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Abstract

The current increase in Gene Ontology (GO) annotations of proteins in the existing

genome databases and their use in different analyses have fostered the

improvement of several biomedical and biological applications. To integrate this

functional data into different analyses, several protein functional similarity

measures based on GO term information content (IC) have been proposed and

evaluated, especially in the context of annotation-based measures. In the case of

topology-based measures, each approach was set with a specific functional

similarity measure depending on its conception and applications for which it was

designed. However, it is not clear whether a specific functional similarity measure

associated with a given approach is the most appropriate, given a biological data

set or an application, i.e., achieving the best performance compared to other

functional similarity measures for the biological application under consideration. We

show that, in general, a specific functional similarity measure often used with a

given term IC or term semantic similarity approach is not always the best for

different biological data and applications. We have conducted a performance

evaluation of a number of different functional similarity measures using different

types of biological data in order to infer the best functional similarity measure for

each different term IC and semantic similarity approach. The comparisons of

different protein functional similarity measures should help researchers choose the

most appropriate measure for the biological application under consideration.
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Introduction

The advancement of high-throughput biology technologies has resulted in a large

increase in functional data, eliciting the need for relevant tools that help analyze

and extract information from these data. The Gene Ontology (GO) [1] is an

established standard for the functional annotation of proteins that successfully

provides structured and controlled, organism-independent vocabularies to

describe gene functions and a well adapted platform to computationally process

data at the functional level [2]. Currently, several proteins are already annotated

with GO terms in the existing biological databases [3–6], thus enabling protein

comparisons on the basis of their GO annotations. Even though the high

proportion (more than 98%) of these annotations are inferred electronically

(mostly based on transitive mappings from InterPro2GO, SPKW2GO, EC2GO,

SPSL2GO, HAMAP2GO and UniPathway2GO), with IEA (Inferred from

Electronic Annotation) as the GO evidence code (http://www.geneontology.org/

GO.evidence.shtml), these annotations are becoming more and more accurate

with an increased level of confidence as the different mappings are manually

curated [7].

Several functional similarity measures that quantify similarity between proteins

based on their GO annotations have been introduced and successfully applied in

many biomedical and biological applications [2, 8]. These measures allow the

integration of the biological knowledge contained in the GO structure [9], and

have contributed to the improvement of biological analyses [2]. These measures

are derived either directly from the GO term information content (IC), a

numerical value scoring the description and specificity of a GO term using its

position in the GO directed acyclic graph (DAG), or from GO term semantic

similarity scores conveying information shared by two GO terms in the GO DAG

[8]. It is worth mentioning that several term semantic similarity models have been

introduced and a detailed review can be found in [10, 11]. In this study, we are

only focusing on term semantic similarity models that are based on term

information content, known as node-based models [8, 11]. In order to quantify

the information content (IC) value of a given term, several approaches have also

been proposed, each depending on how the concept ‘specificity’ is conceived in

the context of the GO DAG structure. These approaches are partitioned into two

main families, namely annotation- and topology families, and have been largely

used to compare GO terms in the GO DAG and proteins at the functional level

using their GO annotations.

The annotation family uses GO term statistics in the corpus under

consideration. Despite the issue of protein annotation dependence (scores are

based on annotation, which may be unbalanced, biased and incomplete), which

leads to shallow annotation problem [10] that affects semantic similarity scores

produced [12], this family has been used in several applications. Several

approaches for comparing GO terms have been tested in the context of the GO

DAG, the most popular node-based semantic similarity approaches include the

Resnik [13], Lin [14] and Jiang & Conrath [15] approaches, which were initially
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suggested in the context of the WordNet and adapted to the GO DAG [16].

Recently, the Nunivers approach [8] has been introduced and different

enhancements, such as Disjunct Common Ancestor (DCA) [17], relevance

similarity [18], information coefficient similarity [19] and eXtended GraSM

(XGraSM) [8] model were proposed to improve the existing approaches for GO

term comparison. Note that a random walks enhancement [20] was proposed to

improve any of the existing similarity measures by modeling inherent uncertainty

from the incomplete knowledge of gene annotations and ontology structure.

Functional similarity measures induced by GO term semantic similarity

approaches include average (Avg) [16], maximum (Max) [21], average of the best

matches (ABM) [2], and best match average (BMA) [9], and those using the GO

term information content directly, namely SimGIC [22], SimUI [23], SimUIC and

SimDIC [2, 9].

The topology-based family, which only uses the structure of the GO DAG in the

computation of the IC values, has been proposed to correct for the effect of

annotation dependence and provide an effective way of measuring functional

similarity between proteins based on their GO annotations. The earliest type of

topology-based family, namely edge- or path-based semantic similarity measures,

suffers from a serious drawback of producing uniform scores for terms at the

same level of the hierarchy under consideration as these scores are obtained using

path lengths between terms [8]. These measures ignore the position characteristics

of terms in the hierarchy and a solution based on differently weighting edges was

suggested, but failed to completely resolve the problem [9, 11]. In this study, we

are only considering the node-based approaches as pointed out previously, which

use the concept of IC score to compare the properties of the terms themselves and

relations to their ancestors or descendants, and taking into account term position

characteristics [9]. These measures are referred to as IC-based approaches and

overcome the main issue of edge- or path-based approaches, producing a fixed

and well defined IC score for a given GO term, independent of the corpus or

source under consideration. Each topology-based approach provides its specific

semantic similarity measure for comparing GO terms, and functional similarity

measure for scoring protein closeness. However, none of the existing studies has

attempted to evaluate the effectiveness of functional similarity measures proposed

in the context of the annotation-based approaches when applied to the topology-

based approaches. Such a study is important to determine the most appropriate

functional similarity measure for each approach given the biological application.

Here, we investigate the behaviour of several different IC-based functional

similarity measures suggested in the context of annotation-based and topology-

based approaches, using different biological data, including protein-protein

interaction networks, protein domain and other functional data. Each measure

performs differently for different applications [2] and interprets the DAG

structure of the GO differently [8, 9]. Thus, one needs to understand these

differences in order to choose an effective measure for analysis of a dataset, which

can be cumbersome and tedious for someone who just needs a quick GO semantic

similarity measure for their biological question. This suggests that the quantitative
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comparative study of all existing GO semantic similarity measures and approaches

is necessary to enable one to quickly identify the most effective measure, among

the several semantic similarity tools available, for their application. This study

provides a mapping between a term IC or term semantic similarity approach and

its corresponding most ‘appropriate’ functional similarity measure, given a

particular biological application.

Materials and Methods

To evaluate the existing IC-based functional similarity measures which have been

used in the context of biomedical and bioinformatics applications, we use

different functional data, including protein sequence, Pfam domain and enzyme

commission (EC) similarity data, human gene expression (microarray) and

protein-protein interaction (PPI) datasets. All these data represent some form of

‘grouping’ of proteins that should be functionally related and thus provide useful

tests for GO similarity measures. The complete set of GO data and protein-GO

term associations were extracted from the GO and GOA databases, respectively,

released on the 15th April, 2014. We have considered three topology-based

approaches, namely the GO-universal metric proposed by Mazandu and Mulder

[9], and the methods of Wang et al. [24] and Zhang et al. [25]. In general, the

information content (IC) or semantic value of a given term t is computed as

follows:

IC tð Þ~{ ln p(t)ð Þ ð1Þ

where p(t) is the relative frequency of occurrence of the term t in the protein

annotation dataset under consideration [16], which is the D-value [25] and

topological position characteristic of t in the context of annotation family, the

Zhang and GO-universal approaches, respectively. Note that the Zhang et al.

model for computing the IC score follows the Seco et al. approach [26] in its

conception and it is adapted to the context of the GO-DAG. For the Wang et al.

method, the IC score of a given term t is the sum of S-value of the term t and

those of all its ancestors [24]. The term semantic similarity score SGO s,tð Þ between

GO terms s and t can be retrieved from the following formula [8]:

SGO s,tð Þ~ m As\Atð Þ
m As|Atð Þ ð2Þ

where Ax~A|fxg and A denotes the set of ancestors of the term

x, m As\Atð Þ§0 and m As|Atð Þw0 are measures of the commonality between

and of the description of As and At, respectively. The formula 2 is a unified

formula of all term semantic similarity models based on IC or SV values of terms.

Note that other term semantic similarity models that do not use only or directly

IC values were proposed. These include the Hybrid Relative Specificity Similarity

(HRSS) method [27], which adapts both node- and edge-based concepts, and the

Shortest Semantic Differentiation Distance (SSDD), which assesses the distance
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between terms in the GO DAG in order to measure their semantic similarity score

[28], and these methods are beyond the scope of this study.

Measuring protein similarity at the functional level

Several measures have been proposed for estimating functional similarity scores in

the context of annotation-based IC approaches to facilitate protein comparisons

at the functional level. These functional similarity scores are obtained using

statistical measures of closeness, such as average (Avg), maximum (Max), best-

match average (BMA) and averaging all the best matches (ABM). The average and

maximum measures are computed as follows:

Avg p,qð Þ~ 1
n|m

X
s[TX

p , t[TX
q

SGO s,tð Þ ð3Þ

and

Max p,qð Þ~ max fSGO s,tð Þ : s[TX
p and t[TX

q g ð4Þ

where TX
r is a set of GO terms in X representing the molecular function (MF),

biological process (BP) or cellular component (CC) ontology annotating a given

protein r and n~ TX
p

��� ��� and m~ TX
q

��� ��� are the number of GO terms in these sets,

and SGO s,tð Þ is the semantic similarity score.

The ABM [2] for two annotated proteins is the mean of best matches of GO

terms of each protein against the other, given by the following formula:

ABM p,qð Þ~ 1
nzm

X
t[TX

p

SGO t,TX
q

� �
z
X
t[TX

q

SGO t,TX
p

� �0
B@

1
CA ð5Þ

with SGO s,TX
r

� �
~ maxfSGO s,tð Þ : t[TX

r g. The Best Match Average (BMA) [2, 9]

for two annotated proteins p and q is the mean of the following two values:

average of best matches of GO terms annotated to protein p against those

annotated to protein q, and average of best matches of GO terms annotated to

protein q against those annotated to protein p, given by the following formula:

BMA p,qð Þ~ 1
2

1
n

X
t[TX

p

SGO t,TX
q

� �
z

1
m

X
t[TX

q

SGO t,TX
p

� �0
B@

1
CA ð6Þ

Note that the four functional similarity measures above require GO term semantic

similarity scores, and are referred to as IC-based non-direct term or term semantic

similarity- or pair-wise term-based measures [2]. For the topology-based family,

each approach has been suggested with its functional similarity measure. The GO-

universal metric [9] uses BMA, and ABM was used in the Wang et al. approach
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[24]. The Zhang et al. measure [25] is a context dependent approach and authors

initially suggested using the approach proposed by Lord et al. [16], which is the

Avg scheme for measuring functional similarity scores between proteins.

In the context of the annotation-based family, it has been observed that

measuring the semantic similarity of two GO terms based only on the most

informative common ancestor terms cannot discern the semantic contributions of

the ancestor terms to these two specific terms and thus may negatively impact

functional similarity scores. The GraSM and XGraSM approaches have been

proposed and shown to perform better than those using only the most

informative common ancestors (MICA) strategy [8]. This argument has been

confirmed through the performance evaluation of the SimGIC measure suggested

by Pesquita et al. [22], which uses a Jaccard index weighted by IC of terms, thus

incorporating the features of all ancestors of the terms. The SimGIC measure

computes the functional similarity score between two proteins p and q as follows:

SimGIC p,qð Þ~

P
x[AX

p \AX
q

IC xð Þ

P
x[AX

p |AX
q

IC xð Þ ð7Þ

where IC(x) is the information content value of the term x [8] and AX
r a set of GO

terms together with their ancestors in X representing the ontology (MF, BP or

CC) annotating a given protein r.

Using the observation above, we proposed two other possible functional

similarity schemes [2, 9], using Dice (Czekanowski or Lin like measure) and

universal indexes, referred to as SimDIC and SimUIC, respectively, and given by

the following formulae:

SimDIC p,qð Þ~

2|
P

x[AX
p \AX

q

IC xð Þ

P
x[AX

p

IC xð Þz
P

x[AX
q

IC xð Þ ð8Þ

SimUIC p,qð Þ~

P
x[AX

p \AX
q

IC xð Þ

max
P

x[AX
p

IC xð Þ,
P

x[AX
q

IC xð Þ

8<
:

9=
;

ð9Þ

Note that this study provides the first evaluation of these SimDIC and SimUIC

measures and their comparison to other functional similarity measures. Unlike

the Avg, Max, ABM and BMA measures, in which semantic similarity between GO

terms is required in the computation of functional similarity scores, the SimGIC,

SimDIC and SimUIC measures use the IC of terms directly and they are referred

to as IC-based direct term measures. Note that there exist other functional
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similarity models, such as shortest-path graph kernel (spgk) [29], using the

intrinsic topology of the GO DAG for directly estimating protein functional

similarity scores without computing the IC scores of GO terms or semantic

similarity scores between terms. Here, we are only focusing on protein functional

similarity models that use the IC of terms.

Assessing different functional similarity measures

We systematically assess different functional similarity measures on different types

of functional data, including sequence similarity, Pfam domain and Enzyme

Commission (EC) similarity data on a selected set of proteins, and human

protein-protein interaction (PPI) and co-expression networks. These datasets

represent different types of biological data used to evaluate GO semantic similarity

measures [10]. Depending on these biological data, different performance

measures are used to elucidate the ‘best’ semantic similarity measure or approach.

Correlation with EC, Pfam and sequence similarity

Generally, the comparison of different semantic similarity measures is performed

using Pearson’s correlation measures with sequence, Pfam domain and Enzyme

Commission (EC) similarity data. This correlation provides an indication of how

effective the functional similarity measure is in capturing sequence, Pfam, and EC

similarity. This means that a measure with a higher correlation is better, since it

captures these similarities well and it is likely to be an unbiased measure. To

compare different measures, we ran the Collaborative Evaluation of Semantic

Similarity Measures (CESSM) online tool [30] at http://xldb.di.fc.ul.pt/tools/

cessm/ for BP and MF using a dataset of selected proteins with known

relationships downloaded from the CESSM website.

Performance evaluation using a PPI network

Different measures were assessed in terms of their ability to capture functional

coherence in a human PPI network based on how interacting proteins are

functionally related to each other. Human PPI datasets were downloaded from

several different PPI databases, including the IntAct, DIP, BIND, MIPS, MINT

and BioGRID databases, and integrated into a single network in which only

interactions predicted by at least two different approaches and found in the

STRING dataset are considered, to reduce the impact of false positives. This

produced a human PPI network with 6031 interactions from which a total of 5366

and 5580 interactions with both interacting partners were among 29844 and

31683 proteins annotated with respect to the GO BP and CC ontologies,

respectively. These interaction datasets are available in the supplementary data

(see Tables S1, S2 and S3 in File S1) and can also be downloaded from the CBIO

website at http://web.cbio.uct.ac.za/ITGOM/funcsimdata.

The set of these 5366 and 5580 interactions are considered as a positive set,

while the negative set consists of the same number of interactions randomly
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selected among annotated human proteins pairs. This is consistent as the chance

of randomly selecting a detected PPI is very small (less than 0.0012%). We only

considered proteins annotated with BP and CC terms in the network produced

since two proteins that interact physically are more likely to be involved in similar

biological processes or localized in the same cellular component, but there is no

guarantee that they share molecular functions [9]. The classification power of

different functional similarity measures was tested using Receiver Operator

Characteristic (ROC) curve analysis, which assesses the Area Under the Curve

(AUC), plotting the true positive rate or sensitivity vs the false positive rate or 1-

specificity. This AUC value is used as a measure of discriminative power and a

realistic classifier must have an AUC larger than 0.5.

Clustering power on a gene expression dataset

We use the human co-expression network retrieved from the Bossi et al. [31] and

the STRING human network. We retrieved 7228 co-expressed protein pairs of

which a total of 6995 pairs have both proteins found among 29844 human

proteins annotated with BP terms (see Tables S4 and S5 in File S1, or go to http://

web.cbio.uct.ac.za/ITGOM/funcsimdata). We are only considering the BP

ontology as co-expressed genes are more likely to share common processes and

may at least belong to the same pathway or contribute to a similar biological

process [32]. We partitioned these co-expressed proteins into different clusters

using the Blondel et al. method [33] and the corresponding partition is considered

to be a ground truth, i.e., the true partition of the actual co-expressed network.

Thereafter, the interactions from the co-expressed network are weighted using

functional similarity scores and proteins clustered using the same clustering

method. We assessed the clustering power of a given functional similarity measure

by comparing this clustering result to the ground truth using Normalized Mutual

Information and Rank Index of pairwise cluster memberships [34].

Let n be the number of proteins in the network with the ground truth (g)

having p partitions, each with ng
i proteins, i~1, . . . ,p, and clustering result (c)

with q partitions, each with nc
j proteins, j~1, . . . ,q. The entropy H rd

� �
of a given

clustering (d) having r partitions, each with nd
‘ proteins, ‘~1, . . . ,r, is given by:

H rd
� �

~{
Xr

‘~1

nd
‘

n
log

nd
‘

n

� �
ð10Þ

and the mutual information I pg ,qcð Þ between the two partitions is computed as

follows:

I pg ,qcð Þ~
Xp

i~1

Xq

j~1

nij

n
log

nij
n

n
g
i

n

nc
j

n

0
@

1
A ð11Þ

where nij is the number of common proteins between the ith cluster in the ground

truth and the jth cluster in the clustering result. This implies that the normalized
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mutual information NI pg ,qcð Þ is given by:

NI pg ,qcð Þ~ 2|I pg ,qcð Þ
H pgð ÞzH qcð Þ~{

2|
Pp
i~1

Pq
j~1

nij log
n|nij

n
g
i |nc

j

 !

Pp
i~1

ng
i log

n
g
i

n

� �� �
z

Pq
j~1

nc
j log

nc
j

n

� � ! ð12Þ

Finally, the Rank Index RI pg ,qcð Þ of pairwise cluster memberships is computed as

follows:

RI pg ,qcð Þ~ 2| azbð Þ
n(n{1)

ð13Þ

where a is the number of pairs of proteins belonging to the same cluster in the

ground truth and clustering result, and b the number of protein pairs belonging to

different clusters in the ground truth and clustering result. The functional

similarity measure providing higher normalized mutual information and accuracy

scores is considered to be the ‘best’ one.

Results and Discussion

Previous work on semantic similarity measures has suggested that the appropriate

use of functional similarity measures depends on the biological applications and

different measures perform differently for different applications [2]. Each

semantic similarity approach or functional measure was defined for a specific

purpose with a specific application in mind, especially in the context of topology-

based approaches, where each approach was set with its specific functional

similarity measure, depending on its conception and the applications for which it

was designed. These applications include, protein-protein interaction assessments,

protein function prediction, protein clustering, etc. and results were often tested

against the expectations of the performance scores. Here, we assess the

performance of different measures on different biological applications or data,

including EC, Pfam domain and sequence similarity on a selected set of protein

pairs, and human PPI and co-expression network or expression data, in order to

elucidate the most ‘appropriate’ measures for different approaches and biological

applications. The summary of different approaches that are combined to

construct 57 different IC-based functional similarity measures used is provided in

Table 1. Note that the Jiang and Conrath approach is not used explicitly since it

has been shown to be a particular case of the Lin approach [8].

Using EC, Pfam and Sequence Similarity data

We used a dataset of proteins with known relationships downloaded from the

CESSM online tool. The GO annotations of different proteins in the dataset were
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retrieved from the GOA-UniProtKB dataset. The CESSM tool has made the

comparison of different functional similarity measures using Pearson’s correlation

measures with sequence, Pfam domain and EC similarity possible. We ran the

CESSM online tool and results are shown in Figure 1 for the BP, MF and CC

ontologies. Except for the Resnik approach, these results show that in general

there is a good correlation between EC, Pfam domain, sequence similarity and

functional similarity measures for BP, MF and CC, especially when using

measures other than Max and Avg. For EC in particular, the MF ontology tends to

display higher levels of correlation. This is unsurprising as EC numbers are very

specific for a particular function, so there should be good correlation in MF terms.

Recently, it was shown that the normalization model and correction factors

have an impact on the performance of functional similarity measures [8]. It is

likely that the effect of the normalization factor is a serious drawback of the

Resnik approach as this has an impact on its performance and makes it

inconsistent with the hierarchy under consideration. This is confirmed by looking

at the performance of the Nunivers [8] and Lin [14] approaches (see Table 2),

which follow the general pattern, whereas the Resnik approach suggests the Max

measure for the MF ontology. In general, BMA and ABM measures provide the

best performance and they perform equally in most cases. On the other hand, the

Table 1. Summary of different IC-based functional similarity and term semantic similarity measures.

Measure Model Approach Reference

Functional similarity IC-based direct term SimGIC [22]

SimDIC [2]

SimUIC [2]

SimUI [23]

Pair-wise term or IC-based non direct term Avg [16]

Max [21]

BMA [22]

ABM [24]

Term Semantic Similarity Annotation-based Resnik [13]

XGraSM-Resnik [8]

Nunivers [8]

XGraSM-Nunivers [8]

Lin [14]

XGraSM-Lin [8]

Li et al. [19]

Relevance [18]

Topology-based GO-Univeral [9]

Wang et al. [24]

Zhang et al. [25]

These measures were used to built 57 different functional similarity measures that are assessed using different types of biological data, including Enzyme
Commission (EC), Pfam domain, Sequence Similarity (Seq. Sim.), Protein-Protein Interaction (PPI) and Co-expression Network (CN) or Gene Expression
(microarray) data.

doi:10.1371/journal.pone.0113859.t001
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use of an efficient correction factor may improve a given approach or measure. If

the information coefficient and relevance introduced by Li et al. [19] and

Schlicker et al. [18], respectively, which use the IC value of the most informative

common ancestor between terms, does not significantly improve the performance

of the Lin approach, then one can consider all common informative ancestors in

the correction factor to enhance the performance of the approach [8].

As displayed in Figure 1 and Table 2, applying the XGraSM correction factor to

the Resnik, Lin and Nunivers approaches significantly improved their perfor-

mance. Thus, including common informative ancestors in the conception of a

semantic similarity measure improves its performance, especially for approaches

that include only the feature of child terms in the computation of IC. This is the

case for the annotation-based, Zhang et al. and Wang et al. approaches, where the

SimGIC measure shows an overall best performance. Note that this is not the case

for the GO-universal metric, in which, the BMA measure performs better than

other measures, and it also provides better performance for the Wang et approach

when applied to EC data, even though the Wang et al. approach initially used the

ABM measure. It follows that in the context of the annotation-based family, if one

chooses to use the IC-based non-direct measures, it is advantageous to use the

Figure 1. Performance evaluation in terms of Pearson’s correlation values. These different Pearson’s correlation values with Enzyme Commission
(EC), Pfam and Sequence similarity are obtained from the CESSM online tool. For x-axis labels, the prefixes R, N, L, Li, S, X, A, Z, W, and U represent the
approaches and stand for Resnik, Nunivers, Lin, Li, Relevance, XGraSM, Annotation-based, Zhang, Wang and GO-universal, respectively. The suffixes
GIC, UIC and DIC represent SimGIC, SimUIC and SimDIC measures, respectively. In cases where the prefix X is used, it is immediately followed by the
approach prefix. Refer to Table 2 and 3 for the description of these different measures.

doi:10.1371/journal.pone.0113859.g001
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Table 2. Pearson’s correlation values of different measures.

Approach Measure Molecular Function (MF) Cellular Component (CC) Biological Process (BP)

EC PFAM Seq Sim EC PFAM Seq Sim EC PFAM Seq Sim

R Avg (RAvg) 0.37532 0.38905 0.36071 0.28501 0.41217 0.31369 0.21121 0.25342 0.21123

ABM (RABM) 0.53917 0.46098 0.50052 0.32731 0.45986 0.54093 0.34236 0.31019 0.46918

BMA (RBMA) 0.54787 0.46651 0.50675 0.32117 0.46045 0.52959 0.34478 0.30893 0.46692

Max (RMax) 0.55531 0.52123 0.54861 0.27177 0.39069 0.51783 0.30957 0.30944 0.40344

XGraSM-Avg (XRAvg) 0.44532 0.49719 0.45670 0.30590 0.41945 0.40519 0.27856 0.32978 0.35064

XGraSM-ABM
(XRABM)

0.62228 0.53063 0.43396 0.35963 0.47602 0.64791 0.48034 0.51387 0.71515

XGraSM-BMA
(XRBMA)

0.63390 0.52562 0.42832 0.35322 0.46763 0.61850 0.49735 0.51565 0.71682

XGraSM-Max (XRMax) 0.31849 0.21078 0.09714 0.18628 0.24576 0.23365 0.36543 0.23418 0.12051

N Avg (NAvg) 0.40437 0.40605 0.30088 0.28388 0.41696 0.32773 0.24504 0.29716 0.24824

ABM (NABM) 0.52989 0.42083 0.32264 0.31967 0.45185 0.53365 0.40960 0.40157 0.53209

BMA (NBMA) 0.53717 0.41589 0.31800 0.31157 0.44377 0.51035 0.41764 0.39956 0.52862

Max (NMax) 0.20693 0.18493 0.07917 0.15753 0.23744 0.21049 0.26021 0.21171 0.10015

XGraSM-Avg (XNAvg) 0.38562 0.42789 0.34098 0.29236 0.41989 0.36626 0.26348 0.30804 0.30011

XGraSM-ABM
(XNABM)

0.56160 0.48742 0.39713 0.34711 0.47237 0.61938 0.45603 0.46176 0.65137

XGraSM-BMA
(XNBMA)

0.57036 0.48224 0.39241 0.33988 0.46313 0.59236 0.47026 0.46259 0.65310

XGraSM-Max (XNMax) 0.23379 0.19230 0.08402 0.17896 0.24475 0.22948 0.32608 0.22527 0.11304

L Avg (LAvg) 0.37960 0.38149 0.26975 0.27358 0.40980 0.30420 0.23344 0.29618 0.22678

ABM (LABM) 0.47794 0.37214 0.27193 0.29969 0.43507 0.49146 0.38369 0.37405 0.47976

BMA (LBMA) 0.48346 0.36783 0.26797 0.28974 0.42621 0.46926 0.38909 0.37171 0.47449

Max (LMax) 0.18341 0.17780 0.07476 0.14639 0.23298 0.19865 0.23248 0.20287 0.09363

XGraSM-Avg (XLAvg) 0.35730 0.40170 0.30816 0.28454 0.41735 0.34196 0.25193 0.30720 0.27799

XGraSM-ABM
(XLABM)

0.52692 0.46197 0.37084 0.34015 0.46936 0.60438 0.44261 0.44548 0.62035

XGraSM-BMA
(XLBMA)

0.53391 0.45679 0.36643 0.33214 0.45976 0.57860 0.45741 0.44757 0.62307

XGraSM-Max (XLMax) 0.21668 0.18726 0.08100 0.17668 0.24590 0.22795 0.36543 0.23418 0.12051

S Avg (SAvg) 0.39895 0.38633 0.27616 0.27509 0.40934 0.31267 0.24007 0.29585 0.23224

ABM (SABM) 0.49846 0.37641 0.27502 0.30219 0.43663 0.49769 0.38575 0.37302 0.47975

BMA (SBMA) 0.50556 0.37236 0.27109 0.29257 0.42855 0.47516 0.39178 0.37108 0.47462

Max (SMax) 0.20848 0.18507 0.07914 0.14737 0.23302 0.20005 0.23424 0.20336 0.09398

Li Avg (LiAvg) 0.42024 0.40930 0.30788 0.28658 0.41761 0.33494 0.25799 0.31039 0.25784

ABM (LiABM) 0.53691 0.41434 0.31170 0.32059 0.45221 0.53550 0.41396 0.40670 0.53182

BMA (LiBMA) 0.54534 0.41010 0.30739 0.31239 0.44524 0.51221 0.42395 0.40698 0.52966

Max (LiMax) 0.24125 0.19425 0.08499 0.16030 0.24041 0.21243 0.26839 0.21407 0.10168

A SimGIC (AGIC) 0.59941 0.58159 0.58246 0.36956 0.51559 0.71940 0.44164 0.49011 0.73662

SimDIC (ADIC) 0.60705 0.54614 0.49134 0.36469 0.51438 0.66385 0.46985 0.49947 0.69403

SimUIC (AUIC) 0.57433 0.54488 0.50643 0.35844 0.50424 0.67929 0.44573 0.48520 0.69341

Z Avg (ZAvg) 0.42242 0.39074 0.27595 0.26767 0.40746 0.32121 0.21181 0.31769 0.19658

ABM (ZABM) 0.49670 0.38912 0.28048 0.29104 0.41915 0.48201 0.39965 0.43449 0.51446

BMA (ZBMA) 0.50184 0.38219 0.27446 0.28135 0.41131 0.46165 0.40097 0.42915 0.50697
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XGraSM enhancement model, in which case, Resnik-BMA shows overall best

performance. The SimUI approach [23] refers to the union-intersection protein

similarity measure and it is a particular case of SimGIC assigning equal IC value to

all terms in the GO-DAG [9]. Even though this assumption is not realistic in the

context of the GO DAG, the SimUI measure can still be used as an alternative

measure in practice as it shows relatively good performance when applied to these

different data.

Using protein-protein interaction and expression data

We used human PPI and co-expressed networks to assess the performance of

different functional similarity measures. In the case of the PPI network, we are

using the AUC values computed using the ROCR package under the R

programming language as a measure of classification power. The larger the upper

AUC value, the more efficient the functional similarity measure is. For the co-

expression network, we computed the NI and RI values as measures of clustering

power, the higher these values, the more powerful the functional similarity

measure is. Different values found for different measures are shown in Figure 2

Table 2. Cont.

Approach Measure Molecular Function (MF) Cellular Component (CC) Biological Process (BP)

EC PFAM Seq Sim EC PFAM Seq Sim EC PFAM Seq Sim

Max (ZMax) 0.21496 0.18623 0.08015 0.14434 0.22535 0.19262 0.24156 0.20658 0.09524

SimGIC (ZGIC) 0.56432 0.50128 0.45796 0.37052 0.51454 0.71947 0.45672 0.50121 0.72305

SimDIC (ZDIC) 0.54733 0.44010 0.36048 0.36433 0.51140 0.66128 0.48173 0.50994 0.67914

SImUIC (ZUIC) 0.52587 0.44723 0.37719 0.35847 0.50159 0.67704 0.45863 0.49626 0.67906

W Avg (WAvg) 0.32939 0.39711 0.31829 0.27822 0.39797 0.28790 0.24429 0.37518 0.31967

ABM (WABM) 0.43759 0.37805 0.26197 0.30419 0.42580 0.47450 0.42471 0.47434 0.59775

BMA (WBMA) 0.43853 0.36980 0.25558 0.29551 0.41827 0.45501 0.43182 0.46893 0.59284

Max (WMax) 0.17071 0.17392 0.07249 0.14920 0.22981 0.19250 0.27792 0.21691 0.10267

SimGIC (WGIC) 0.56384 0.47498 0.38497 0.36989 0.51797 0.69199 0.46808 0.49629 0.69617

SimDIC (WDIC) 0.53335 0.40794 0.29754 0.35580 0.50564 0.61990 0.48802 0.49858 0.65003

SimUIC (WUIC) 0.52018 0.42227 0.31293 0.35396 0.49725 0.64186 0.46571 0.48716 0.65164

U Avg (UAvg) 0.36584 0.43023 0.39394 0.31186 0.41240 0.32592 0.29650 0.38034 0.37786

ABM (UABM) 0.51354 0.42361 0.31259 0.36012 0.47023 0.56028 0.46424 0.50576 0.67637

BMA (UBMA) 0.51740 0.41406 0.30507 0.35088 0.45819 0.53448 0.47364 0.50134 0.67084

Max (UMax) 0.21967 0.18836 0.08140 0.17511 0.23499 0.20663 0.32326 0.22605 0.11111

SimGIC (UGIC) 0.53864 0.39141 0.30800 0.35707 0.49532 0.72673 0.45891 0.46904 0.66193

SimDIC (UDIC) 0.51113 0.33578 0.23846 0.35868 0.49786 0.68552 0.47950 0.47434 0.63920

SimUIC (UUIC) 0.50018 0.34776 0.24722 0.35052 0.48685 0.69761 0.46210 0.46436 0.63865

SimUI SimUI 0.56126 0.49980 0.41280 0.36520 0.52065 0.64969 0.45463 0.49754 0.69992

Comparing performance of 57 different functional similarity measures using Pearson’s correlation with Enzyme Commission (EC), Pfam and Sequence
similarity. Results are obtained from the CESSM online tool and the best scores are in bold. R, N, L, Li, S, X, A, Z, W, and U represent the approaches and
stand for Resnik, Nunivers, Lin, Li, Relevance, XGraSM, Annotation-based, Zhang, Wang and GO-universal, respectively. The double middle bold line
separates annotation-based approaches above from the topology-based approaches below.

doi:10.1371/journal.pone.0113859.t002
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and Table 3. These results indicate that independently of the approaches, the Avg

measure, which is the earliest proposal suggested by Lord et al. [16] in the context

of the IC-based functional similarity, performs better than any other functional

similarity measure.

It was unexpected to find that the Wang et al. approach performs poorly in

terms of AUC values when using the BMA and ABM measures for BP, whereas

these measures have shown good performance when used in EC, Pfam domain

and sequence similarity data and the authors of this approach initially suggested

using the ABM measure. Other approaches show good performance when used

with their initial measures even though the Avg measure achieves the best

performance. On the other hand, the Max approach performs poorly compared to

other approaches, independently of the network (PPI or co-expression) and

performance measure. This may be due to the fact that the Max approach tends to

over-estimate functional similarity scores between proteins, for example by

assigning the similarity score of 1 to two proteins sharing at least one GO terms

independently of the number of unrelated terms between these proteins.

Table 4 lists functional similarity measures achieving overall ‘best’ performance

for different ontologies (MF, CC and BP) given a biological data type. These

results indicate that for the CC ontology, the topology-based approaches, namely

SimGIC based on Zhang et al. (ZGIC), Wang et al. (WGIC) and GO-universal

(UGIC) measures, provide overall best performance in terms of EC, Pfam and

sequence similarity, respectively. For MF and BP ontologies, annotation-based

Figure 2. Performance evaluation in terms of clustering power (RI and NI) and Area Under the Curve (AUC) values. Different x-axis labels are the
same as in Fig. 1, where different prefixes and suffixes stand for different term semantic similarity approaches and functional similarity measures.

doi:10.1371/journal.pone.0113859.g002
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Table 3. Area under the curve (AUC), Rand Index (RI) and Normalized Mutual Information (NI) values of different measures.

Approach Measure Protein-Protein Interaction Gene Expression

AUC (CC) AUC (BP) RI (BP) NI (BP)

R Avg (RAvg) 0.9999989 0.9999944 0.9814900 0.9202300

ABM (RABM) 0.9999815 0.9997248 0.9819800 0.9159100

BMA (RBMA) 0.9999656 0.9995277 0.9842500 0.9274300

Max (RMax) 0.9823696 0.8355199 0.9699500 0.8729600

XGraSM-Avg (XRAvg) 0.9715316 0.9965294 0.9804600 0.9218900

XGraSM-ABM (XRABM) 0.9191044 0.9466970 0.9732500 0.8811700

XGraSM-BMA (XRBMA) 0.8933883 0.9367340 0.9740800 0.8815500

XGraSM-Max (XRMax) 0.3196787 0.4527575 0.9612000 0.7056700

N Avg (NAvg) 0.9281535 0.9912221 0.9811400 0.9151300

ABM (NABM) 0.6994310 0.8056306 0.9710300 0.8690500

BMA (NBMA) 0.6194493 0.7257469 0.9716100 0.8731000

Max (NMax) 0.2628194 0.2725935 0.9604600 0.7017200

XGraSM-Avg (XNAvg) 0.9649710 0.9963379 0.9816500 0.9204000

XGraSM-ABM (XNABM) 0.8500164 0.9140909 0.9747400 0.8935100

XGraSM-BMA (XNBMA) 0.7977606 0.8885191 0.9722000 0.8758500

XGraSM-Max (XNMax) 0.3166060 0.4174917 0.9613600 0.7065700

L Avg (LAvg) 0.8635273 0.9838635 0.9825000 0.9181300

ABM (LABM) 0.5666561 0.7222728 0.9716000 0.8665000

BMA (LBMA) 0.4853167 0.6194642 0.9693300 0.8667700

Max (LMax) 0.2174561 0.2274708 0.9606800 0.7028400

XGraSM-Avg (XLAvg) 0.9528206 0.9959297 0.9823900 0.9195700

XGraSM-ABM (XLABM) 0.7982155 0.8935707 0.9738000 0.8850100

XGraSM-BMA (XLBMA) 0.7292282 0.8566720 0.9715700 0.8729400

XGraSM-Max (XLMax) 0.3053099 0.3774761 0.9611800 0.7048300

S Avg (SAvg) 0.8845580 0.9846493 0.9787500 0.9120200

ABM (SABM) 0.6036674 0.7332584 0.9670700 0.8505500

BMA (SBMA) 0.5220448 0.6330507 0.9693700 0.8665600

Max (SMax) 0.2278649 0.2332203 0.9606000 0.7031900

Li Avg (LiAvg) 0.9370573 0.9922869 0.9829300 0.9192500

ABM (LiABM) 0.7209326 0.8204703 0.9685900 0.8598000

BMA (LiBMA) 0.6436113 0.7460765 0.9698300 0.8640500

Max (LiMax) 0.2710713 0.2850380 0.9607700 0.7032300

A SimGIC (AGIC) 0.9173889 0.9689432 0.9771400 0.9024400

SimDIC (ADIC) 0.8486233 0.9514534 0.9748200 0.8893700

SimUIC (AUIC) 0.9654985 0.9654985 0.9752600 0.8937500

Z Avg (ZAvg) 0.8628325 0.9827186 0.9840200 0.9252700

ABM (ZABM) 0.5564467 0.7571073 0.9726600 0.8718700

BMA (ZBMA) 0.4756021 0.6578980 0.9762600 0.8847200

Max (ZMax) 0.2142027 0.2341097 0.9605400 0.7016000

SimGIC (ZGIC) 0.9177525 0.9680424 0.9755300 0.8946900

SimDIC (ZDIC) 0.8468629 0.9494608 0.9743600 0.8889200

SimUIC (ZUIC) 0.9041007 0.9642283 0.9777800 0.9071400

W Avg (WAvg) 0.8261012 0.9931717 0.9872000 0.9479000
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approaches, either XGraSM-Resnik BMA (XRBMA) or SimGIC (AGIC), achieve

best overall best performance. This suggests that measures achieving overall best

performance for EC, Pfam and Sequence Similarity data are those incorporating

all informative common ancestors in their scoring systems. However, this is not

the case in the context of PPI and co-expression networks where Average based on

Resnik (RAvg) and Wang et al. (WAvg) measures achieve the overall best

performance. If the Wang et al. approach incorporates ancestor features when

modeling term semantic similarity, Resnik is based on the most informative

common ancestor. To provide users with the most appropriate functional

similarity measure related to the term information content or term semantic

similarity approach they have chosen to use, a summary of the best performing

Table 3. Cont.

Approach Measure Protein-Protein Interaction Gene Expression

AUC (CC) AUC (BP) RI (BP) NI (BP)

ABM (WABM) 0.4524186 0.8706998 0.9710900 0.8786900

BMA (WBMA) 0.3719390 0.8287918 0.9767100 0.8861300

Max (WMax) 0.1190595 0.2833496 0.9606800 0.7068500

SimGIC (WGIC) 0.8936149 0.9659196 0.9747400 0.8909700

SimDIC (WDIC) 0.7811533 0.9451399 0.9741200 0.8908800

SimUIC (WUIC) 0.8678077 0.9615032 0.9733400 0.8892300

U Avg (UAvg) 0.9616545 0.9954449 0.9819800 0.9229100

ABM (UABM) 0.8335202 0.9513584 0.9740500 0.8819600

BMA (UBMA) 0.7798275 0.9377088 0.9706300 0.8707200

Max (UMax) 0.2943297 0.3982111 0.9607000 0.7050400

SimGIC (UGIC) 0.9178478 0.9691239 0.9767900 0.9014500

SimDIC (UDIC) 0.8758490 0.9595382 0.9751300 0.8882600

SimUIC (UUIC) 0.9104333 0.9673649 0.9733100 0.8914700

SimUI SimUI 0.8483416 0.9582268 0.9731600 0.8890300

Comparing performance of 57 different functional similarity measures in terms of AUC values for CC and BP ontologies, RI and NI values for the BP ontology
using Protein-Protein Interaction (PPI) and Co-expression Network (CN) or Gene Expression (microarray) data. The double middle bold line separates
annotation-based approaches above from the topology-based approaches below.

doi:10.1371/journal.pone.0113859.t003

Table 4. Summary of overall ‘best’ performing measures for different biological data.

Biological data type

Ontology EC Pfam Seq. Sim. PPI CN

MF XRBMA AGIC AGIC

CC ZGIC WGIC UGIC Ravg

BP XRBMA XRBMA AGIC Ravg Wavg

List of overall ‘best’ performing functional similarity measures for MF, CC and BP ontologies given biological data. Refer toTable 2 and3 for the description of
these different measures.

doi:10.1371/journal.pone.0113859.t004
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measures for different approaches and different biological data or applications is

provided in Table 5.

Finally, note that the good performance of the annotation-based family is

related to the corpus under consideration because of its dependence on the

frequencies of GO term occurrences in the corpus. These annotations may be

unbalanced in their distribution across the DAG. This constitutes a serious

drawback to these approaches, specifically for organisms with sparse GO

annotations and may negatively affect their performances [9]. The use of the

whole set of annotations as done in this study may solve this problem but only at

the cost of an increase in the running time and the complexity of these

annotation-based approaches. This is expected to worsen as the number of

protein annotations increases daily, which would potentially hamper the

performance of these approaches in their running time, since processing the

annotation file would take a lot of time before being able to compute the IC

values. This implies that it is may be better to make use of topology-based

approaches if one has to choose between the two families.

Conclusion

Several IC-based GO functional similarity measures have been proposed over

recent years and have enabled comparison of proteins at the functional level on

the basis of their GO annotations. These measures are being used in different

Table 5. Summary of the best performing measures for different applications.

Model Approach EC Pfam Seq. Sim. PPI CN

IC-based direct term Annotation-based (A) SimDIC SimGIC SimGIC SimGIC SimGIC

GO-universal (U) SimDIC SimDIC SimGIC SimGIC SimGIC

Wang et al. (W) SimGIC SimGIC SimGIC SimGIC SimGIC

Zhang et al. (Z) SimGIC SimGIC SimGIC SimGIC SimUIC

Pair-wise term or IC-based non direct
term

Resnik (R) BMA Max Max Avg BMA

XGraSM-Resnik (XR) BMA ABM ABM Avg Avg

Nunivers (N) BMA ABM ABM Avg Avg

XGraSM-Nunivers (XN) BMA ABM ABM Avg Avg

Lin (L) BMA ABM ABM Avg Avg

XGraSM-Lin (XL) BMA ABM ABM Avg Avg

Li et al. (Li) BMA ABM ABM Avg Avg

Relevance (S) BMA ABM ABM Avg Avg

GO-Universal (U) BMA BMA ABM Avg Avg

Wang et al. (W) BMA ABM ABM Avg Avg

Zhang et al. (Z) BMA ABM ABM Avg Avg

List of the best performing functional similarity measures, term specificity and semantic similarity approaches for different biological data, including Enzyme
Commission (EC), Pfam domain, Sequence Similarity (Seq. Sim.), Protein-Protein Interaction (PPI) and Co-expression Network (CN) or Gene Expression
(microarray) data.

doi:10.1371/journal.pone.0113859.t005
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biological and biomedical applications and have largely contributed to the

efficient exploitation of the biological knowledge embedded in the GO structure.

While annotation-based functional similarity measures have been intensively

studied and topology-based measures very often deployed to specific applications,

none of the previous studies has attempted to quantitatively perform all-against-

all semantic similarity measure comparisons. As a result, there were still gaps in

our knowledge on the performance of these measures when applied to different

biological data or applications, making the choice of the most ‘appropriate’

measure difficult, especially for someone who just needs a quick GO semantic

similarity measure for their biological question. Thus, a comparative study was

necessary in order to provide a global assessment of these different semantic

similarity measures.

Here, we have carried out a quantitative performance evaluation of several

different semantic similarity measures between GO terms for different term IC

families or semantic similarity approaches and different biological data. Results

indicate that a measure used for a given biological data type was not always the

most appropriate even for the ‘well’ studied family measures, namely annotation-

based measures. In fact, though the SimGIC or the BMA or ABM measure was

confirmed to be the best measure, in general, when using EC, Pfam domain and

sequence similarity data, this measure was not the best for applications related to

PPI and co-expression data (e.g., assessing protein-protein interaction or

clustering co-expressed proteins), where the Avg measure showed overall best

performance. This is also the case for the topology-based approaches where, in

general, the initial measure suggested for use does not provide the overall best

performance. This study bridges the gap between the large variety of GO semantic

similarity measures and their performance in different biological and biomedical

applications by comparing different protein functional similarity measures using

different biological data. This should help researchers choose the most

appropriate measure for their biological application.

Supporting Information

File S1. Combined file of supporting tables. Table S1: A human protein-protein

interaction dataset used to assess the classification power of different functional

similarity measures using Receiver Operator Characteristic (ROC) curve analysis.

Table S2: A set of human protein-protein interaction with both interacting

partners annotated with respect to the GO BP ontology. Table S3: A set of human

protein-protein interaction with both interacting partners annotated with respect

to the GO CC ontology. Table S4: A human co-expression network used to assess

the clustering power of different functional similarity measures using using

Normalized Mutual Information and Rank Index scores. Table S5: A set of human

co-expressed protein pairs among human proteins annotated with BP terms.

doi:10.1371/journal.pone.0113859.s001 (ZIP)
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