than the main effect in a full 

G×E model (2), and for the interaction component it takes advantage of possible G-E 

independence when testing for G×E interaction through extension to the CO and EB 

approaches [3]. Let us consider the two models that yield the components of the joint tests 

that are considered in [3]:

(1)

(2)

The composite hypothesis being tested for G is H0 : αg= 0 and H0 : βg×e = 0; and the 

composite hypothesis for E is H0 : αe = 0 and H0 : βg×e = 0. Now, βg×e can be estimated 

using any of the three methods described above (CC, CO, or EB). The Wald test χ2 statistics 

for the marginal association tests in (1) and interaction tests in (2) are independent [3]. Thus, 

adding the two test statistics yields a 2 df χ2 test statistic of one of the following 3 forms 

(depending on which test is used for the interaction part: CC, CO or EB) :
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We will study effect of exposure-biased designs in conjunction with potential 

misclassification on these three analytical strategies. Recall that CC does not use G-E 

independence, CO assumes it to be true, and EB adaptively uses it without making a blanket 

assumption like CO.

Exposure-enriched sampling designs

Following generation of data for the underlying case-control study base, we consider three 

alternative sub-sampling schemes with differential enrichment for exposed subjects. As the 

genotyping budget is often limited, we assume a hypothetical scenario that resources are 

available to obtain genetic data on only half of the cases and controls in the original study 

base.

- Scheme 1: select 50% of cases and 50% of controls from the full 2×4 table, 

preferentially including all exposed subjects (both cases and controls) and a 

random sample of unexposed subjects to reach the genotyping capacity. Since 

same rate of exposure enrichment is assumed for cases and controls, this design 

will not generate significant bias for exposure effect estimates, in spite of 

exposure enrichment.

- Scheme 2: genotype 50% of cases and 50% of controls, including all exposed 

cases, a fixed percentage of exposed controls (50%, 70%, or 90%), and a 

random sample of unexposed individuals to reach the genotyping capacity. Note 

that differential sampling rates across cases and controls will generate bias in the 

estimate of the exposure main effect as well as G ×E interaction term.

- Scheme 3: randomly sample 50% of cases and 50% of controls for genotyping 

irrespective of their exposure status. This scheme represents the traditional 

sampling design with no exposure enrichment but may lack power for testing 

G×E interaction.

Simulation settings

The base case simulates 5000 cases and 5000 controls as the underlying case-control study 

base, from which a subsample of 2500 cases and 2500 controls are drawn for genotyping 

and inclusion in the interaction study. We assume that the prevalence of exposure (P(E)) is 

0.1 (relatively rare) and that the risk allele frequency for G (a single marker) is relatively 
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common at 0.2. The true interaction odds ratio parameter (ORg×e) is varied from the null 

value of 1.0 up to 1.8. Further, for this base case we assume that gene-environment 

independence holds and that perfect exposure information is available. The main effect of G 

(OR01 = ORg = exp(βg)) and the main effect of E (OR10 = ORe = exp(βe)) are both set to 1. 

We examine the relative performance of the G×E and joint effect detection methods under 

each sampling design with respect to power (the probability of rejecting the null hypothesis), 

type I error, mean squared error (MSE), and bias in parameter estimation. Biases are 

calculated with respect to deviation from the true marginal effects αg, αe, and the interaction 

effect βg×e. The reported results are based on 5000 simulated datasets. Subsequently, the 

following sensitivity analyses are conducted for the perfect exposure measurement scenario 

by deviating from the base case. We vary the sample size of the underlying original study 

base down to 2000 cases and 2000 controls, the prevalence of exposure up to 0.3, ORg up to 

1.3, and ORe up to 1.5. Also, we examine the impact of gene-environment independence 

violations by varying the gene-environment association parameter, ORge, from 1.0 down to 

0.8 and up to 1.1 (Supplementary Material).

Exposure misclassification (MC)

While we first test the three sampling schemes under the assumption of perfect exposure 

information, we then examine the impact of exposure MC on the performance of these 

designs. When MC is considered, the underlying study sample is generated in exactly the 

same way as described above and includes 5000 cases and 5000 controls. The true exposure 

(E) is generated first, followed by the contaminated exposure (E) based on the following 

probabilities associated with exposure measurement:

P (E=1 | E=1) = sensitivity (SE)

P (E=1 | E=0) = 1-specificity (SP)

Note that this generates non-differential misclassification because we do not consider 

disease status in the misclassification model. Then, with a sub-sampling rate of 50% (i.e. 

50% of cases and 50% of controls are selected for each sampling scheme), the final number 

of genotyped samples is 2500 cases and 2500 controls. Nine combinations of SE and SP 

parameters are assessed, with individual values ranging from 0.6–1.0. Because disease 

diagnosis may increase sensitivity and reduce specificity of recalling exposure history in 

cases as compared to controls, we also consider a situation of differential misclassification, 

where SE=1.0 and SP=0.6 among cases and SE=0.8 and SP=0.8 among controls [16]. 

Subsequently, the enriched sampling designs based on the observed misclassified exposures 

are employed, followed by interaction and joint effect testing as before.

RESULTS

Exposure-biased sampling with perfect exposure information

Overall, the base case with 2500 cases and 2500 controls sampled from among 5000 cases 

and 5000 controls, an exposure prevalence of 10%, and G-E independence demonstrates that 

exposure-enriched sampling increases power but yields bias in estimation of the interaction 

OR and the marginal effects of G and E (Figure 1; Supplementary Table 1) under the 
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alternative hypothesis. Below, results for each of the proposed sampling schemes are 

presented individually, followed by a direct comparison of the designs.

Scheme 1—Scheme1, with all exposed cases and controls genotyped as well as a random 

sample of unexposed subjects, performs quite well with respect to power across the CC, CO, 

and EB methods when testing only for the interaction as well as joint tests (Figure 1). Over 

80% power can be achieved by using one of the three interaction detection methods 

described for the ORg×e, joint MAg + ORg×e, and joint MAe + ORg×e tests once the true 

ORg×e reaches 1.4. Type I error is tightly controlled across all tests. A small amount of bias 

is present for estimating the marginal effects of G and E, but the estimate of ORg×e remains 

relatively unbiased (Supplementary Table 1).

Scheme 2—In Scheme 2, 50% of 5000 cases and 50% of 5000 controls are genotyped 

according to the following distribution: all exposed cases, a predefined percentage of 

exposed controls, and a random sample of all unexposed subjects to fill the remaining 

samples. Scheme 2 performs increasingly similar to Scheme 1 as the proportion of exposed 

control samples selected for genotyping increases. Thus, only the lowest proportion of 0.5 

that was considered is discussed below. When the sampling proportion of exposed controls 

is set to 0.5, power for detecting the interaction OR and joint effect of G across the range of 

ORg×e values considered is adequate, with the CO method yielding the greatest power at the 

lowest effect size among the three approaches (Figure 1). This scheme is always able to 

detect a marginal effect of E due to the sampling design, even under the null hypothesis of 

H0 : αe = 0 and H0 : βg×e = 0. Type I error for the ORg×e and joint effect of G tests are well-

controlled under this scheme, hovering around the 0.05 level. Bias in ORg×e measurement is 

essentially nonexistent, but bias in MAg measurement is present at a modest level, and the 

downward bias for MAe is quite substantial (Supplementary Table 1).

Scheme 3—Scheme 3 randomly samples 50% of cases and 50% of controls, irrespective 

of exposure status. This scheme yields the lowest power for the interaction and joint tests as 

compared to the other two designs, not achieving 80% power by at least one of the CC, CO, 

or EB methods until the true interaction OR reaches 1.6 (Figure 1). Again, the case-only 

approach is the most powerful method employed in all three ORg×e and joint tests. Type I 

error is steadfast near 0.05 across all tests and detection methods. This scenario remains 

unbiased for detecting the interaction effect and the marginal effects of G and E as expected 

(Supplementary Table 1).

Sampling Design Comparison—In the settings for this scenario with gene-environment 

independence being true, case-only analysis is unbiased under random sampling of cases and 

perfect exposure data. Thus, any source of bias for this G×E detection method can be 

directly attributed to the exposure-enriched sampling scheme. Scheme 1 performs 

consistently the best with respect to power across all 3 methods for the ORg×e and joint G 

tests (Figure 1). Also, Scheme 1 yields low bias in estimating ORg×e because the sampling 

fraction is the same for cases and controls. However, it does yield slightly greater bias in 

estimation of the MAg, and MAe parameters as compared to Scheme 3, which employs 

completely random sampling. MSE is low for ORg×e, MAg, and MAe and comparable across 
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all 3 sampling designs (Supplementary Table 1). While Scheme 2 appears to yield the 

greatest power for detecting the joint effect of E, this result is potentially driven by Type I 

error. Across all scenarios in the base case, the CO approach is the most powerful for 

detecting ORg×e. When the main effect of G is increased to 1.3, power for detecting the 

interaction OR and the joint effect of E increases marginally across all designs. However, as 

expected, power for detecting the joint effect of MAg plus the interaction ORg×e increases 

dramatically. Similarly, when the main effect of E (ORe) is increased to 1.5, power for 

detecting ORg×e and the joint effect of G experience minimal boosts across all schemes but 

the detection rates of E effect increase substantially.

Alternative settings were explored to examine the impact of different parameter values on 

power and bias as compared to the base case. If the prevalence of exposure is increased to 

30%, there is very little separation between the three sampling schemes with respect to 

power or bias for the interaction or joint tests (Supplementary Table 2). The CO approach 

remains the most powerful when the G-E independence assumption still holds, and the 

relative performance of the 3 sampling schemes remains the same. When the sample size is 

decreased to 2000 cases and 2000 controls (prior to genotyping 50% of the subjects), there is 

an overall depression of power across all 3 methods, and the differential across sampling 

schemes is exacerbated (Supplementary Table 3). Gene-environment dependence yields 

greater bias in estimation of ORg×e for CO and EB approaches but does not affect the 

relative performance of the 3 exposure-enriched sampling designs with respect to power 

(Supplementary Tables 4 and 5). The CO approach suffers the most, but this phenomenon 

under violation of gene-environment independence has been well-characterized in the 

literature.

Exposure-biased sampling based on misclassified exposure information

The same exposure-biased sampling schemes were reexamined under the scenario of 

imperfect exposure information across a range of SE and SP values. Here, the base case 

includes 5000 cases and 5000 controls with prevalence of exposure set to 10%, ORg = ORe 

= 1, and scheme 2 sub-sampling rate of exposed control subjects set to 50%. We present 

results for non-differential misclassification in detail, followed by a brief commentary on the 

relative performance of sampling designs when exposure misclassification is differential by 

disease status.

Scheme 1—This design with the strongest exposure-enriched sampling experiences a 

severe depression in power for detecting G×E interaction across the CC, CO, and EB 

methods, especially for the anticipated modest effect sizes (Supplementary Table 6). As 

expected, at each combination of SE and SP, power increases as the true ORg×e increases 

(Supplementary Table 7). The CO approach is the most powerful at all combinations of SE 

and SP, but it achieves only 68% power with SE and SP of 0.8 when the true interaction OR 

is 1.8. For this same effect size and SE-SP configuration, CC only has power of 40%, and it 

is only when SE ≥ 0.6 and SP = 1 that CC achieves power greater than 90%. The EB 

approach yields intermediate power results that reflect its hybrid nature between the CO and 

CC methods. A decrease in SP depresses power to a greater extent than an identical decrease 

in SE. Power for the joint test of a marginal effect of G (or E) and the G×E interaction on 
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disease status is also negatively impacted by MC but is affected to a slightly lesser extent 

than the interaction-only test. Type I error is tightly controlled for all 3 methods of detecting 

G×E interaction across the range of sensitivities, specificities, and true ORg×e values. This is 

to be expected as SP and SE do not make an impact under the null hypothesis under this 

misclassification scheme.

Supplementary Table 7 also demonstrates that the reduction of SE and SP leads to 

increasingly biased estimates of ORg×e and the marginal effect of E (MAe; the marginal 

effect of G, MAg, is minimally biased). Type I error for both joint tests is 0.05 or below 

across all SE, SP, and true ORg×e ranges.

Scheme 2—Scheme 2 also experiences a decrease in power for detecting the stand-alone 

G×E interaction and the joint effect of G plus G×E interaction in the presence of exposure 

MC (Supplementary Table 8). For the interaction effect, the CO analysis still performs best 

in the base case, and the CC and EB approaches are influenced to a greater extent by the 

MC. Power for detecting the joint effect of G and G ×E is less affected by a decrease in SE 

than SP. Type I error is reasonably controlled for the ORg×e test even at low SP and SE 

combinations but becomes slightly inflated for the joint test for G across all 3 methods. The 

joint test for E in this design is dominated by sampling bias reflected in type I error. The 

reduction of SE and SP leads to more positively biased estimates of ORg×e and extreme 

negatively biased estimates of MAe; again, the estimate of MAg is mostly unaffected.

Scheme 3—This design which is blind to exposure status also suffers in terms of power 

when SP and SE of exposure measurement drop below one (Supplementary Table 9). The 

test for interaction is severely impacted, to a greater extent than either of the joint tests for a 

given combination of SE and SP. The power achieved for detecting a true interaction 

parameter of 1.8 is a maximum of 0.58 when SE = SP = 0.8 and all three of the CC, CO, and 

EB approaches are considered (Supplementary Table 9). This scheme yields very tightly 

controlled type 1 error for the interaction and joint G (or E) tests across all 3 methods for 

detecting ORg×e. Bias in ORg×e estimation increases rapidly as SP of exposure measurement 

drops. There is no bias in MAg estimation, but there exists modest bias in MAe, particularly 

as SE and SP approach 0.6 and the true interaction parameter nears 2.0.

Sampling Design Comparison—As SP and SE decrease, power decreases across all 

three tests and methods for ORg×e detection for all 3 sampling designs (Supplementary 

Tables 7–9). Figure 2 visually summarizes the power comparison across sampling designs 

when SP and SE are both set to 0.8 (Supplementary Table 6). The apparent benefit of 

Scheme 1 that was demonstrated in the presence of perfect exposure information does not 

carry over when exposure is misclassified. There is no uniformly most powerful design 

across the range of true interaction parameter values for the interaction-only test (Figure 3). 

For detecting ORg×e, Scheme 1 overtakes Scheme 2 as the most powerful around a true OR 

of 1.4. Scheme 2 performs marginally better than the other two designs across the range of 

true values below 1.4 down to 1.0. For the joint effect of G, Scheme 2 outperforms Scheme 

1 with respect to power at more modest true ORg×e levels. Interestingly, for all 3 scenarios, 

the joint test for G is not always more powerful than the marginal test for G. Among the 

values examined, the joint test for G is more powerful than the marginal test for G only 
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when SP ≥ 0.8 and SE ≥ 0.6 (Schemes 1 and 2) and when SP ≥ 0.6 and SE ≥ 0.8 (Scheme 3). 

While Scheme 2 also appears to yield the greatest power for detecting the joint effect of E, 

this result is likely driven by Type I error. Ignoring Scheme 2, Scheme 1 achieves higher 

power than Scheme 3 regardless of the ORg×e detection method chosen. Across all scenarios 

in the base case, the CO approach has the potential to achieve the most power for detecting 

ORg×e and the joint effect of G (or E).

Again focusing on the scenario where SE = SP = 0.8, type I error is tightly controlled for all 

tests when employing Schemes 1 or 3, with slight inflation for Scheme 1’s joint test for E 

(Supplementary Table 6). Type I error is marginally inflated for the joint G test and 

drastically inflated for the joint E test when Scheme 2 sampling is conducted 

(Supplementary Table 6). Decreasing SP introduces a large bias in ORg×e estimation across 

all three schemes (Supplementary Tables 7–9). However, the bias in MAe is more 

substantial for Scheme 2 than for either or Schemes 1 or 3, which demonstrated relatively 

comparable bias in estimation of this parameter. There is minimal bias in MAg estimation in 

Schemes 1 and 2 and none for Scheme 3. Like the scenario of perfect exposure information, 

MSE for MAg and MAe estimation is minimal across all 3 sampling designs. However, MSE 

for ORg×e is quite severely penalized as SP and SE drop. The impact of gene-environment 

independence violations on the above observations can be visualized in Supplementary 

Figures 1 (ORge=0.8) and 2 (ORge=1.1).

Sampling Design Comparison with Differential Misclassification of Exposure 
(data not shown)—Similar to the scenario of non-differential misclassification with SE = 

0.8 and SP = 0.8 in both cases and controls, the base case with differential misclassification 

(SEcase = 1.0; SPcase = 0.6; SEcontrol = SPcontrol = 0.8) shows a loss of Scheme 1’s power 

advantage. Scheme 3 now performs best with respect to power for detecting the interaction-

only effect. For the joint effect of G, Schemes 1 and 2 achieve comparable power across the 

range of ORg×e parameters considered. Type I error remains tightly controlled for all 

sampling designs across all tests except for the joint test for E. Bias in ORg×e estimation is 

slightly more severe than in the case of non-differential misclassification, but the levels of 

bias are still comparable across sampling designs. The bias in MAe is substantially greater 

for differential as compared to non-differential MC, but Scheme 2 remains the sampling 

design with the most bias. If gene-environment independence is violated (ORge = 0.8) in 

addition to differential MC, the relative performance of sampling schemes remains the same 

as when ORge = 1.0.

DISCUSSION

This simulation study characterizes the benefits and limitations of various exposure-enriched 

sampling designs for detecting G×E interactions or joint genetic (or environmental) effects 

in unmatched case-control studies. It also considers biased sampling in the context of 

exposure misclassification. In the absence of exposure misclassification, a design that 

samples all exposed individuals (Scheme 1) is an optimal approach with respect to power 

maximization while yielding tolerable levels of bias in estimation for both the interaction 

parameter and marginal G (or E) effects. Further, type I error is controlled under this 

enriched sampling scheme. In addition to the test for pure G×E interaction which has been 
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studied in the past, we characterize the impact of different exposure-biased sampling designs 

on simultaneous testing when both a marginal genetic (or environmental) effect and gene-

environment interaction are of interest. These joint tests are particularly useful in that they 

may increase power for detecting the presence of a genetic (or environmental) effect in the 

presence of G ×E interaction. With perfect exposure information, an exposure-enriched 

sampling design further enhances the power for detecting the joint effect of G in presence of 

non-null interaction.

It is important to recognize that these advantages of exposure-enriched sampling and the 

comparison between sampling designs do not hold uniformly under all conditions that vary 

from the base case. First, the power advantages are accentuated when the exposure is 

relatively rare. When the environmental factor is more common, exposure-biased sampling 

designs become less distinguishable from random sampling. Further, exposure 

misclassification is a common problem plaguing epidemiologic studies. Thus, we sought to 

address this practical limitation by examining the impact of exposure MC on the relative 

performance of the three sampling designs. Although Scheme 1 is ideal under perfect 

exposure measurement conditions, in the situation of imperfect information, we demonstrate 

that no single exposure-biased sampling scheme is consistently the optimal design. The 

preferred approach in terms of power depends on the strength of the anticipated interaction 

OR, which method of ORg×e detection is used (CC, CO, or EB), whether interest is in the 

interaction itself or in boosting power to detect any genetic effect that exists (an emphasis on 

the joint test for G and G×E interaction), and whether misclassification is differential or non-

differential.

Although power is a key concern for G ×E interaction studies, bias in parameter estimation 

is another important element when evaluating these statistical methods. Previous work has 

shown that differential exposure MC by disease status does not lead to bias in ORg×e 

estimation when a multiplicative interaction truly exists if exposure SE and SP measures are 

non-differential by genotype and G-E independence is present among controls [13]. We 

show here that bias in estimating the ORg×e parameter does not exist in the presence of 

exposure-enriched sampling when exposure information is perfect. However, in the situation 

of exposure MC (differential and non-differential), bias in ORg×e estimation appears across 

all sampling designs as the true interaction OR increases. With respect to marginal effect 

estimation, there is substantial bias for MAe without exposure misclassification for the 

design with unequal proportions of exposed cases and controls (Scheme 2) and for all 3 

designs when exposure MC occurs. Thus, investigators conducting G ×E interaction studies 

who are considering an exposure-enriched sampling scheme should be cognizant of this 

potential increase in bias when exposure is difficult to measure accurately. MC is a well-

acknowledged problem that is not often considered seriously in the design stage.

This study has several limitations that could be addressed in future work. First, this analysis 

focuses on a single genetic marker. Often, G×E interaction studies are conducted in the 

context of post-GWAS analyses, where a multitude of candidate markers are of interest. As 

multiple testing rapidly increases, the power simulated in this study becomes severely 

penalized. However, even for a single marker, it would be interesting to consider if other 

genetic models or rarer genetic variation make any impact on the relative performance of 
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different sampling schemes. In addition, we do not consider here the misclassification of G 

in addition to imperfect exposure information. This misclassification is possible given that 

genotyping arrays have associated error rates, and other studies have considered the impact 

of such errors [20, 21]. Further studies may investigate in greater depth the influence of both 

G and E MC on the relative performance of different sampling designs. Also, we consider 

only a binary environmental exposure, but many such exposures are ordinal or continuous in 

practice. Furthermore, our focus here is on case-control studies, but it would be useful to 

examine the impact of exposure-biased sampling on other types of study designs.

Although we demonstrate that exposure MC distorts the benefit of using an exposure-biased 

design, the investigator is typically unaware of the extent to which an epidemiologically-

assessed environmental exposure is misclassified. This makes it difficult to differentiate if 

Scheme 1 will have clear advantages. One solution may be to estimate the SE and SP of 

exposure measurement using a validation sub-study [22, 23]. However, even if no validation 

sample exists to estimate SE and SP, we have demonstrated that knowledge of a range for 

the SP and SE parameters can assist in choosing the optimal sampling design for that range. 

When considering the maximization of power, Scheme 2 has benefits over Scheme 1 under 

the scenario of modest non-differential exposure MC when anticipated effect sizes are low. 

On the other hand, Scheme 3 remains consistently unbiased but can severely lack power 

with perfect exposure. However, contrary to expectations, Scheme 3 has the power 

advantage when exposure MC is differential by disease status. In addition, some have 

proposed that correction for the effect of exposure MC is possible [23–25]. Some have 

presented solutions to handle measurement errors in environmental factors under genome-

wide G×E interaction scans. Lobach et al [26] proposed a pseudo- likelihood model in which 

the environmental covariate is non-parametrically modeled and its dependence on disease-

status is also considered. Alternatively, Lobach et al [27] have illustrated a semi-parametric 

Bayesian approach where the potentially skewed inferences on the risk parameters due to 

measurement errors are handled through the symmetric normality prior on the risk 

parameter. While not a replacement for better exposure measurement, it would be 

worthwhile to learn if these correct ion methods restore the advantages of exposure-biased 

sampling that are visible with perfect exposure information.

Overall, results from this study provide rigorous support for a method of prioritizing 

subjects for genotyping. Overall, exposure enrichment appears to be a beneficial strategy for 

maximizing available resources for G×E interaction detection under the scenario of perfect 

exposure information. Genetic epidemiology studies are expensive to design and implement, 

so this strategy that boosts power on a fixed budget is quite advantageous. However, those 

conducting G×E studies should be careful to consider exposure measurement MC properties 

and the prevalence of exposure when choosing an ideal sampling scheme and method for 

G×E interaction detection. Finally, it is important to recognize that no matter how powerful 

the test, any G×E interactions that are identified require validation and replication, which 

has proven to be challenging due to differences in the distribution of both genetic and 

environmental exposure across populations.
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NOTATION

CC case-control

CO case-only

EB empirical Bayes

G genetic variant

E environmental exposure

D disease/outcome status

αg marginal log-odds ratio associated with the genetic factor

MAg marginal genetic association

αe marginal log-odds ratio associated with the environmental factor

MAe marginal environmental association

ORge odds ratio for the association between the genetic and environmental variables in 

controls

βg main effect log-odds ratio associated with the genetic factor

ORg exp(βg)

βe main effect log-odds ratio associated with the environmental factor

ORe exp(βe)

βg×e gene by environment interaction log-odds ratio

ORg×e exp(βg×e)
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Figure 1. 
Power comparison of three exposure-biased sampling designs under the base case with 

perfect exposure measurement. Each row represents one of three tests: G×E interaction 

(ORg×e), joint marginal G and G ×E interaction (MAg + ORg×e), or joint marginal E and 

G×E interaction (MAe + ORg×e). Each column designates one of three different approaches 

for ORg×e (CC = case-control, CO = case-only, EB = Empirical Bayes). Based on 5000 

simulated datasets, 2500 cases and 2500 controls, genotype information on 1 marker, ORg = 

ORe = 1, an exposed control subsampling rate of 0.5 for Scheme 2, and gene-environment 

independence. Scheme 1: Genotype 50% of cases and 50% of controls including all E = 1 

and a random sample of E = 0. Scheme 2: Genotype 50% of cases and 50% of controls 

including all exposed cases, 50% of exposed controls, and a random sample of E = 0. 

Scheme 3: Randomly sample 50% of cases and 50% of controls for genotyping, irrespective 

of exposure status.
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Figure 2. 
Power comparison of three exposure-biased sampling designs under the base case with 

exposure misclassification (sensitivity = 0.8; specificity = 0.8). Each row represents one of 

three tests: G ×E interaction (ORg×e), joint marginal G and G×E interaction (MAg + ORg×e), 

or joint marginal E and G ×E interaction (MAe + ORg×e). Each column designates one of 

three different approaches for estimating the G ×E interaction parameter (CC = case-control, 

CO = case-only, EB = Empirical Bayes). Based on 5000 simulated datasets, 2500 cases and 

2500 controls, genotype information on 1 marker, ORg = ORe = 1, an exposed control 

subsampling rate of 0.5 for Scheme 2, and gene-environment independence. Scheme 1: 

Genotype 50% of cases and 50% of controls including all E = 1 and a random sample of E = 

0. Scheme 2: Genotype 50% of cases and 50% of controls including all exposed cases, 50% 

of exposed controls, and a random sample of E = 0. Scheme 3: Randomly sample 50% of 

cases and 50% of controls for genotyping, irrespective of exposure status.
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Figure 3. 
Sampling scheme preference with respect to power maximization across different specificity 

(SP) and sensitivity (SE) combinations. The Empirical Bayes method was used to estimate 

ORg×e. Based on 5000 simulated datasets, 2500 cases and 2500 controls, genotype 

information on 1 marker, gene-environment independence, ORg = ORe = 1.0, and an 

exposed control subsampling rate of 0.5 for Scheme 2. Scheme 1: Genotype 50% of cases 

and 50% of controls including all E = 1 and a random sample of E = 0. Scheme 2: Genotype 

50% of cases and 50% of controls including all exposed cases, 50% of exposed controls, and 

a random sample of E = 0. Scheme 3: Randomly sample 50% of cases and 50% of controls 

for genotyping, irrespective of exposure status.
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