Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Feb 28;92(5):1575–1579. doi: 10.1073/pnas.92.5.1575

Delineation of the minimal hepatitis B surface antigen-specific B- and T-cell epitope contained within an anti-idiotype-derived pentadecapeptide.

M Rajadhyaksha 1, Y Thanavala 1
PMCID: PMC42562  PMID: 7878021

Abstract

A pentadecapeptide (2F10 peptide) is capable of mimicking the group-specific "a" determinant of human hepatitis B surface antigen (HBsAg) at both the B- and the T-cell level. This peptide represents a sequence on the heavy-chain hypervariable region of a monoclonal "internal image" anti-idiotype (anti-id 2F10) that has partial sequence homology to the "a" determinant epitope of HBsAg. To identify the exact location of the B- and T-cell epitopes, four truncated peptides (peptides 1-4) were synthesized. Using these truncated peptides we have identified the minimal sequence (octapeptide 3) that represents a functional B- and T-cell epitope capable of generating HBsAg-specific antibodies and T cells. This to our knowledge represents the first example of a short peptide sequence functioning as both a B- and a T-cell epitope. We have also identified another T-cell epitope (2F10 peptide 4), but this peptide fails to elicit HBsAg-specific B cells and T cells. Thus, the 2F10 pentadecapeptide is composed of two nonoverlapping, functional T-cell epitopes only one of which is HBsAg specific. Since peptide 3 represents the complementarity-determining region and peptide 4 represents the framework region of the anti-id 2F10, we conclude that an 8-aa sequence from the complementarity-determining region of anti-id 2F10 is sufficient for the molecular mimicry of HBsAg. Finally, our experiments suggest that sequences flanking the minimal immunodominant epitope exert a considerable influence on the nature of antigenic processing that occurs and the resultant T-cell reactivity elicited.

Full text

PDF
1575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett B. C., Hartlmayr I., Graham C. M., Thomas D. B. Single amino acid residues in a synthetic peptide of influenza haemagglutinin, HA 1 177-199, distinguish I-Ad- and I-Ed-restricted T-cell epitopes. Immunology. 1990 May;70(1):48–54. [PMC free article] [PubMed] [Google Scholar]
  2. Berzofsky J. A., Brett S. J., Streicher H. Z., Takahashi H. Antigen processing for presentation to T lymphocytes: function, mechanisms, and implications for the T-cell repertoire. Immunol Rev. 1988 Dec;106:5–31. doi: 10.1111/j.1600-065x.1988.tb00771.x. [DOI] [PubMed] [Google Scholar]
  3. Bhatnagar P. K., Papas E., Blum H. E., Milich D. R., Nitecki D., Karels M. J., Vyas G. N. Immune response to synthetic peptide analogues of hepatitis B surface antigen specific for the a determinant. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4400–4404. doi: 10.1073/pnas.79.14.4400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briggs S., Price M. R., Tendler S. J. Fine specificity of antibody recognition of carcinoma-associated epithelial mucins: antibody binding to synthetic peptide epitopes. Eur J Cancer. 1993;29A(2):230–237. doi: 10.1016/0959-8049(93)90181-e. [DOI] [PubMed] [Google Scholar]
  5. Buus S., Sette A., Grey H. M. The interaction between protein-derived immunogenic peptides and Ia. Immunol Rev. 1987 Aug;98:115–141. doi: 10.1111/j.1600-065x.1987.tb00522.x. [DOI] [PubMed] [Google Scholar]
  6. Cox J. H., Ivanyi J., Young D. B., Lamb J. R., Syred A. D., Francis M. J. Orientation of epitopes influences the immunogenicity of synthetic peptide dimers. Eur J Immunol. 1988 Dec;18(12):2015–2019. doi: 10.1002/eji.1830181222. [DOI] [PubMed] [Google Scholar]
  7. Graham C. M., Barnett B. C., Hartlmayr I., Burt D. S., Faulkes R., Skehel J. J., Thomas D. B. The structural requirements for class II (I-Ad)-restricted T cell recognition of influenza hemagglutinin: B cell epitopes define T cell epitopes. Eur J Immunol. 1989 Mar;19(3):523–528. doi: 10.1002/eji.1830190317. [DOI] [PubMed] [Google Scholar]
  8. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  9. Kovac Z., Schwartz R. H. The molecular basis of the requirement for antigen processing of pigeon cytochrome c prior to T cell activation. J Immunol. 1985 May;134(5):3233–3240. [PubMed] [Google Scholar]
  10. Leclerc C., Przewlocki G., Schutze M. P., Chedid L. A synthetic vaccine constructed by copolymerization of B and T cell determinants. Eur J Immunol. 1987 Feb;17(2):269–273. doi: 10.1002/eji.1830170218. [DOI] [PubMed] [Google Scholar]
  11. Milich D. R., Hughes J. L., McLachlan A., Thornton G. B., Moriarty A. Hepatitis B synthetic immunogen comprised of nucleocapsid T-cell sites and an envelope B-cell epitope. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1610–1614. doi: 10.1073/pnas.85.5.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  13. Neri P., Corti M., Lozzi L., Valensin P. E. Structure and antigenic activity of rubella E1 glycoprotein synthetic peptides. Biopolymers. 1991 May;31(6):631–635. doi: 10.1002/bip.360310607. [DOI] [PubMed] [Google Scholar]
  14. Nisonoff A., Lamoyi E. Implications of the presence of an internal image of the antigen in anti-idiotypic antibodies: possible application to vaccine production. Clin Immunol Immunopathol. 1981 Dec;21(3):397–406. doi: 10.1016/0090-1229(81)90228-2. [DOI] [PubMed] [Google Scholar]
  15. Partidos C. D., Steward M. W. The effects of a flanking sequence on the immune response to a B and a T cell epitope from the fusion protein of measles virus. J Gen Virol. 1992 Aug;73(Pt 8):1987–1994. doi: 10.1099/0022-1317-73-8-1987. [DOI] [PubMed] [Google Scholar]
  16. Pride M. W., Shi H., Anchin J. M., Linthicum D. S., LoVerde P. T., Thakur A., Thanavala Y. Molecular mimicry of hepatitis B surface antigen by an anti-idiotype-derived synthetic peptide. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11900–11904. doi: 10.1073/pnas.89.24.11900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pride M. W., Thakur A., Thanavala Y. Mimicry of the a determinant of hepatitis B surface antigen by an antiidiotypic antibody. I. Evaluation in hepatitis B surface antigen responder and nonresponder strains. J Exp Med. 1993 Jan 1;177(1):127–134. doi: 10.1084/jem.177.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pride M. W., Thanavala Y. M., Strick N., Houghten R. A., Neurath A. R. Toleration of amino acid substitutions within hepatitis B virus envelope protein epitopes established by peptide replacement set analysis. II. Region S(122-136). Pept Res. 1992 Jul-Aug;5(4):217–226. [PubMed] [Google Scholar]
  19. Thanavala Y. M., Bond A., Tedder R., Hay F. C., Roitt I. M. Monoclonal 'internal image' anti-idiotypic antibodies of hepatitis B surface antigen. Immunology. 1985 Jun;55(2):197–204. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES