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Abstract

Real-time human activity recognition is essential for human-robot interactions for

assisted healthy independent living. Most previous work in this area is performed

on traditional two-dimensional (2D) videos and both global and local methods have

been used. Since 2D videos are sensitive to changes of lighting condition, view

angle, and scale, researchers begun to explore applications of 3D information in

human activity understanding in recently years. Unfortunately, features that work

well on 2D videos usually don’t perform well on 3D videos and there is no

consensus on what 3D features should be used. Here we propose a model of

human activity recognition based on 3D movements of body joints. Our method has

three steps, learning dictionaries of sparse codes of 3D movements of joints,

sparse coding, and classification. In the first step, space-time volumes of 3D

movements of body joints are obtained via dense sampling and independent

component analysis is then performed to construct a dictionary of sparse codes for

each activity. In the second step, the space-time volumes are projected to the

dictionaries and a set of sparse histograms of the projection coefficients are

constructed as feature representations of the activities. Finally, the sparse

histograms are used as inputs to a support vector machine to recognize human

activities. We tested this model on three databases of human activities and found

that it outperforms the state-of-the-art algorithms. Thus, this model can be used for

real-time human activity recognition in many applications.
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Introduction

A smart environment is a place where humans and objects (including mobile

robots) can interact and communicate with each other in a human-like way [1]. It

has a wide range of applications in home and office work, health care, assistive

living, and industrial operations. Current pervasive computing technologies and

low-cost digital imaging devices make feasible the development of smart

environments. In smart environments, accurate, real-time human activity

recognition is a paramount requirement since it allows to monitor individuals/

patient’s activities of daily living [2], such as taking medicine, dressing, cooking,

eating, drinking, falling down, and feeling painful, to keep track of their functional

health, and to timely intervene to improve their health [3–7]. Fig. 1 shows several

human activities in the dataset CAD-60 [8], including ‘‘wearing contact

lens’’,‘‘talking on the phone’’, ‘‘brushing teeth’’ and ‘‘writing on the white board’’.

Automated human activity understanding is a challenging problem due to the

diversity and complexity of human behaviors [9]. Different people do the same

activity in a multitude of ways; and even for a single person, he or she may do the

same activity in different ways at different times. Most previous work in human

activity understanding is performed on traditional 2D color images/videos and

both global and local spatial-tempo features have been proposed (reviewed in

[10–12]). Because it is difficult to deal with variations in 2D images/videos due to

changes in lighting condition, view angle, and scale, researcher begun to explore

applications of 3D information in human activity understanding [9]. In contrast

to 2D images/videos, depth maps such as those acquired by the Microsoft Kinect

system are related to object geometry and thus are independent of lighting

conditions.

However, it is a difficult task to develop features to representation human

activities based on 3D information. This is because depth images have much less

textures than 2D images and are sensitive to occlusion [13]. Adopting recognition

algorithms developed to work on 2D images and videos is not trivial either. For

example, interest-point detectors such as Dollar [14] and STIP [15] perform badly

on 3D videos. Currently, there are two approaches in using depth data for activity

recognition, depth based and skeleton/joint based methods [9]. A recent study

showed that relative joint positions carry significant information about activities

[16], but these features are difficult to extract without human intervention. Thus,

although several recognition algorithms that use manually selected joint-related

features have been developed [8, 17–24], there is no consensus on what joint-

related features should be extracted and how they should be used for activity

recognition.

We propose a method that learns automatically sparse representations of

human activities. Specifically, we treat 3D movements of joints as space-time

volumes and densely sample the volumes along the time axis to obtain a set of

sub-volumes. We then use the reconstructed independent component analysis

(RICA) [25] to learn a dictionary of over-complete codes from the sub-volumes

for each activity. In this learning procedure, the sub-volumes are represented by
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the learned codes in a sparse manner. From the coefficients of the sub-volumes

projected to the sparse codes, we construct a sparse histogram for each activity.

Finally, we concatenate the sparse histograms and use them as inputs to a multi-

class support vector machine (SVM) to perform activity recognition.

We tested this model on three widely used databases of human activities and

found that it outperforms the state-of-the-art algorithms. The contributions of

this paper to joint-based activity recognition are:

N a general dictionary-based framework that automatically learns sparse, high-

dimensional spatial-temporal features of 3D movements of joints,

N an efficient method that constructs sparse codes and histograms,

N a real-time system for human activity recognition that can be easily

implemented,

N extensive evaluations on the proposed model and superior results on three

datasets of human activities.

The paper is organized as follows. In Section 2, we briefly describe related work

and how our model is different. In Section 3, we describe the procedures of data

processing and learning dictionaries of codes of 3D movements of body joints. In

Section 4, we propose a set of sparse histograms of the codes of human activities.

In Section 5, we present an algorithm for activity recognition via a multi-class

SVM with sparse histograms as input features. In Section 6, we report the

recognition results of our model on three datasets of human activities and

compare them to the state-of-the-art algorithms. In Section 7, we briefly

summarize the main points of our model and address several aspects of the model

that can be improved.

Figure 1. Four activities in the CAD-60 dataset. First row: depth images; Second row: joint trajectories.

doi:10.1371/journal.pone.0114147.g001
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Methods

2.1 Related Work

We briefly describe related work below. For work on activity recognition based on

2D videos, we refer readers to several surveys [10–12].

Depth map-based approaches

Features automatically or manually extracted from depth images/videos have been

proposed, including bag of points [26], Space-Time Occupancy Patterns (STOP)

[27], Random Occupancy Pattern (ROP) [28], HOG from Depth Motion Maps

(DMM-HOG) [24], Histogram of Oriented 4D Surface Normals (HON4D) [29],

Pixel Response and Gradient Based Local Feature [30], Local Trajectory

Gradients, and SIFT [31]. In [32], depth silhouettes are used as features and a

hidden Markov Model (HMM) is used to model temporal dynamics of activities.

Different from these methods, our algorithm is based on joints which are the best

features for human activity recognition [16].

Skeleton/Joint based approaches

It was observed in 1970’s that a range of human activities can be recognized on the

basis of 3D movements of body joints [33]. However, joint-based activity

recognition drew research attention only recently due to the availability of low-

cost Microsoft Kinect cameras that can acquire 3D videos of joint movements.

Campbell and Bobick [17] proposed to compute action curves by projecting 3D

joint trajectories on low-dimensional phase spaces and to classify actions based on

action curves. This approach works only for simple activities. Lv et al. [18]

proposed seven types of local features and used HMMs to describe the evolution

of these features. In [19] a so-called Histogram of 3D Joint Location (HOJ3D) was

designed to characterize the distribution of joints around the central joint (hip

joint) and a HMM was developed to model temporal changes of the feature. In

[20], SIFT features for objects and skeleton features for humans were developed

and an MRF was used to model human activities. Sung et al. [8] computed HOG

from RGBD data and position-angle features from joints and used a Maximum

Entropy Markov Model (MEMM) to represent activities hierarchically. Wang et

al. [34] designed Local Occupancy Pattern (LOP) which was computed from a set

of 3D points around each joint. Finally, geometric relationships among joints were

used in [23]. All these methods need manually designed features. In contrast, a set

of dictionaries of sparse codes of human activities are obtained without manual

interventions in the method we present here.

The work related to ours is the EigenJoints that describe positional differences

between joints within or cross video frames and are used for action recognition via

a Naive Bayes nearest neighbor classifier [24]. The EigenJoints are simple and easy

to compute and so are the features of our model presented below. Our model is

different in two ways. First, a set of dictionaries of codes of human activities are

learned. Second, an approximate sparse coding is performed to obtain a set of

sparse histograms for action recognition via a multi-class SVM.
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2.2 Joint-Dictionary Learning

We propose to learn a set of dictionaries of sparse codes to represent the complex

spatial-temporal relationships among body joints. For this purpose, we introduce

some notations first.

2.2.1 Notations

The d-th video is denoted by Vd and the total number of frames in the d-th video

Vd is Nd
f . The number of joints in each frame f is denoted by N and the 3-

dimensional coordinate vector of each joint P in frame f is (xf
i ,yf

i ,zf
i ).

2.2.2 Sampling space-time-joint volume

For each frame f , we construct a matrix If by concatenating all the coordinates of

N joints in frame f . Specifically, the i-th row of If is the coordinate vector

(xf
i ,yf

i ,zf
i ) of the i th joint in frame f and the columns of If are the x,y,z

coordinates of the joints. Therefore, the size of If is N|3. Each column Cf
i of the

matrix If is subtracted by its mean m(Cf
i ). This operation makes If invariant to

camera/human placements. Although this operation removes global body motion,

it won’t affect much the performance of the model developed here since the

activities in the three tested datasets are indoor human daily activities that don’t

entail much global body motion. We then concatenate all the matrices

If (f ~1,2, � � � ,Nd
f ) from the d-th video Vd to form a volume Vd

c as shown in Fig. 2.

Vd
c is a matrix of a dimension of N|3|Nd

f . Mathematically, we have

If ~

xf
1{m(Cf

1) yf
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, f ~1,2, � � � ,Nd
f ð1Þ

and

Vd
c ( : , : ,i)~Ii,i~1,2, � � � ,Nd

f , ð2Þ

where

m(Cf
1)~ 1

N

PN
i~1

xf
i ,m(Cf

2)~ 1
N

PN
i~1

yf
i ,m(Cf

3)~ 1
N

PN
i~1

zf
i : ð3Þ

We densely sample Vd
c along the time dimension (‘‘frame’’ axis in Fig. 2) to

obtain Ns(Ns~Nd
f ) sub-volumes for each video. Thus, we take all possible sub-
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volumes of Vd
c . One can use various methods to take sub-volumes at sampled

points in the time dimension (NsƒNd
f ). Suppose that the sample sizes are 3,N,Ns

f

along the ‘‘xyz‘‘ axis, the ‘‘joint’’ axis, and the ‘‘frame’’ axis, respectively. Each

sample Si(i~1, � � � ,Ns) is then a N|3|Ns
f sub-volume sampled from Vd

c , which

can be written as

Si( : , : , j)~Iti
j
, j~1,2, � � � ,Ns

f ,i~1,2, � � � ,Ns, ð4Þ

where Iti
j

is the ti
j th coordinate image.

The third dimension of sub-volume Si can be permuted with the first

dimension by a permutation operation

Sp
i ~permute(Si,½3,2,1�), ð5Þ

where vector ½3,2,1� indicates that the second dimension of Si stays where it is but

the first dimension is swapped with the third dimension. From equation (1), it

can be seen that the same coordinate components of each joint form the columns

of the permuted sub-volume Sp
i by the above permutation operation. As a result,

either x, y, or z coordinate components of a joint in the sampled frames in sub-

volume Si form one column of the permuted sub-volume Sp
i . For example, the x

coordinate components of the head joint in different frames in sub-volume Si are

one column of Sp
i . This is illustrated by the horizontal color bars in Fig. 3 since

body joints in neighboring frames tend to have similar coordinates. To examine

the sub-volumes, we form a new matrix Su by by reordering the permuted sub-

volumes Sp
i lexicographically.

Figure 2. Joint volume. xyz axis: joint coordinates (x,y,z); joint axis: indices of joints; frame axis: index
of video frames.

doi:10.1371/journal.pone.0114147.g002
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Su~ Sp
1( : ) Sp

2( : ) � � � Sp
Ns{1( : ) Sp

Ns( : )
� �

ð6Þ

Su represents the sub-volumes from one video with each column corresponding

to one sub-volume. One Su is shown in Fig. 3, where the ‘‘Sample index’’ axis

indicates the indices of all the sub-volume samples and the ‘‘Coordinate index’’

axis is the row index of matrix Su. As shown in Fig. 3, gradual changes between

samples occur along the ‘‘Sample index’’ axis (corresponding to time axis). Thus,

the configurational relationships among body joints update in the time domain,

as they should in human activities.

2.2.3 Semantics of space-time-joint sub-volumes

The i-th sub-volume Si described above contains several video frames (Ns
f frames)

which may capture components of one or more activities. For big Ns
f , there are

more frames in a sub-volume, which may capture an activity. For small Ns
f , there

are few frames in a sub-volume, which may only capture a part of an activity. Two

extreme cases are Ns
f ~1 and Ns

f is equal to the total number of the frames of the

videos.

In following section, we propose to learn a set of dictionaries of codes that can

be used to represent complex human activities. The words (i.e., codes) in the

dictionaries should be components whose concatenations in the space and time

domains constitute representations of human activities. Thus, Ns
f should be

neither too small nor too big so that the sub-volumes are samples of components

of human activities. Unfortunately, it is difficult to set a fixed value for Ns
f for all

human activities, which may have components of a variety of spatial and temporal

scales and may be captured by cameras of a range of imaging parameters.

Therefore, we set the values of Ns
f via a learning procedure for the three datasets

tested in this paper.

2.2.4 Joint-dictionary learning

We propose a method to learn a set of sparse codes that can be used to represent

human activities. Sparse representation is useful for object recognition [25]. A

number of algorithms have been proposed to learn sparse features, including

restrict Boltzmann machines [35], spare auto-encoder [36], independent

component analysis [37], sparse coding [38], and RICA [25]. Since RICA works

well on approximately whitened data and is fast [25], we use RICA to learn a

dictionary of codes from a set of sub-volumes Si,i~1,2, � � � ,Ns for each activity.

The learned dictionary is called ‘‘Joint-dictionary’’. To the best of our knowledge,

this is the first work on feature learning from 3D movements of body joints.

For each activity c,c~1,2, � � � ,Na (Na is the number of activities), we obtain a

dictionary Wc. Suppose Nc is the total number of sub-volume samples from

activity c. Then the class-specific dictionary Wc can be obtained by solving the

following optimization problem [25]
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Wc~arg min
W

l

Nc

XNc

i~1

jjWT WSc
i ( : ){Sc

i ( : )jj22z
XNc

i~1

Xk

j~1

(WjS
c
i ( : )), ð7Þ

where Sc
i is the ith sub-volume sample from activity c; Sc

i ( : ) is a lexicographical

operation on Sc
i to form a column vector; ( ? ) is a nonlinear convex function

(e.g., smooth L1 penalty function ( ? )~log cosh( ? ) [39] in this paper); and k, l

are the number of features (rows of Wc) and a balancing parameter, respectively.

The objective function in (7) is a smooth function. The optimization problem

(7) can be easily solved by any unconstrained solvers (e.g., L-BFGS and CG [40]).

We propose to learn a class-specific dictionary Wc for each activity c and we

pool all the learned class-specific dictionaries Wc,c~1,2, � � � ,Na to form a code

book W as follows

W~ W1
t W2

t � � � WNa
t½ �: ð8Þ

The code book W contains k|Na~400|Na words in total. Note that W is

over-complete since the number of words is bigger than the size of sub-volumes.

Fig. 4 shows two dictionaries for ‘‘talking on the phone’’ and ‘‘writing on white

board’’. Each dictionary contains 400 words. The words shown in Fig. 4 are used

to represent 3D spatial-temporal sub-volumes and are different from conventional

words (e.g., oriented bars) learned from 2D natural image patches [25]. These

Figure 3. Coordinate samples from one video. Each column corresponds to one coordinate sub-
volume sample. The ‘‘Sample index’’ axis indicates the indices of all sub-volume samples and the
‘‘Coordinate index’’ axis is the row index of matrix Su.

doi:10.1371/journal.pone.0114147.g003
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words are the bases of segments of space-time concatenations of body joints by

which any segment of an activity can be constructed linearly. Unfortunately,

unlike independent components of natural scenes, which are like edge elements,

the words obtained here are difficult to visualize.

2.3 Sparse Histograms

In this section, we propose an approximate sparse coding scheme and compile a

set of sparse histograms. Any sample x can be sparsely represented by W as

following

arg min
s
jjWs{xjj22zljjsjj1, ð9Þ

where s is the sparse coefficients of sample x represented by dictionary W. A

number of algorithms have been proposed to solve the above problem of sparse

representation [41].

Instead of solving the optimization problem (9) for each video, which is

prohibitively time consuming, we propose to project any sample x onto W via

s~Wtx, ð10Þ

where s is the coefficients of sample x. The first Ns (400 in this paper) largest

coefficients are kept and the rest coefficients of s are set to zero to make s sparse.

Note that the dimension of s is Na|400 (Na is the number of activities). The

number of the kept sparse coefficients (400 in this paper) seems to be big, but it is

a lot smaller than the dimensionality of sub-volumes, which is 15|3|11~495
for the CAD60 database, and the dimensionality of the entire video. In the Section

6 we show that Na can be much smaller while good performance on activity

recognition can be still achieved by our method.

The computation in equation (10) is very fast. Although this is an approximate

sparse coding scheme, our results show that this approximation does not impair

activity recognition (see Section 6).

We then obtain the histogram h of nonzero coefficients of samples of a video u

by counting the number of occurrences of nonzero coefficients for each word in

W. Thus, the ith component of h is the number of occurrences of the ith word

that appears in video u. Fig. 5 shows the histograms of ‘‘talking on the phone’’ and

‘‘writing on the white board’’ of the CAD-60 database. The two histograms are

quite different upon a careful visual examination. We define the degree of sparsity

of a histogram as the ratio of the number of non-zero bins to the bin size

Sparsity Degree~
# Number of Non - Zero Bins

# Total Number of Bins
: ð11Þ

The sparsity degrees of the two histograms in Fig. 5 are 10:375% and 13:104%,

respectively. Thus, the histograms constructed this way are sparse.

Sparse Codes of 3D Movements of Body Joints for Activity Understanding
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Note that the histogram bins in Fig. 5 have more or less the same height (about

0.3). This may be due to similar words in the dictionaries for the activities in the

dataset. Since a dictionary is learned from each activity independently, it is likely

that there are words that are shared by more than one activities. It is worthy to

point out, though, that shared words do not impair the performance of our

algorithm.

2.4 Classification

We compile a sparse histogram for each activity and use it as a feature for

recognition via a multi-class SVM. In this procedure, we train one SVM in a one-

vs.-rest scheme for each activity; use the homogeneous kernel map expansion [42]

with a ‘‘x{ square’’ kernel to expand the dimensionality of feature by 2 times;

Figure 4. Two dictionaries for ‘‘talking on the phone’’ (top) and ‘‘writing on white board’’ (bottom). 400
words are shown in 400 squares.

doi:10.1371/journal.pone.0114147.g004
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and implement the computing with the source codes of an open-source collection

of vision algorithms called ‘‘VLFeat’’ (http://www.vlfeat.org/). The training and

testing procedures are summarized in Fig. 6 and Fig. 7, respectively.

Results

We tested our algorithm on three publicly available datasets: the Cornell Activity

Dataset-60 (CAD-60) [8], the MSR Action3D [43], and the MSR Daily Activity

3D [22]. Our results show that the model proposed here is better than the state-

of-the-art methods.

3.1 CAD-60 dataset

The CAD-60 dataset is an RGBD dataset acquired with a Microsoft Kinect sensor

at 30 Hz and has a resolution of 640|480 pixels [8] (Dataset S1). The 3D

coordinates of 15 joints are the real-time outputs of the skeleton tracking

algorithm of the sensor [44]. The dataset contains 14 human activities performed

Figure 5. Sparse histograms of ‘‘talking on the phone’’ and ‘‘writing on the white board’’ in the CAD-60
dataset. The sparsity degrees are 10:375% and 13:104% respectively. Note that the sum of the histograms is
100.

doi:10.1371/journal.pone.0114147.g005
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indoors by 4 subjects (two males and two females) for about 45 seconds. The total

number of frames of each activity of each person is about one thousand. We

follow the ‘‘new person’’ setting in [8] where data of 3 subjects were used for

training and the remaining one subject for testing. To improve recognition

performance, we mirrored the joints of the left-handed subject to make her

activities similar to those of the other 3 right-handed subjects, which is a usually

practice. Briefly, a plane P was first found by fitting four joints, left-arm, right-

arm, left hip, and right hip. Then, a mirror plane Pm was computed under the

constraints that Pm is perpendicular to P and passes through the middle point

between the two arm joints and through the middle point between the two hip

Figure 6. Flow chart for learning dictionaries and SVM classifiers.

doi:10.1371/journal.pone.0114147.g006

Figure 7. Flow chart for human activity recognition.

doi:10.1371/journal.pone.0114147.g007
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joints. Finally, all joints of the left-handed subject were mirrored with respect to

Pm.

Fig. 8 shows 4 confusion matrices for four cases where three subjects are chosen

for training and the remaining subject for training. We compare our results to 9

algorithms in terms of average accuracy, precision, and recall in Table 1. The

Figure 8. Four confusion matrices for four experimental settings.

doi:10.1371/journal.pone.0114147.g008
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results of other algorithms are from the website http://pr.cs.cornell.edu/

humanactivities/results.php that reports results on the dataset. As shown in

Table 1, our algorithm is the best in terms of accuracy, precision, and recall on

this dataset. Since some authors reported the performance of their algorithms in

terms of only part of the above metrics, there are blank cells in Table 1.

3.2 MSR Action3D dataset

The MSR Action3D dataset contains 20 activities acquired from 10 subjects, each

of whom performed each activity 2 or 3 times. The resolution is 320|240 pixels

and the frame rate is 16 Hz. The dataset provides the 3D movement data of 20

joints per person. We used 557 videos out of the 567 videos in the dataset since 10

videos have missing joints or erroneous joints [22] (Dataset S2).

To allow fair comparison, we followed the same setting as [22]: subjects Nos. 1,

3, 5, 7, and 9 as the training set and subjects Nos. 2, 4, 6, 8, and 10 as the testing

set. The 20 actions are divided into three subsets, AS1, AS2, and AS3 according to

the experimental setting in [22, 43], which are listed in Table 2. AS1 and AS2

Table 1. Performance of our model and other methods on the CAD-60 dataset.

Algorithm Accuracy (%) Precision (%) Recall(%)

Sung et al., AAAI PAIR 2011, ICRA 2012 [8]. 67.9 55.5

Koppula, Gupta, Saxena, IJRR 2012 [20] 80.8 71.4

Zhang, Tian, NWPJ 2012 [46] 86 84

Ni, Moulin, Yan, ECCV 2012 [47] Accur: 65.32

Yang, Tian, JVCIR 2013 [48] 71.9 66.6

Piyathilaka, Kodagoda, ICIEA 2013 [49] 70* 78*

Ni et al., Cybernetics 2013 [50] 75.9 69.5

Gupta, Chia, Rajan, MM 2013 [51] 78.1 75.4

Wang et al., PAMI 2013 [52] Accur: 74.70

Ours 91.17 89.11 89.28

doi:10.1371/journal.pone.0114147.t001

Table 2. Subsets of actions, AS1, AS2, and AS3 in the MSR Action 3D dataset.

Action Set 1(AS1) Action Set 2 (AS2) Action Set 3(AS3)

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

doi:10.1371/journal.pone.0114147.t002
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contain similar actions and AS3 contains complex actions composed of simpler

ones.

The accuracy of our algorithm on AS1, AS2 and AS3 is 87.62%, 87.5% and

97.3%, respectively. The average accuracy on the dataset is 90.81%. The three

confusion matrices for AS1, AS2, and AS3 are shown in Fig. 9. Thus, our

algorithm performs better on AS3 than AS1 and AS2.

Figure 9. Three confusion matrices for AS1, AS2, AS3 in the MSR Action 3D dataset.

doi:10.1371/journal.pone.0114147.g009
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Table 3 compares the performance of our model to other 9 methods. The

accuracies of methods are from a recent paper [29]. The performance (90:80%) of

our model is the best.

3.3 MSR Daily Activity 3D dataset

The MSR Daily Activity 3D dataset contains 16 activities each of which was

performed twice by 10 subjects [22] (Dataset S3). The dataset contains 320 videos

in each of 3 channels, RGB, depth, and joint. There are 20 body joints recorded

whose positions are quite noisy due to two poses: ‘‘sitting on sofa’’ and ‘‘standing

close to sofa’’.

The experimental setting is the same as in [22] which split the dataset into 3

subsets, AS1, AS2, and AS3 as listed in Table 4. We followed the same setting as

[22]: subjects Nos. 1,3,5,7, and 9 as the training set and subjects Nos. 2,4,6,8,and

10 as the testing set. The accuracy of our algorithm on AS1, AS2 and AS3 is

71.67%, 81.25%, and 85.00%, respectively and the average accuracy is 79.31%.

The confusion matrices are shown in Fig. 10. Our algorithm performs better on

AS3 than AS1 and AS2.

Table 5 lists the results of our model and several other methods. The results of

other methods are from a recent paper [22]. The accuracy of our model is 79:31%

which is lower than the best result (85:75%). However, only joint information is

Table 3. Performance of our model and other methods on the MSR Action 3D dataset.

Method Accuracy (%)

HON4D + Ddiscb [29] 88.89

HON4D [29] 85.85

Jiang et al. [22] 88.20

Jiang et al. [34] 86.50

Yang et al. [24] 85.52

Dollar + BOW[14] 72.40

STIP + BOW [15] 69.57

Vieira et al. [27] 78.20

Klaser et al. [53] 81.43

Ours 90.81

doi:10.1371/journal.pone.0114147.t003

Table 4. Subsets of actions, AS1, AS2, and AS3 in the MSRDaily Activity 3D dataset.

Action Set 1(AS1) Action Set 2 (AS2) Action Set 3(AS3)

eat drink use laptop

read book call cellphone cheer up

write on a paper use vacuum cleaner play guitar

use laptop sit still stand up

toss paper play game sit down

walk lie down on sofa

doi:10.1371/journal.pone.0114147.t004
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used in our model while both joint and depth information is used to obtain the

best result [22]. Compared to other models that use only joint information, our

model is the best, outperforming the best earlier result which is 68%.

Figure 10. Three confusion matrices for AS1, AS2, AS3 in the MSR Daily Activity 3D dataset.

doi:10.1371/journal.pone.0114147.g010
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3.4 Comparison with a baseline method

We have evaluated the performance of our method on three public datasets. Our

method has four steps: generating samples, learning dictionaries, constructing

sparse histograms, and classifying via SVMs. In this section, we replace the RICA-

based dictionary learning in our method with the k-means clustering. We cluster

samples with the k-means algorithm and take the clusters as words in the

dictionaries. We call this method as a baseline method. The results of this baseline

method and our original method on the three datasets are shown in Table 6. Both

methods perform well, with our original method being slightly better. Thus, the

joint dictionaries and sparse histograms in both methods are responsible for the

good performance.

3.5 Parameter setting and time performance

There are seven parameters in our model. They are Ns
f , the sampling size along the

z-direction; Nw, the number of words in each class-specific dictionary; l, the

balancing parameter in Eq. 7; Ns, the number of the largest coefficients; Nt , the

factor by which the dimensionality of feature vector is expanded; c, the parameter

of the x{ square kernel; and lsum, the balancing parameter of the SVM. These

parameters are probably independent of each other since they are for different

phrases of our algorithm, sampling, dictionary learning, sparse histogram, and

SVM training.

Of the seven parameters, the sampling size Ns
f , the number of words Nw, and

the number of the largest coefficients Ns are new in our algorithm while other

parameters appeared in other published studies [25, 42]. Therefore, we explore

how to choose the values of these three parameters while setting other parameters

to the values recommended by other researchers [25, 42]. We run our algorithm

with different parameter values on the CAD60 dataset. Fig. 11 shows the average

Table 5. Performance of our model and other methods on the MSR Daily Activity 3D dataset.

Method Accuracy(%)

Dynamic Temporal Warping [54] 54

Only LOP features[22] 42.5

Only Joint Position features [22] 68

SVM on Fourier Temporal Pyramid Features [22] 78

Actionlet Ensemble [22] 85.75

Ours 79

doi:10.1371/journal.pone.0114147.t005

Table 6. Performance of our model and the baseline method on the three databases.

CAD-60 MSRAction3D MSRDaily Activity3D

Our method 91.17 90.81 79

Baseline method 89.71 88.34 77.03

doi:10.1371/journal.pone.0114147.t006
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accuracy as a function of the sampling size fs when Nw~400 and Ns~400; Fig. 12

shows the average accuracy as a function of the number of words Nw when Ns
f ~11

and Ns~400; and Fig. 13 shows the average accuracy as a function of the number

of the largest coefficients Ns when Ns
f ~11 and Ns~400. These good results on

action recognition obtained under a wide range of parameter settings show that

our method is not sensitive to parameter values. Therefore, setting the parameters

in our algorithm for good recognition performance is not challenging.

The values of the parameters for all the experiments are listed in Table 7. For

simplicity, we set the parameter values the same for the three databases except Ns
f ,

the sampling size along the z-direction, which may depend on the speed of the

activities and the frame rate of the videos. As shown in Tables 1, 3, 5, and 6 and

Figure 11. Average accuracy as a function of the number of frames of sub-volumes on the CAD-60
dataset.

doi:10.1371/journal.pone.0114147.g011

Figure 12. Average accuracy as a function of the number of words in the dictionaries on the CAD-60
dataset.

doi:10.1371/journal.pone.0114147.g012
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Figs. 8–13, there are a range of parameter values in our method that lead to very

good performance, which may be further improved by finely tuned parameter

values.

The proposed algorithm was implemented in Matlab without any optimization

in programming. We evaluated the time performance of our method using

Intel(R) Core(TM)2 Duo CPU E8600@3.33 GHz with 64 bit Windows 7

professional SP1 OS. Only one core (2 cores available) was used based on single

thread programming. We report 4 measures, i.e., the average training time (ATT),

the average testing time per video (ATTPV), the average number of training

videos (ANTV), the average number of test videos (ANOTV), and the average

number of training classes (ANTC) on the three datasets in Table 8.

As shown in the table, our method took 0.50, 0.03, and 0.10 seconds/per video

to classify the activities of the CAD-60 dataset, the MSR Action3D dataset, and the

MSR Daily Activity 3D dataset respectively. The training time was 513.43 seconds,

73.02 seconds, and 125.60 seconds on the CAD-60 dataset, the MSR Action3D

dataset, and the MSR Daily Activity 3D dataset respectively. This time

performance can be improved significantly by optimized C++ codes running on

much faster CPUs. Therefore, our model is a real-time method that can be used in

smart environments and deployed in robots for human-robot collaborations.

Figure 13. Average accuracy as a function of the number of largest coefficients kept in the sparse
histograms on the CAD-60 dataset.

doi:10.1371/journal.pone.0114147.g013

Table 7. Values of the parameters of our method.

Database Ns
f Nw l Ns Nt c lsvm

CAD-60 11 400 0.5 400 3 0.01 0.01

MSRAction3D 13 400 0.5 400 3 0.01 0.01

MSRDailyActivity3D 21 400 0.5 400 3 0.01 0.01

doi:10.1371/journal.pone.0114147.t007
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Discussion

In this paper we proposed a real-time algorithm that makes use of joint

information to recognize human activities. In the first step of the algorithm,

videos of 3D movements of body joints are sampled to obtain a set of spatial-

temporal 3D volumes, which entail the complex spatial-temporal relationships of

joints of human activities at a data size that is much smaller than that of a RGBD

volume. Second, RICA is performed on the spatial-temporal 3D volumes to

obtain a set of dictionaries of codes that form a sparse representation of human

activities. An approximate spare coding scheme is then used to compile a set of

spare histograms as features for activity recognition. Finally, a multi-class SVM is

used to perform activity recognition. We performed extensive tests on this

algorithm on three widely used datasets of human activities. Our results show that

this algorithm produces so far the best recognition accuracy on these datasets.

Our algorithm automatically learns discriminative features for activity

recognition and is very fast and easy to implement. Since joint information can be

obtained by low-cost cameras such as the Microsoft Kinect systems, our algorithm

can be used in smart environments and deployed in robots for human-robot

collaborations. This model can be improved by the rich information in depth

images. To include this information, we will extend the model presented here and

our recent model of activity recognition based on multi-scale activity structures

[45].

Supporting Information

Dataset S1. CAD-60 dataset.

doi:10.1371/journal.pone.0114147.s001 (RAR)

Dataset S2. MSR Action 3D dataset.

doi:10.1371/journal.pone.0114147.s002 (RAR)

Dataset S3. MSR Daily Activity 3D dataset.

doi:10.1371/journal.pone.0114147.s003 (RAR)
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12. Moeslund TB, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture
and analysis. Comput Vis Image Underst 104: 90–126.

13. Camplani M, Salgado L (2012) Efficient spatio-temporal hole filling strategy for kinect depth maps. In:
Proc. SPIE Three-Dimensional Image Processing (3DIP) and Applications II. volume 8290, pp. 82900E-
82900E-10.

14. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal
features. In: IEEE InternationalWorkshop on Performance Evaluation of Tracking and Surveillance
(PETS). Beijing, China, pp. 65–72.

15. Laptev I (2005) On space-time interest points. Int J Comput Vision 64: 107–123.

16. Jhuang H, Gall J, Zuffi S, Schmid C, Black MJ (2013) Towards understanding action recognition. In:
IEEE International Conference on Computer Vision (ICCV). pp. 3192–3199.

17. Campbell LW, Bobick AF (1995) Recognition of human body motion using phase space constraints. In:
Proceedings of the Fifth International Conference on Computer Vision. Washington, DC, USA: IEEE
Computer Society, ICCV 995, pp. 624–630.

18. Lv F, Nevatia R (2006) Recognition and segmentation of 3-d human action using hmm and multiclass
adaboost. In: Proceedings of the 9th European Conference on Computer Vision - Volume Part IV. Berlin,
Heidelberg: Springer-Verlag, ECCV906, pp. 359–372.

Sparse Codes of 3D Movements of Body Joints for Activity Understanding

PLOS ONE | DOI:10.1371/journal.pone.0114147 December 4, 2014 22 / 24



19. Xia L, Chen CC, Aggarwal JK (2012) View invariant human action recognition using histograms of 3d
joints. In: CVPR Workshops. pp. 20–27.

20. Koppula HS, Gupta R, Saxena A (2013) Learning human activities and object affordances from rgb-d
videos. Int J Rob Res 32: 951–970.

21. Sung J, Ponce C, Selman B, Saxena A (2011) Human activity detection from rgbd images. In: Plan,
Activity, and Intent Recognition. AAAI, volume WS-11-16 of AAAI Workshops, pp. 47–55.

22. Wang J, Liu Z, Wu Y, Yuan J (2012) Mining actionlet ensemble for action recognition with depth
cameras. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. pp. 1290–
1297.

23. Yao A, Gall J, Gool L (2012) Coupled action recognition and pose estimation from multiple views.
Int J Comput Vision 100: 16–37.

24. Yang X, Tian Y (2012) Eigenjoints-based action recognition using naive-bayes-nearest-neighbor. In:
Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society
Conference on. pp. 14–19.

25. Le QV, Karpenko A, Ngiam J, Ng AY (2011) Ica with reconstruction cost for efficient overcomplete
feature learning. In: Shawe-taylor J, Zemel R, Bartlett P, Pereira F, Weinberger K, editors, Advances in
Neural Information Processing Systems 24. pp. 1017–1025.

26. Li W, Zhang Z, Liu Z (2010) Action recognition based on a bag of 3d points. In: Computer Vision and
Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on. pp. 9–14.

27. Vieira A, Nascimento E, Oliveira G, Liu Z, Campos M (2012) Stop: Space-time occupancy patterns for
3d action recognition from depth map sequences. In: Alvarez L, Mejail M, Gomez L, Jacobo J, editors,
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Springer Berlin
Heidelberg, volume 7441 of Lecture Notes in Computer Science. pp. 252–259.

28. Wang J, Liu Z, Chorowski J, Chen Z, Wu Y (2012) Robust 3d action recognition with random
occupancy patterns. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors, Computer Vision
ECCV 2012, Springer Berlin Heidelberg, Lecture Notes in Computer Science. pp. 872–885.

29. Oreifej O, Liu Z (2013) Hon4d: Histogram of oriented 4d normals for activity recognition from depth
sequences. 2013 IEEE Conference on Computer Vision and Pattern Recognition 0: 716–723.

30. Zhang H, Parker L (2011) 4-dimensional local spatio-temporal features for human activity recognition.
In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. pp. 2044–
2049.

31. Lei J, Ren X, Fox D (2012) Fine-grained kitchen activity recognition using rgb-d. In: Proceedings of the
2012 ACM Conference on Ubiquitous Computing. New York, NY, USA: ACM, UbiComp 912, pp. 208–
211.

32. Jalal A, Uddin M, Kim J, Kim TS (2011) Daily human activity recognition using depth silhouettes and r
transformation for smart home. In: Abdulrazak B, Giroux S, Bouchard B, Pigot H, Mokhtari M, editors,
Toward Useful Services for Elderly and People with Disabilities, Springer Berlin Heidelberg, volume 6719
of Lecture Notes in Computer Science. pp. 25–32.

33. Johansson G (1975) Visual motion perception. Scientific American 232: 76–88.

34. Wang J, Liu Z, Chorowski J, Chen Z, Wu Y (2012) Robust 3d action recognition with random
occupancy patterns. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors, Computer Vision
ECCV 2012, Springer Berlin Heidelberg, Lecture Notes in Computer Science. pp. 872–885.

35. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput
18: 1527–1554.

36. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In:
Schölkopf B, Platt J, Hoffman T, editors, Advances in Neural Information Processing Systems 19,
Cambridge, MA: MIT Press. pp. 153–160.

37. Hyvärinen A, Karhunen J, Oja E (2001) Independent Component Analysis. John Wiley and Sons, Inc.

38. Olshausen B, Field D (1996) Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature 381: 607–609.

39. Hyvarinen A (2009) Natural image statistics a probabilistic approach to early computational vision.
London: Springer-Verlag.

Sparse Codes of 3D Movements of Body Joints for Activity Understanding

PLOS ONE | DOI:10.1371/journal.pone.0114147 December 4, 2014 23 / 24



40. Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, et al. On optimization methods for deep learning. In:
Getoor L, Scheffer T, editors, ICML. Omnipress, pp. 265–272.

41. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, et al. (2010) Sparse representation for computer vision
and pattern recognition. Proceedings of the IEEE 98: 1031–1044.

42. Vedaldi A, Zisserman A (2012) Efficient additive kernels via explicit feature maps. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 34: 480–492.

43. Li W, Zhang Z, Liu Z (2010) Action recognition based on a bag of 3d points. In: Computer Vision and
Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on. pp. 9–14.

44. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, et al. (2013) Real-time human pose
recognition in parts from single depth images. In: Cipolla R, Battiato S, Farinella GM, editors, Machine
Learning for Computer Vision, Springer Berlin Heidelberg, volume 411 of Studies in Computational
Intelligence. pp. 119–135.

45. Zhu X, Li M, Li X, Yang Z, Tsien J (2012) Robust action recognition using multi-scale spatial-temporal
concatenations of local features as natural action structures. PLOS ONE 7: doi:10.1371/
journal.pone.0046686.

46. Zhang C, Tian Y (2012) Rgb-d camera-based daily living activity recognition. Journal of Computer Vision
and Image Processing 2.

47. Ni B, Moulin P, Yan S (2012) Order-preserving sparse coding for sequence classification. In: Fitzgibbon
A, Lazebnik S, Perona P, Sato Y, Schmid C, editors, Computer Vision ECCV 2012, Springer Berlin
Heidelberg, Lecture Notes in Computer Science. pp. 173–187.

48. Yang X, Tian Y (2014) Effective 3d action recognition using eigenjoints. J Vis Comun Image Represent
25: 2–11.

49. Piyathilaka L, Kodagoda S (2013) Gaussian mixture based hmm for human daily activity recognition
using 3d skeleton features. In: Industrial Electronics and Applications (ICIEA), 2013 8th IEEE
Conference on. pp. 567–572.

50. Ni B, Pei Y, Moulin P, Yan S (2013) Multilevel depth and image fusion for human activity detection.
Cybernetics, IEEE Transactions on 43: 1383–1394.

51. Gupta R, Chia AYS, Rajan D (2013) Human activities recognition using depth images. In: Proceedings
of the 21st ACM International Conference on Multimedia. New York, NY, USA: ACM, MM 913, pp. 283–
292.

52. Wang J, Liu Z, Wu Y, Yuan J (2013) Learning actionlet ensemble for 3d human action recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 36: 914–927.
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