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Abstract The recent application of molecular dynamics (MD)
methodology to investigate the allosteric transitions of the
acetylcholine receptor and its prokaryotic and eukaryotic
pentameric homologs has yielded new insights into the mech-
anisms of signal transduction by these receptors. Combined
with available data on X-ray structures, MD techniques enable
description of the dynamics of the conformational change at the
atomic level, intra-molecular propagation of this signal trans-
duction mechanism as a concerted stepwise process at physio-
logical timescales and the control of this process by allosteric
modulators, thereby offering new perspectives for drug design.
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Definition of allosteric interactions: importance
of molecular dynamics

We have recently celebrated the “50th anniversary of alloste-
ry”, and the concept is alive and well. Allosteric interactions
between proteins and their regulatory ligands were initially
defined as indirect interactions between topographically dis-
tinct sites that are mediated by a discrete reversible alteration

of the molecular structure of the protein—and this definition is
still valid (for review, Changeux 2013a). The concept was first
proposed in 1961 to account for the feedback inhibitory
mechanism mediated by the first enzyme of bacterial biosyn-
thetic pathways, in which the feedback inhibitor is not a steric
analog of the substrate (Changeux 1961; Monod and Jacob
1961; Gerhart and Pardee 1962). It was expanded in 1963
(Monod et al. 1963) to explain the properties of regulatory
proteins in general, including Perutz’s structural data on
hemoglobin, in the framework of Koshland’s (1959) “induced
fit” mechanism, according to which the ligand “instructs”
rather than “selects” the protein conformational change.

In 1965, attention focused on the observation that, in many
regulatory proteins, in addition to, and possibly as part of, the
signal transduction mechanism, substrates and regulatory li-
gands interact in a cooperative manner. It was also noted that
all of these interactions may be simultaneously uncoupled by
a variety of chemical or physical treatments (Changeux 1961;
Gerhart and Pardee 1962). These observations point to a
global mechanism at the protein level that makes these regu-
latory enzymes function as “molecular switches” (Monod
et al. 1965; for review, Changeux 2012a, 2013a,b).

To explain the particular protein design involved, a
s t ruc tura l hypothes i s was proposed where the
cooperativity observed between the multiple binding sites
for the substrate and regulatory ligand relies on the coop-
erative organization of the protein into “oligomers” com-
prising a small number of repeated units and possessing at
least one axis of symmetry (Monod et al. 1965). A second
critical assumption was that, unlike in the induced-fit
model, the regulatory oligomers naturally exist in the
absence of the ligand in at least two discrete conforma-
tions, the R state (for relaxed) and the T state (for
constrained), which are in thermodynamic equilibrium.
These states differ, in particular, in their tertiary
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distribution and/or inter-subunit bond energy (quaternary
constraint). Ligands would then shift the conformational
equilibrium by stabilizing the oligomer conformation for
which they have the highest affinity, thus mediating signal
transduction. Substrate and activators would stabilize the
R state, inhibitors the T state. The model, termed the
Monod–Wyman–Changeux (MWC) model (Monod et al.
1965), assumed that the conformational transition occurs
simultaneously for all subunits: it is “concerted” and
conserves the oligomer symmetry. Shortly thereafter, in
1966, Koshland et al. proposed a sequential induced-fit
mechanism of allosteric transition, referred to as the
Koshland–Nemethy–Filmer (KNF) model, which in-
volved a progressive conformational change with ligand
binding that excludes any conformational change of the
protein in the absence of the ligand.

Abundant studies carried out with a large diversity of
regulatory proteins, including neurotransmitter receptors
(Changeux 2013a), have lent support to, and further ex-
tended, the MWC model, emphasizing in particular “pop-
ulation shifts” within the energy landscape formalism (see
Cui and Karplus 2008 ; Itoh and Sasai 2010; Changeux
2012a, 2013a; Terada et al. 2013; Motlagh et al. 2014; Tsai
2014). Importantly, both the MWC and KNF models for-
mulate a static (end-point) equilibrium picture of the allo-
steric transition. To achieve progress toward the dynamic
nature of the phenomenon, complementary and time-
resolved analyses, such as molecular dynamics and novel
technologies, were needed. As stated by Cui and Karplus
(2008), inclusion of atomic fluctuations opens the way to a
more sophisticated and accurate interpretation of protein
activity that is essential for understanding the mechanism
of allosteric interactions. In this review, I shall examine
this issue with the nicotinic acetylcholine receptor
(nAChR), a neurotransmitter-gated ion channel, which
has served in past decades as a privileged model of regu-
latory protein engaged in intercellular communication in
the nervous system. On the basis of recently available
crystallographic data, molecular dynamics models of the
signal transduction process they mediate have been elabo-
rated and compared with the in vivo physiological data.

The concept of pharmacological receptor,
the identification of the nicotinic receptor and the ionic
response to acetylcholine

Ever since Claude Bernard’s pioneering work on the effect of
curare, the chemistry of intercellular communications has
relied on the concept of the pharmacological “receptor” laid
down by the English pharmacologist John Newport Langley
(1905). It took however 65 years to chemically identify—
through research involving the fish electric organ and a snake

venom toxin—the first neurotransmitter receptor, the nicotinic
receptor (nAChR) from the neuromuscular junction
(Changeux et al. 1970; Miledi et al. 1971 ; Karlin 1993; for
review, Changeux 2012b). nAChRs are involved in many
brain processes and diseases, such as attention, learning and
memory, access to consciousness, nicotine addiction and
Alzheimer and Parkinson diseases (for review, Changeux
2006, 2010). Understanding the functional organization and
dynamics of these receptors at the atomic level is thus of
considerable interest, both in itself and for the development
of new therapeutics.

nAChRs are integral allosteric membrane proteins with a
molecular mass of approximately 290 kDa that form oligo-
mers comprising five identical or homologous subunits sym-
metrically arranged around a central ion channel, with a
fivefold symmetry axis perpendicular to the membrane (for
review, Changeux and Edelstein 2005) (Fig. 1).The primary
structure of each subunit consists of a large hydrophilic
amino-terminal extracellular (EC) domain, a transmembrane
(TM) domain comprising four hydrophobic segments (M1–
M4) and a variable hydrophilic cytoplasmic or intracellular
domain. There are two to five ACh binding sites within the EC
domain located at the boundary between subunits. These ACh
binding sites are far apart (approx. 60 Å) but still functionally
linked to a single cationic ion channel located on the axis of
symmetry of the TM domain and delineated by the M2 α-
helix (Fig. 1). The interaction between neurotransmitter site
and ion channel is thus typically “allosteric.” The EC and TM
additionally carry several allosteric modulatory sites for natu-
ral (e.g. Ca++, lipids) and synthetic (e.g. ivermectin) ligands.
Therefore, nAChRs possess the structural elements required to
convert a chemical signal, typically a local increase in extra-
cellular ACh concentration, into an electrical signal generated
by the opening of the ion channel. Over the years the nAChR
has become the “founding father” of the broader superfamily
of pentamer ic receptors which inc ludes the 5-
hydroxytryptamine receptor (5HT3R), the inhibitory anion-
selective γ-aminobutyric acid type A (GABAA) and glycine
receptors and the invertebrate glutamate-gated chloride chan-
nel (GluCl) (Changeux 2012b).

An important outcome of Langley’s receptor theory
(1905) was the development of electrophysiological re-
cordings aimed at understanding the ionic response of
receptors to neurotransmitters (Katz 1966) with the im-
portant addition of the time dimension missing in the
biochemical–structural approach at the time. At the neu-
romuscular junction, the postsynaptic potential elicited by
either electrical stimulation of the nerve ending or ionto-
phoretic application of ACh has a fast (<0.2 ms) signal
rise time and a signal decay time of a few milliseconds.
The local concentration of ACh transiently rises (<1 ms)
to 3×10−4 M over a background release of 10−8 M (Katz
and Miledi 1973, 1977; Kuffler and Yoshikami 1975).
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These data were interpreted in terms of the then available
models of enzyme kinetics, in particular acetylcholine
esterase (Augustinsson 1948, 1950), assuming a two-step
process which consisted of the formation of the receptor–
ACh complex followed by opening of the channel (Del
Castillo and Katz 1957). This model was consistent with
Koshland’s induced-fit mechanism (1959):

R þ A < −− > RA < −− > R � A openð Þ:

The application of patch-clamp recording techniques re-
vealed that the cellular postsynaptic response can be reduced
to the collective opening of separate molecular channels, with
each individual opening having a square shape with a rise time
in the microsecond range and a mean open time of a few
milliseconds (Neher and Sakmann 1976). These values set the
time-range for ongoing molecular dynamics studies (see be-
low). Langley (1905) had already noticed that prolonged
application of the agonist nicotine blocks receptor responses,
resulting in desensitization of the receptor. To fit the electro-
physiological data then available, Katz and Thesleff (1957)
proposed that ACh slowly (on a 10 ms to 1 s timescale)
stabilizes a new high-affinity closed (“refractory”) state of
the receptor which, unlike the “effective” excitable state,
would pre-exist ligand binding. Subsequent electrophysiolog-
ical and biochemical studies with nAChR-rich “excitable”
membrane fragments (Kasai and Changeux 1971; Cohen
et al. 1972) and a fluorescent analog of acetylcholine
(dansyl-C6-choline) enabled researchers to follow directly
in vitro the binding kinetics of a nicotinic ligand and its

conformational and ionic consequences without using
in vivo electrophysiological recordings (Heidmann and
Changeux 1979a, b, 1980; Heidmann et al. 1980, see also
Neubig and Cohen 1980; Neubig et al. 1982 with radioactive
ligands). Extensive kinetic analyses with an adequate rapid
mixing apparatus (2.5-ms dead time) resulted in the first
experimental in vitro demonstration in the millisecond range
of the allosteric transitions of the receptor protein’s mul-
tiple conformational states: (1) a resting closed-channel
R state stabilized by nicotinic antagonists; (2) an active,
fast, open-channel A state with a low affinity for ACh
and nicotinic agonists (kDa ACh: approx.50–100 μM);
(3) at least a fast I and a slow D desensitized, refractory
state, with higher affinities for agonists (but also for
antagonists) [(kDa of I for ACh: approx.1 μM; kDa of
D for ACh: approx. 3–5 nM] (Heidmann and Changeux
1980; see Edelstein et al. 1996). In contrast to a wide-
spread opinion among pharmacologists, the highest affin-
ity states do not correspond to the active functional state
of the receptor—quite the contrary is true.

The scheme presented below (Changeux 1990) illustrates
the interconversion between the four different states. These
states are postulated to occur spontaneously in the absence of
ligands. Orthosteric and allosteric (see chapter 6 from
Changeux 1990) ligands, binding differentially and selective-
ly, stabilize the state(s) to which each ligand interacts with the
highest affinity and, consequently, in the case of agonists (here
ACh), mediate signal tranduction. Competitive blockers (CB)
channel blockers (NCB) and/or allosteric modulators
(AM) may selectively stabilize any of the states at the level

Fig. 1 Left Model of the α7 nicotinic acetylcholine receptor (nAChR)
elaborated by Taly et al. (2005) from the X-ray crystal structure of the
snail acetylcholine binding protein, a homolog of the extracellular domain
(Brejc et al. 2001) and the lower resolution cryo-electron microscopy data
of Torpedo nAChR (Unwin 2005) for the membrane domain. From Taly
et al. (2005). Right Crystal structure of a prokaryotic homolog of the

nAChR fromGloeobacter violaceus [G. violaceus ligand-gated ion chan-
nel (GLIC)] in its open-channel conformation (Bocquet et al. 2009). ECD
Extracellular domain, TMD transmembrane domain of four transmem-
brane α-helices (M1–M4) per subunit, DDM detergent dodecyl
maltoside-blocked ion channel (yellow). The homology between eukary-
otic and prokaryotic receptors is remarkable. From Bocquet et al (2009)
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of sites distinct from the ACh binding site and ion channel (see
chapter 6 from Changeux 1990).

Moreover, a non-negligible fraction (approx. 20 %) of the
receptor resides in the high-affinity D state in the total absence
of ligand (Heidmann and Changeux 1979a, b, 1980). In
parallel studies, Jackson (1984) observed the spontaneous
opening of muscle nAChR in the absence of ACh. Purohit
and Auerbach (2013) have recently extended the analysis and
elegantly demonstrated that “diliganded and brief unliganded
openings are generated by the same essential, global transi-
tion”, thereby ruling out the induced-fit mechanism and vali-
dating the fundamental premises of the MWC model that the
basic activation mechanism involves a unique R <−−> A
conformational transition that is independent of ligand bind-
ing (Auerbach 2012, 2014).

Crystallographic structure of prokaryotic and eukaryotic
pentameric receptors

An important step in the development of the molecular dy-
namics analysis of pentameric receptors was the availability of
high-resolution structural data. Early electron micrographs of
nAChR from fish electric organs (Cartaud et al. 1973; Brisson
and Unwin 1985a, b) together with the X-ray structure of the
homopentameric, water-soluble acetylcholine binding protein
(AChBP) from Lymnaea stagnalis (Brejc et al. 2001), which
displays significant (approx. 30 %) sequence homology with
the EC domain of the nAChRs and remarkable conservation
of the binding site residues, led to the development of atomic

models of the full-length nAChR (Unwin 2005, 2013) (see
Taly et al. 2014 for discussion). However, the resolution
remained low (>4 Å) due to sample preparation conditions
which unfortunately were known to “uncouple” receptor func-
tion (Paas et al. 2005; daCosta et al. 2013).

The situation changed dramatically with the discovery in
bacteria of DNA sequences homologous to eukaryotic nAChR
(Tasneem et al. 2005) and the subsequent cloning and expres-
sion in eukaryotic cells of one of these sequences from the
photosynthetic bacterium Gloeobacter violaceus (Bocquet
et al. 2007). The protein was demonstrated by electrophysio-
logical recordings to behave as a ligand-gated ion channel
activated at acidic pHs (Bocquet et al. 2007). Purification and
crystallization of the G. violaceus ligand-gated ion channel
(GLIC) and of a closely related protein led to the resolution
of the first X-ray structure of a pentameric ligand-gated ion
channel (pLGIC) in a closed-channel state (resolution 3.3 Å)
from Erwinia chrysanthemi (ELIC) (Hilf and Dutzler 2008)
and in an open-channel conformation (resolution 2.9 Å) from
G. violaceus (GLIC) (Bocquet et al. 2009; Hilf and Dutzler
2009). The structure of an eukaryotic member of the family, the
anionic glutamate receptor from Caenorhabditis elegans
(GluCl), was then solved in an open conformation as a complex
with the positive allosteric modulator ivermectin, revealing an
astonishing structural similarity with the three-dimensional
(3D) structure of GLIC (Hibbs and Gouaux 2011). The recent
crystallographic structures of the eukaryotic GABAA receptor
(Miller and Aricescu 2014) and 5HT3 receptor (Hassaine et al.
2014) confirm a common structural organization of the constit-
uent subunits. The EC domain folds into a highly conserved
immunoglobulin-like β-sandwich and the TM domain consists
of four α-helices organized as a well-conserved bundle [in
agreement with the low-resolution electron microscopy struc-
tures of Torpedo nAChR (Unwin 2005)]. The M2 helix lines
the channel walls (Giraudat et al. 1986, 1987; Hucho et al.
1986; Imoto et al. 1986, 1988) and is surrounded by a ring ofα-
helices made ofM1 andM3. The fourth TMα-helix, M4, is the
most peripheral helix and interacts extensively with the lipid
bilayer (Bocquet et al. 2009). Also, the cytoplasmic domain,
absent in prokaryotic receptors, was revealed for the first time
in 5HT3 receptors (Hassaine et al. 2014), further extending our
structural knowledge of the family. The access to high-
resolution full X-ray structures of pentameric receptors legiti-
mated a reliable analysis of the dynamics of their conforma-
tional change.

Early studies on the molecular dynamics of signal
tranduction mediated by pentameric receptors

Even before high-resolution structural data became accessible,
Taly et al. (2005) developed, by comparative analysis, a 3D
model of the α7-nAChR on which they performed the first,
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coarse-grained, molecular dynamics simulation of a pLGIC
using the method referred to as “normal mode analysis.” By
approximating the surface of the conformational landscape,
the analysis decomposed the receptor protein movements into
discrete modes. Among the ten modes with the lowest fre-
quency, the first showed a structural reorganization described
as a concerted rotation, in opposite directions, of the upper EC
and lower TM domains around the pore axis—a movement
referred to as a quaternary twist. The twist affects the structure
of the ion channel toward its opening and results in a signif-
icant reshaping of the subunits’ interfaces which open and
close the agonist binding site(s) located at these interfaces.
These observations were confirmed and extended with anoth-
er model of α7-nAChR (Cheng et al. 2006), with the crystal
structures of GLIC (Bocquet et al. 2009) and of ELIC (Cheng
et al. 2009) and with a 1-μs-long all-atommolecular dynamics
simulation of GLIC (Nury et al. 2010). In parallel, another
computational study (Taly et al. 2006) on nAChR was under-
taken, involving pathological mutations associated with con-
genital myasthenia and autosomal dominant nocturnal frontal
lobe epilepsy. These mutations constitutively stabilize the
receptor in an active open conformation, even in the absence
of agonist. The substituted amino acids were found to be
located at interfaces either between subunits or, within a given
subunit, between rigid blocks and thus to alter the twisting
mode. Taken together, these results support the conclusion
that quaternary twisting is a robust structural motion that
accompanies the opening of the ion channel and possibly
other moves of the channel, such as those occurring during
desensitization.

In parallel electrophysiological studies, Auerbach and col-
leagues (Grosman et al. 2000; Purohit et al. 2007, 2013;
Purohit and Auerbach 2013) examined the gating dynamics
of muscle nAChR closed–open transition state ensembles
(TSE). These authors measured the single-channel opening
(ko) and closing (kc) rate constants of sets of receptor mutants
with various side chain substitutions for individual amino
acids. For each series of mutants, properties of the TSE could
be deduced from ϕ (phi), the slope of a log–log plot of ko
versus Keq (ko/kc). The analysis suggests that the overall
nAChR isomerization consists of a well-defined sequence of
protein domain motions that generate a propagated, Brownian
stepwise process. Two separate regions in the α-subunits,
namely, transmitter-binding sites and linkers in the membrane
domain, have the highest ϕ values (i.e. change confor-
mation the earliest), followed by the EC domain, then
most of the membrane domain and finally the gate,
resulting in channel opening (Purohit et al. 2013). Ac-
cordingly, the gating dynamics of muscle nAChR does
not proceed as a single-step “rigid” event but through a
concerted, step-wise, conformational mechanism that can
be investigated by structural analysis and molecular dy-
namics simulations.

Structural dynamics model of signal tranduction:
an emerging model.

On the basis of the GLIC open state, the ELIC “undefined”
closed state and the GluCl open-channel structure (when
bound to the positive allosteric modulator ivermectin),
Calimet et al. (2013) carried out extensive all-atom molecular
dynamics simulations in the timescale of 0.2–0.5 μs. Upon
removal of ivermectin, the simulated trajectory of GluCl re-
veals a stepwise sequence of structural events that couple
agonist unbinding from the EC domain to ion-pore closing
in the TM domain. The simulation also shows that, in agree-
ment with Taly et al. (2005), a global twisting initiates the
closing transition from the open state by facilitating the (un)-
tilting of the pore-lining helices. The mechanistic scenario
emerging from the simulations suggested that receptor twist-
ing contributes to the activation process by “locking” the ion
channel in the open-pore form. In addition, a large reorienta-
tion or tilting of the extracellular β-sandwiches in the outward
direction further contributes to the allosteric communication
between the neurotransmitter-binding site and the ion pore.

The crystal structures of GLIC at both pH 7 (closed) and
pH 4 (open) further provided, for the first time, the end-point
structures of the gating mechanism in the same pLGIC
(Sauguet et al. 2014a) and included a coarse-grained dynamic
modeling of the structures (Sauguet et al. 2014a) (Fig. 2).
These data revealed the occurrence of a large quaternary
twisting upon receptor activation, as well as the occurrence
of important tertiary changes on activation, in particular a
significant tilting of the M2 helices. Remarkably, the X-ray
structures show, in agreement with Calimet et al. (2013), a
radial expansion of the EC domain, termed outward tilting or
blooming, which reflects a reorientation of the β-sandwiches
(Fig. 3).

The recent data on GluCl structure in its apo resting con-
formation compared to that obtained in the presence of the
positive allosteric modulator ivermectin appears, to some
extent, to be consistent with some of the conformational
changes identified with GLIC (Sauguet et al. 2014a): a twist
of the EC domain and a quaternary un-blooming (“resembling
the closure of a blossom”) occuring upon activation (Althoff
et al. 2014). However,in the GluCl structure, functionally
relevant tertiary changes, such as the detachment of the inner
and outer β-sheets and the translation of the C-loop observed
with GLIC, are not resolved. Also, differences in the global
twist and in the detailed mechanism of reorientation of TM
helices are noted. Unfortunately, no molecular dynamics data
are available on the recent GluCl data (Althoff et al. 2014).

The structure of a new “locally closed” (LC) state of
GLIC—which shows a closed pore in a structure that pre-
serves most of the features of the open form (Prevost et al.
2012)—also brings into question the simple correlation be-
tween global twisting and the tilting of the pore-lining helices,
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an issue thoroughly discussed in Sauguet et al. (2014a) and
Cecchini and Changeux (2014).

Lastly, X-ray analysis of LymnaeaAChBP complexed with
a series of 4,6-disubstituted 2-aminopyrimidines exhibiting
both positive and negative cooperativity in ligand-binding
assays shows that cooperative interactions are associated with
a global blooming of the AChBP molecule, yet without a
significant twist (Kaczanowska et al. 2014).

Taken together, the most recent molecular dynamics
(Calimet et al. 2013; Sauguet et al. 2014a; Taly et al. 2014;
Cecchini and Changeux 2014), structural (Sauguet et al.
2014a) and physiological (Purohit et al. 2013) studies con-
verge on a common atomic model of the gating transition
(Sauguet et al. 2014a, b; Cecchini and Changeux 2014).
According to the model, the “stepwise process” would start
from the orthosteric-binding site (loops A, B and C), propa-
gate to the EC/TM interface (β1– β2 loop and Cys loop) via a
rigid-body rearrangement of the EC β-sandwiches and move

down to the TM helices (first M2, then M4 and M3) to finally
open the gate (Fig. 4). This process would involve two distinct
sequential quaternary transitions: a radial concerted contrac-
tion or un-blooming of the EC domain, which promotes
opening of the ion pore, followed by a global concerted
twisting of the receptor to lock the channel in the active, open
channel, state.

The data are consistent with single-channel recordings (Zheng
and Auerbach 2011; Purohit et al. 2013) and their dynamics on a
microsecond to millisecond timescale. They are also consistent
with the MWC postulate that the conformational transition is
“concerted” and, at the endpoints, conserves the symmetry of the
oligomer. Furthermore, in agreement with the conformational
selection mechanism, Sauguet et al. (2014a) observed that in
some crystal forms of GLIC pH 4, the locally closed and open
conformations are found to coexist as discrete entities. Interest-
ingly, the greater fluctuations observed in crystals of GLIC pH 7
prefigured the conformational change toward the open state—as

Fig. 2 Compared crystal
structures of the closed (pH 7;
left) and open (pH 4; right)
channel states of the receptor
from G. violaceus (GLIC). The
pH 7 state shows a structural
variability which is absent in the
pH 4 state. Arrows in the right
structure illustrate the concerted
quaternary motions of twist and
bloom occurring during signal
transduction. From Sauguet et al.
2014a, Fig. 4A.

Fig. 3 Analysis of the quaternary motions of the GLIC twist and
blooming involved in the allosteric transition linking the ECD and the
ion channel. Comparing the resulting profiles between the pH 7 and pH 4
structures highlights the combination of radial and tangential movements
that relate them in the course of channel opening and are viewed as

corresponding to two different normal modes: twist and blooming,
respectively. Difference vectors pH 7 (closed channel) to pH 4 (open
channel). From left to right Twist and blooming; twist; blooming. From
Sauguet et al. 2014a, Figure S8b
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if the latter was already “on-path” even under conditions which
did not favor its occurrence.

Finally, several fast and slow desensitized I and D states
and uncoupled forms of prokaryotic receptors have been
identified, and their structures are currently under investiga-
tion. For example, the locally closed state (Prevost et al. 2012)
might be a fast desensitized I state (Prevost et al. 2013), and
the closed state of ELIC—often considered to be a resting
state (see Calimet et al. 2013)—might represent a slowly
desensitized D one (Velisetty et al. 2012; Sauguet et al.
2014a). The ELIC structure has also been suggested to be in
a “refractory” (Gonzalez-Gutierrez et al. 2012)/“uncoupled”
state (daCosta and Baenziger 2013) (see Cecchini and
Changeux 2014 for discussion).

Allosteric modulation of receptor function: toward a new
pharmacology

Several categories of allosteric sites modulate signal transduc-
tion mediated by nAChR. Ca2+, at millimolar concentrations,
potentiates most neuronal nAChRs (Mulle et al. 1992;
Vernino et al. 1992) and binds to sites located at the subunit
interface of the EC domain, below the ACh site near the TM
(Le Novere et al. 2002). In agreement with the MWC model,
Ca2+ primarily affects the isomerization constant between the
R and openA conformation (Galzi et al. 1996). A second class
of allosteric sites lies within the TM and accommodates phar-
macological agents which regulate receptor activity in either a
positive (e.g. the antihelminthic ivermectin; Krause et al.
1998) or a negative [e.g. general anesthetics (GAs; for

review, Nury et al. 2011) or ethanol (Sauguet et al. 2013)].
With mammalian GABAA receptors, early studies by
photoaffinity labeling with a derivative of the GA etomidate
identified sites located both between and within subunits, in
the TM domain (for review, Olsen 2014). Amazingly, GAs
such as propofol and desflurane negatively modulate the
response of the prokaryotic GLIC receptor. The X-ray struc-
ture of a GLIC–GA complex reveals that GAs bind to a
common site within the upper part of the TM of each subunit
inside a cavity accessible to phospholipids from the lipid
bilayer (Nury et al. 2011). The entrance to this cavity is
obstructed by a lipid alkyl chain that competes with propofol
binding. Lipids, free fatty acids and steroids are known to
allosterically modulate pLGICs and are thus likely candidates
as endogenous ligands for the GA sites (Nury et al. 2011;
Sauguet et al. 2013). Ivermectin, which positively modulates
GluCl, binds to GluCl crystals at subunit interfaces between
M3 andM1 (Hibbs and Gouaux 2011) and also competes with
phospholipids (Althoff et al. 2014). It would appear that
ivermectin is homologous to many important modulators of
pentameric receptors, such as alcohols, anticonvulsants, anes-
thetics and diuretics (Sauguet et al. 2014b).

Molecular dynamic studies (Calimet et al. 2013; Sauguet
et al. 2014a, b, Cecchini and Changeux 2014) of GluCl, and
the crystal structures of GLIC pH 4 and pH 7 unambiguously
show that the gating transitions involve a significant
restructuring of the subunits’ interfaces. This restructuring
includes a large contraction of the orthosteric sites in the R–
A transition and a major change of the allosteric modulatory
sites: widening of the homolog of the Ca2+ site pocket in the
pH 7 R state and stabilization by positive allosteric modulators

Fig. 4 Coarsed grained molecular dynamics trajectories for the gating of
the ion channel of theG. violaceus receptor. Opening of the ion channel is
from right to left. The iENM web server (http://enm.lobos.nih.gov) was
used to generate plausible trajectories between the four closed GLIC pH
7, the open GLIC pH 4 and the locally closed structures. The trajectories
are mapped onto ECD and TMD reaction coordinates to quantify the
differential progress of conformational change in these two domains.

Residues belonging to structural segments (loops) are displayed with
colored symbols (see color code on the right); all other residues are
displayed with small crosses. The figure illustrates the stepwise progress
of the concerted conformational change: from right to left channel open-
ing process starting at the ECD, from left to right channel closing process
starting at the TMD. From Sauguet et al. 2014a, Figure S18c.
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(ivermectin) of the untwisted (open pore) configuration of the
TM site (Sauguet et al 2014a; Althoff et al 2014).

From a drug design perspective, the model suggests as
logical targets the orthosteric and allosteric sites present on
these defined conformation(s)—rather than a single rigid
binding site (Changeux 2012a, 2013a; Sauguet et al. 2014b).
It thus makes possible to selectively generate agonistic versus
antagonistic-orthosteric or allosteric modulatory-ligands. The
model also predicts that by altering the unliganded equilibri-
um between discrete conformational states, gene mutations
may cause constitutive receptor activation (or inhibition) with
important pathological consequences (Changeux and
Edelstein 2005; Taly et al. 2006).

Conclusions: receptor dynamics and higher brain
functions

The introduction of molecular dynamics approaches in the anal-
ysis of the allosteric transition in pLGIC has led to a description,
at the atomic level, of the conformational change mediating
signal transduction and its intramolecular propagation as a con-
certed stepwise process at physiological timescales. It has also
catalyzed understanding of the signal transduction mechanism
mediated by ion channels (for review, Christopoulos et al. 2014)
and other classes of membrane receptors, such as the G protein-
coupled receptors (for review Bouvier 2013), the tyrosine kinase
receptors or, even, the nuclear receptors (for review, Changeux
2012a, 2013b; Christopoulos et al. 2014).

The finding that some of the basic building blocks of the
brain, such as the pentameric receptors, have not markedly
changed for 3 billion years raises an interesting issue. The
dynamics of our brain processes, including our mental ones,
are constrained by the timescale of conformational transitions
that originated in bacteria. This constraint possibly explains
why our brain, which processes propagating signals below the
speed of sound, looks so slow compared to computers oper-
ating at the speed of light.

These investigations further document and enrich what
may be referred to as a “chemical theory of higher brain
functions” (Changeux 1983, 2013b). Within this framework,
would our ultimate mental processes rest upon the biochem-
ical world of allosteric transitions that mediate interneuronal
communications across the multiple levels of organization that
span the human brain?
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