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As the capability of mass spectrometry-based proteom-
ics has matured, tens of thousands of peptides can be
measured simultaneously, which has the benefit of of-
fering a systems view of protein expression. However, a
major challenge is that, with an increase in throughput,
protein quantification estimation from the native mea-
sured peptides has become a computational task. A
limitation to existing computationally driven protein
quantification methods is that most ignore protein var-
iation, such as alternate splicing of the RNA transcript
and post-translational modifications or other possible
proteoforms, which will affect a significant fraction of
the proteome. The consequence of this assumption is
that statistical inference at the protein level, and conse-
quently downstream analyses, such as network and
pathway modeling, have only limited power for bio-
marker discovery. Here, we describe a Bayesian Proteo-
form Quantification model (BP-Quant)1 that uses statisti-
cally derived peptides signatures to identify peptides that
are outside the dominant pattern or the existence of multi-
ple overexpressed patterns to improve relative protein

abundance estimates. It is a research-driven approach
that utilizes the objectives of the experiment, defined in
the context of a standard statistical hypothesis, to identify
a set of peptides exhibiting similar statistical behavior
relating to a protein. This approach infers that changes in
relative protein abundance can be used as a surrogate for
changes in function, without necessarily taking into ac-
count the effect of differential post-translational modifi-
cations, processing, or splicing in altering protein func-
tion. We verify the approach using a dilution study from
mouse plasma samples and demonstrate that BP-Quant
achieves similar accuracy as the current state-of-the-art
methods at proteoform identification with significantly
better specificity. BP-Quant is available as a MatLab® and
R packages. Molecular & Cellular Proteomics 13:
10.1074/mcp.M113.030932, 3639–3646, 2014.

The application of MS-based proteomics has resulted in
large-scale studies in which the set of measured, and subse-
quently identified, peptides is often used to estimate protein
abundance. In particular, label-free MS-based proteomics is
highly effective for identification of peptides and measure-
ment of relative peptide abundances (1, 2), but it does not
directly yield protein quantities. The importance of accurate
protein quantification cannot be understated; it is the essen-
tial component of identifying biomarkers of disease or defin-
ing the relationship between gene regulations, protein inter-
actions, and signaling networks in a cellular system (3, 4). The
major challenge is that protein abundance depends not only
on transcription rates of the gene but also on additional con-
trol mechanisms, such as mRNA stability, translational regu-
lation, and protein degradation. Moreover, the functional
activity of proteins can be altered through a variety of post-
translational modifications or proteolytic processing and al-
ternative splicing, events which selectively alter the abun-
dance of some selected peptides while leaving others
unchanged (4). This complexity of the proteome, in addition to
issues associated with the measurement and identification
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errors, presents a significant challenge to accurate relative
protein quantification (5).

Smith et al. (3) recently described the importance of cap-
turing protein variation in all forms (e.g. post-translational
modifications, splice variants), all of which are collectively
referred to as proteoforms. To date, little has been described
in respect to automated identification of proteoforms. Most
work on improving protein quantification for label-free data
focuses on removing variation from the data through peptide
filtering, such as removing shared peptides or those that do
not meet frequency and coefficient of variation (CV) thresh-
olds (6). Several recent methodologies have described ap-
proaches to deal with shared peptides either through linear
programming (7), hierarchical modeling (8), or peptide detect-
ability (9) to improve protein-level quantification. However,
these approaches do not identify or quantify distinct proteo-
forms of a protein. The current state-of-the-art method for
proteoform discovery uses a combination of correlation and
clustering to identify distinct patterns (10). Protein quantifica-
tion by peptide quality control (PQPQ) to date has only been
applied to labeled data but is generic and can be applied to
label-free experiments as well.

Generating a parsimonious protein list is a well-known
practice in protein inference. The procedure involves as-
sembling the most concise set of proteins across the as-
signed peptide sequences observed in an experiment (11).
We present the novel approach of statistically informed
peptide selection using a Bayesian proteoform quantifica-
tion (BP-Quant) approach for parsimonious, relative protein
quantification (Fig. 1). Research objectives are at the foun-
dation of BP-Quant. Peptides to be used for protein quan-
tification are selected using a peptide-specific signature
vector that is determined by statistical hypothesis tests
relevant to the research objective(s) of the experiment as
well as the directionality of the effect(s) (i.e. upward or
downward abundance). The statistical signature-based ap-
proach does not omit shared peptides, although it does not
directly account for the fact that a peptide is shared. BP-
Quant-based protein quantification is a multi-step process
that (1) generates the peptide signature vectors based on
the research hypotheses, (2) assigns probabilities to poten-
tial proteoform configurations, and (3) selects peptides with
an over-representation of a similar signature to be used for
relative protein abundance estimates.

EXPERIMENTAL PROCEDURES

Discovery of candidate plasma biomarkers is of interest to many
applications, such as disease specificity, drug toxicity, drug re-

sponse, and fundamental research (12–15). Plasma samples col-
lected from standard inbred mice under the National Institutes of
Health National Institute of Environmental Health Sciences Biomark-
ers of Exposure project (http://www.niehs.nih.gov/health/topics/
science/biomarkers/) were used for a dilution study. Although the
focus of this larger project was to understand the development and
progression of complex disease due to exposure to environmental
stressors in the presence of risk factors such as obesity or exposure
to inhaled endotoxins (e.g. lipopolysaccharide) (16), here we con-
structed an experiment that yields expected protein ratios and for
which known concentrations can be used to define datasets with
positive examples (proteins with multiple proteoforms) and negative
examples (proteins with a single proteoform).

Sample Preparation—Mouse plasma samples (n � 16) were previ-
ously depleted of the seven most abundant proteins using an IgY7
depletion column and digested using the approach described in Zhou
et al. (17). For this dilution study, the digested mouse plasma samples
were spiked with an amount of digested Shewanella oneidensis MR-1
to maintain a constant peptide concentration for MS analysis. Each of
the 16 depleted and digested mouse plasma peptide samples and
one S. oneidensis MR-1 peptide sample were assayed with bicin-
choninic acid (Thermo Scientific, Rockford, IL) to determine the pep-
tide concentration. The 16 mouse plasma samples were then sub-
jected to four dilutions; (1) 1:0 mouse: S. oneidensis, (2) 1:1 mouse: S.
oneidensis, (3) 1:3 mouse: S. oneidensis; and (4) 1:7 mouse: S.
oneidensis. Each sample was vortexed and made to a final concen-
tration of 0.25 �g/�l using 25 mM ammonium bicarbonate, pH 8.0. All
samples were assayed again with bicinchoninic acid to ensure
accuracy.

Reversed-Phase Capillary LC-MS Analyses—Diluted peptide sam-
ples (64 total � 16 samples by four dilutions), analyzed in duplicate,
were balanced and randomized across a four-column custom-built
capillary LC system coupled online to a LTQ-Orbitrap Velos mass
spectrometer (Thermo Scientific, San Jose, CA) by way of an in-house
manufactured electrospray ionization interface, as previously de-
scribed (18). Electrospray emitters were custom made using 150
�m outer diameter � 20 �m inner diameter chemically etched fused
silica capillaries, as previously described (19). Reversed-phase
capillary columns were prepared by slurry packing 3-�m Jupiter
C18 bonded particles (Phenomenex, Torrance, CA) into a 75 �m �
65 cm fused silica capillary (Polymicro Technologies, Phoenix, AZ)
using 0.5 cm sol-gel plugs for particle retention (20). Mobile phases
consisted of (a) 0.1% formic acid in water and (b) 0.1% formic acid
in acetonitrile and were degassed on-line using a Degasys Model
DG-2410 vacuum degasser (Dionex, Germany); the HPLC system
was equilibrated at 10,000 psi with 100% mobile phase (a) for initial
starting conditions. After loading 2.5 �g of peptides onto the col-
umn, the mobile phase was held at 100% mobile phase (a) for 50
min. Exponential gradient elution was initiated 50 min after sample
loading with an initial column flow rate of 400 nl/min, and the mobile
phase was ramped from 0% to 55% mobile phase (b) over 100 min
using a 2.5 ml stainless steel mixing chamber, followed by a rapid
increase to �100% (b) for 10 min to wash the column. The tem-
perature of the heated capillary and the electrospray ionization
voltage were 200 °C and 2.2 kV, respectively. Data were collected
over the mass range 400–2,000 m/z.
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FIG. 1. BP-Quant for parsimonious protein quantification is driven by research objectives that define statistical patterns of interest.
Relative protein abundance values are estimated using peptides that share similar statistical behavior.
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Peptide Identification—Quantitative LC-MS data were processed
using the PRISM Data Analysis system (21), which is a series of
software tools developed in-house (e.g. Decon2LS (22) and VIPER
(23). The first step involved deisotoping of the raw MS data to give the
monoisotopic mass, charge state, and intensity of the major peaks in
each mass spectrum (22). The data were next examined in a two-
dimensional fashion to identify groups of mass spectral peaks ob-
served in sequential spectra using an algorithm that computes a
Euclidean distance in n-dimensional space for combinations of peaks
(23). Each group, generally ascribed to one detected species and
referred to as an “LC-MS feature,” has a median monoisotopic mass,
central normalized elution time (NET), and abundance estimate com-
puted by summing the intensities of the MS peaks that comprise the
entire feature. The peptide identities of detected features in each
dataset (here a dataset is equivalent to a single LC-MS analysis) was
determined by comparing their measured monoisotopic masses and
NETs to the calculated monoisotopic masses and observed NETs of
each of the peptides in a mouse plasma/Shewanella accurate mass
and time tag database (24) within initial search tolerances of � 6 ppm
and � 0.025 NET for monoisotopic mass and elution time, respec-
tively. The peptides identified from this matching process were re-
tained as a matrix for subsequent data analysis and are available in
Excel format in supplementary data and online at http://omics.pnl.
gov/view/publication_1088.html.

Statistical Preprocessing of Peptide Abundance Dataset—Peptide
abundance data were transformed to the log2 scale, and missing data
values were left as blank (not imputed) prior to processing. Peptides
with an insufficient amount of data to perform a qualitative or quan-
tification statistical difference test (e.g. G-test or Analysis of Variance
(ANOVA)) across the set of biological replicates were removed (25).
The full collection of mouse plasma and S. oneidensis peptides were
evaluated for evidence of unusual peptide abundance distributions
across the pool of LC-MS analyses (26). The peptides associated with
the mouse plasma were extracted, technical replicates were aver-
aged, and additional peptide filtering was performed to ensure suffi-
cient data across the pool of samples. The mouse plasma data were
normalized using a two-step process. First, the undiluted samples
consisting of only mouse peptides (0.50 �g/�l, n � 16) were mean
centered using a rank invariant peptide subset (27). The remaining
three dilution sets (0.25 �g/�l, 0.125 �g/�l, and 0.0625 �g/�l) were
then normalized as a function of the expected dilution ratio to the
normalized peptide set consisting of only mouse peptides.

BP-Quant—Fig. 2 presents an example of the BP-Quant approach
to protein quantification. Step 1 defines the research goal, for exam-
ple, identifying proteins with any statistically significant differential
expression (i.e. abundance) between control and two conditions (T1
and T2). Step 2 treats each peptide as an independent source of
information and evaluates each using an appropriate statistical test,
such as an ANOVA with a Tukey’s post-hoc test to adjust for the
multiple comparisons within the peptide (28). In Step 3, the statistical
results, typically p values, are translated into signatures based on the
trinary descriptors (-1, 0, or 1) where -1 and 1 indicate the treatment
group has lower or higher expression, respectively, than the compar-
ison group and 0 indicates no statistical difference in peptide abun-
dance. In particular, the significant features are checked for each
individual contrast such as (1) control versus T1, (2) control versus T2,
and (3) T1 versus T2. In practice, the primary signature vector is based
on the comparison of quantitative peptide abundance values across
groups, where groups are defined by the research objectives. A
secondary signature vector can also be defined based on the com-
parison of the frequency of response (i.e. presence/absence) across
comparison groups, which is highly relevant for proteomics data
given the large fraction of missing values. If the primary signature
vector lacks a p-value which indicates inadequate data for a quanti-

tative statistical test, then they are replaced using the corresponding
secondary signature vector value(s) that are based on qualitative test
results. The fourth step computes the probability of all possible pro-
teoform configurations, thus identifying how many proteoforms are
present and the peptides associated with each proteoform. The last
step then quantifies protein-level expression using standard ap-
proaches (29).

Bayesian Peptide Selection/Proteoform Identification—The goal of
the Bayesian inference problem is to determine a specific proteoform
configuration given the information for protein i. We assume that each
unique peptide signature can result in a unique proteoform, and thus,
each signature is defined as a Bernoulli random variable where xij �
1 if proteoform j is present for protein i and 0 otherwise. For each
protein i, we observe a count for signature j (nij) and similar to prior
work in protein inference (30, 31), the goal is to determine the maxi-
mum a posteriori (MAP) proteoform configuration, which is dependent
upon the observed signature counts:

arg max� xi1, xi2,· · · , xiM� P�xi1,xi2,· · · ,xiM � ni1,ni2,· · · ,niM�

(Eq. 1)

The MAP proteoform configuration (Eq. 1) is found by eval-
uating the posterior probability of each configuration where all
random variables are described in Table I:

P�xi1,xi2,· · · ,xiJ � ni1,ni2,· · · ,niJ�

�
P�ni1,ni2,· · · ,niJ � xi1,xi2,· · · ,xiJ� P�xi1,xi2,· · · ,xiJ�

�
� xi1,xi2,· · · ,xiM�

P�ni1,ni2,· · · ,niJ � xi1,xi2,· · · ,xiJ� P�xi1,xi2,· · · ,xiJ�

(Eq. 2)
The probability that we would observe a specific number of

peptides displaying signature j for protein i is dependent upon
the proteoform configuration for that signature. Under the
assumption that each signature is independent, we can sim-
plify Eq. 2 to

P�Xi � ni1,· · · ,niJ� �

�
j
P�nij � xij�P�xij�

�
� xi1,xi2,· · · ,xij�

�
j

P�nij � xij�P�xij�
(Eq. 3)

where Xi�[xi1, xi2, , xiJ]. In practice, the assumption of inde-
pendence of peptides will not hold holistically; however, this
assumption works relatively well for initial model development
similar to protein inference. We model the probability that we
would observe a specific number of observations for a given
signature as a binomial distribution. For example, if we have a
background frequency (�) of 0.15 for signature j of protein i,
there is only a 2.1% chance that we would observe this
signature four or more times for a protein containing eight
peptides. If the proteoform is present, xij is one, we sum over
the binomial probabilities from the lower tail of a binomial.
Thus, if the likelihood of observing nij by chance is very low,
the probability in the lower tail will be high. We utilize this
distributional information to determine the likelihood of over-
represented signatures that are indicative of a proteoform.
Since x is binary, the prior, P(xij, is modeled as a Bernoulli
random variable;
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P�Xi � ni1,· · · ,niJ�

�

�
j

�ij
xij�1 � �ij�

�1	xij�� �
k��1	xij��nij�1	xij��

Ni�1	xij�
�nij	1�xij	1�Ni

k��ij
k�1 � �ij�

Ni	k	
�

� xi1, xi2,· · · , xij�
�

j
�ij

xij�1 � �ij�
�1	xij�� �

k��1	xij��nij�1	xij��

Ni�1	xij�
�nij	1�xij	1�N
i

k��ij
k�1 � �ij�Ni � k	

(Eq. 4)

The computational time to solve Eq. 4 is minimal because
the full possible set of solutions for Xi is constrained by the
observed signatures within protein i. Therefore, we only con-
sider a small subset of all possible proteoform configurations.

Equation 4 is used to compute the probabilities of the possi-
ble proteoform configurations (Step 4) in Fig. 2, and the final
step then uses the peptides assigned to each proteoform to
infer a protein-level estimate.

The probabilistic inference of proteoform configurations is
dependent upon the expected background frequency of each
signature �ij. A data-driven approach is used to infer this
probability by defining random dataset(s) with the same prop-
erties as the data to be evaluated but defined to have no
statistical changes between groups. Each dataset is gener-
ated by simulating data for each peptide in the original data as
a normal random variable with a mean of 0 and the pooled
estimate of variance from the observed data. Values for the

FIG. 2. A demonstration of the overall BP-Quant approach using simulated data to represent a protein k with six peptides
categorized into two unique statistical vectors. The BP-Quant algorithm generates peptide signature vectors using the results of statistical
analyses which are defined by the research objectives (Steps 1, 2, and 3). The peptide signature vectors are binned by uniqueness and tallied
(Step 4) and quantified into unique protein estimates (proteoforms).
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peptide are then removed at random to yield the same
amount of missing values from the peptide as observed in the
real data. Once all peptides have been simulated Steps 1–3 of
the BP-Quant protocol are performed. For the dataset, we
define �I, as the total number of peptides identified to have a
single proteoform divided by the total number of peptides. We
repeat the process 100 times to identify a robust estimate of
�1 as the average across all �s. The estimate of �ij is based
upon �1, and the total number of signatures as defined in
Table I.

RESULTS

To explore the capability of BP-Quant to correctly identify
the number of proteoforms associated with a protein we use
the dilution series, which consists of 100 proteins where each
protein contains from 2 to 188 peptides. We compare these
results to a standard correlation-based approach (PQPQ) that
uses clusters defined from correlation to define proteoforms
(10, 32). We used the publicly available version of PQPQ,
which runs in MATLAB 2013a with all defaults. Since the
PQPQ software is designed for labeled data, we defined the
highest dilution as our control set and allowed PQPQ to
perform the analysis on the ratios to this group. For consis-
tency, the peptide relationships to proteins and proteoforms
were extracted from the output, and protein quantification
was performed identical to BP-Quant using a reference-
based approach—R-Rollup (29, 33).

The dilution series dataset in its native state has no biolog-
ical variability, and therefore, every protein should have only a
single proteoform. BP-Quant indeed identified a single pro-
teoform state as the most probable for each protein. PQPQ
identifies 5% of the proteins as having more than one proteo-
form. To evaluate performance in respect to accuracy and
sensitivity, datasets for which proteins are defined where the
exact number of proteoforms is known are required. This can
be constructed with exact knowledge from the dilution series.
As an example, imagine a protein in the dilution series with six

peptides. The first three peptides maintain the basic order of
[0.5, 0.25, 0.125, 0.0625], thus the pattern is a clear decrease
from the 0.5 dilution. The next three peptides have the dilution
[0.25, 0.5, 0.125, 0.0625], and thus, the expression pattern is
an initial increase from 0.25 followed by a decrease for the last
two dilutions. In this example (Fig. 3), these are the six pep-
tides and associated abundance values identified from pro-
tein A1AG1_mouse, for which simply the last three peptides
were permuted to the second dilution ordering. Therefore, for
this protein, we can clearly define that we have two distinct
proteoforms. For every protein in the dilution series, we first
select a defined number of proteoforms, second identify
which peptides will belong to each proteoform (minimum of
three), and lastly determine the dilution ordering (permutation)
for each proteoform. To assess variability in the final result, we
generate the complete dataset 50 times.

Across the 50 datasets, there were on average 42 � 3.5
proteins (of 100 total) with multiple proteoforms, and the
number of proteoforms for these proteins ranged from 2–6
(average of 3.1). For each of the datasets, the predicted
number of proteoforms to the known number of proteoforms
was compared, and the accuracy was quantified. The accu-
racy was defined based on true positive (TP) and true nega-
tives (TN) where TP and TN are the total the number of
proteins that correctly identified the number of proteoforms—
(TP
TN)/100. Alternately, metrics such as root mean square
error can be used but return similar results (data not shown).
Fig. 4 shows a comparison of BP-Quant versus PQPQ with
respect to accuracy for each of the 50 datasets (circles). The
accuracies are relatively similar, average of 76.7% and
76.0%, with standard deviations of 3.3% and 3.3%, for BP-
Quant and PQPQ, respectively. In 64% of the cases, BP-
Quant had a higher accuracy, which was statistically signifi-
cant by a Wilcoxon rank sum test (p �0.007).

The measure of accuracy in Fig. 4 does not directly con-
sider the specificity of the test, i.e. the number of times a
protein with a single proteoform (TN) is falsely identified as

TABLE I
Notations and definitions

Notation Definition

M The total number of possible statistical signatures
�i1 The expected frequency of signature (j � 1) defined as the pattern the represents no statistical change

between any groups �0,0,0. . . . ,0�
nij The number of observations of signature j given protein i
Ni

The number of peptides identified for protein j �¥
l
nij � Ni�

Si The number of signatures with a statistical change that have counts greater than zero given protein i

� ¥
jl

�nij � 0� � Si�
�ij The background expected frequency of signature j (j1) given protein i

� � 
 0 if nij � 0
�1 � �i1�/Si otherwise

Xij � (xi1, xi2, . . . , xiM) Proteoform configuration based where xij � 1 means the peptides associated with signature j do
represent a unique proteoform and xij � 0 is no unique proteoform.
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having multiple proteoforms, a false positive (FP), or con-
versely, a false negative (FN). Thus, we also evaluate the
F1-score, which is the harmonic mean of precision and sen-
sitivity; (2TP/2TP
FP
FN. Under the circumstance of no
false identifications, the F1-score will be 1 and will decrease
as the number of false positives and negatives increase. BP-
Quant has a significantly higher F1-score than PQPQ based
on a Wilcoxon signed rank test (p � 3e-4), larger in 74% of the
datasets. Fig. 5 shows the confidence interval for the F1-

score for each approach as well as a box plot of the difference
inset in the figure.

Lastly, to explore the impact of noisy data with no proteoform
present, we used the dilution series data to construct negative
sets by simply randomly permuting the data for each peptide
and leaving the dilution ordering constant. In this manner,
there should be no statistical difference between groups and
those for which this is the case would be outliers. The accuracy
of BP-Quant on this negative set is displayed in Fig. 4 (green

FIG. 3. Example of defined proteoform state for a specific protein using dilution permutation to generate datasets with positive and
negative proteoform examples.
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triangles). The average accuracy of BP-Quant on the negative
set was 98.5% with a standard deviation of 1.25% while PQPQ
resulted in an average accuracy of only 72.9% with a standard
deviation of 2.64%. This is similar to the observations for the
dilution series with no permutations where PQPQ found 5 of the
54 proteins (10%) were identified to have multiple proteo-
forms when only one proteoform is possible.

DISCUSSION

The use of proteomic measurements for biomarker discov-
ery results in a vast amount of information that, by necessity,
requires summarization to facilitate further biological conclu-
sions. There is great benefit to a rigorous statistical investi-
gation of the data in the context of the research hypothesis
and the subsequent peptide and protein information available
for biological modeling. Statistically informed peptide selec-
tion is essential for any of the relative protein quantification
approaches presented when dealing with complex samples,
such as those used in environmental, medical, or clinical
studies. Such approaches are particularly important for lower
abundances species, which are often of greatest interest in
biomarker discovery efforts. In addition, since BP-Quant is a
signature-based peptide selection methodology, it can be
used as a precursor to any desired protein quantification
method (e.g. reference-based or linear models).

Proteoform identification is one of the major challenges of
the protein quantification field and is a necessity to facilitate
biomarker discovery and improve fundamental knowledge of
biological systems at the pathway level (3). The BP-Quant
approach facilitates the discovery of significant biological pat-
terns in the presence of substantial noise and also facilitates
the discovery of multiple significant biological patterns (i.e.
possible proteoforms), by selecting specific peptides that dis-

play unique patterns of expression. In many cases, such
specific proteoforms, such as those arising from post-trans-
lational modifications, have been identified as associated with
diseases such as Alzheimer’s and Parkinson’s (34). BP-Quant
showed excellent specificity and similar accuracy to a corre-
lation-based clustering approach to proteoform identification.
The current implementation of BP-Quant assumes that pep-
tides are independent, which clearly is not the case. Future
explorations will evaluate using protein-level information,
such as exon structure or peptide sequence overlap, or cor-
relation, such as PQPQ, to identify these dependences and
model them in the Bayesian framework.

In the absence of the BP-Quant approach, biologists have
been presented with a sort of “consensus behavior” of the
peptides mapped to a given protein, even as individual peptides
may have been significantly modified as a specific response to
experimental conditions. Because BP-Quant has the ability to
effectively segregate the consensus peptides from the uniquely
altered peptides, biologists can begin to assess the functional
significance of specific proteoforms within a biological context.
This is a powerful tool for systems biology studies in which the
flow of information is as important as mere changes in abun-
dance. It may also convey an additional layer of specificity on
biomarker discovery efforts, greatly improving the ability to
identify proteoform-specific biomarkers.
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