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Protein interaction domain (PID) linear peptide motif in-
teractions direct diverse cellular processes in a specific
and coordinated fashion. PID specificity, or the interaction
selectivity derived from affinity preferences between pos-
sible PID-peptide pairs is the basis of this ability. Here, we
develop an integrated experimental and computational
cellulose peptide conjugate microarray (CPCMA) based
approach for the high throughput analysis of PID speci-
ficity that provides unprecedented quantitative resolution
and reproducibility. As a test system, we quantify the
specificity preferences of four Src Homology 2 domains
and 124 physiological phosphopeptides to produce a
novel quantitative interactome. The quantitative data set
covers a broad affinity range, is highly precise, and agrees
well with orthogonal biophysical validation, in vivo inter-
actions, and peptide library trained algorithm predictions.
In contrast to preceding approaches, the CPCMAs proved
capable of confidently assigning interactions into affinity
categories, resolving the subtle affinity contributions of
residue correlations, and yielded predictive peptide motif
affinity matrices. Unique CPCMA enabled modes of sys-
tems level analysis reveal a physiological interactome
with expected node degree value decreasing as a function
of affinity, resulting in minimal high affinity binding overlap
between domains; uncover that Src Homology 2 domains
bind ligands with a similar average affinity yet strikingly
different levels of promiscuity and binding dynamic range;
and parse with unprecedented quantitative resolution
contextual factors directing specificity. The CPCMA plat-
form promises broad application within the fields of PID

specificity, synthetic biology, specificity focused drug de-
sign, and network biology. Molecular & Cellular Pro-
teomics 13: 10.1074/mcp.O114.038695, 3647–3662, 2014.

Protein interaction domains (PIDs)1 often compete for the
same linear motif binding sites across a range of affinities,
resulting in many potential interactions that may enable the
rapid assembly and disassembly of signaling proteins in re-
sponse to external and internal cues (1, 2). PID-peptide inter-
actions have small binding interfaces, resulting in moderate
affinity interactions mediated primarily by a few amino acid
“hot-spots” within motifs specific for a particular PID family
(3–5). The power of individual residues to direct interactions,
the absence of structural constraint for linear motifs, and the
modularity of PIDs has enabled the rapid evolution of these
networks resulting in many large multimember PID families in
higher eukaryotes (6–9). For these large families dedicated to
the recognition of similar ligands, PID specificity—or the in-
teraction selectivity derived from affinity preferences between
possible PID-peptide pairs—underpins the effective convey-
ance of specific cell signals. High throughput interaction map-
ping efforts are used to decipher how this PID “specificity
space” is populated, thereby providing insight into protein
function and the principles of network architecture and evo-
lution (10–15). The extent of binding overlap or interaction
promiscuity within and between PID families for physiological
ligands, the affinity range of overlapping interactions, and the
biological relevancy of these interactions are important ques-
tions thus far poorly resolved by existing high throughputFrom the ‡The Department of Biochemistry and Molecular Biology,
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methods. Here, we develop and apply a quantitative high
throughput method capable of addressing these questions.

Peptide arrays (16, 17), degenerate libraries (18, 19), and
phage display (20) are the most frequently applied high
throughput approaches for investigating PID specificity.
Phage display and degenerate library approaches sample a
large ligand space and can produce consensus selectivity
motifs that represent the most preferred residues at every
position panned. This selectivity data is used to predict inter-
actions, often via position specific scoring matrices (PSSMs)
(21–23). However, neither approach can explicitly measure
nonbinding events and only large phage display data sets can
resolve a limited subset of high-affinity contextual binding
information (24). Nonbinding information and contextual inter-
play, that is, correlated contributions between ligand posi-
tions to binding affinity, play important roles in defining the
specificity landscapes for multiple PID families (25–27). Hav-
ing explicit nonbinding or low-affinity information available
helps uncover contextual binding information, and improves
the accuracy of interaction priority assignment between mul-
tiple competing PIDs. Correspondingly, the availability of non-
binding and contextual information improves interaction
prediction performance (28, 29). Peptide arrays using physi-
ological ligands do not have these limitations, yet may under-
sample PID specificity space because of smaller library sizes.
Newly emerging ultrahigh density peptide arrays avoid this
particular limitation and are capable of sampling the entire
proteome (30). However, a common limitation for all of these
techniques is their dependence on nonquantitative interaction
information.

A comprehensive understanding of PID specificity space
requires the quantitative assessment of pairwise interactions
across a broad dynamic range of affinities. Common low-
throughput biophysical techniques used to measure protein-
peptide interaction affinities require highly pure and often
large amounts of interactants along with prior knowledge of
their interaction. To facilitate discovery and lessen the strin-
gency of the purity and/or quantity requirements of interacting
molecules, multiple quantitative high throughput methodolo-
gies have been developed. Thus far, the protein microarray
(PMA) (31) and high-throughput fluorescence polarization
(HTFP) (11, 32) quantitative approaches have been used to
examine PID specificity. Unfortunately, PMAs suffer from poor
sensitivity, reproducibility, and measurement discrepancies
(32, 33). The alternative HTFP assay is more sensitive than
PMAs, but also has poor reproducibility and is biased toward
high affinity interactions (32). Further, PMAs and HTFP have
minimal KD sensitivities of 2 and 20 �M, respectively. This
boundary limits their scope of application considering the
importance of moderate affinity interactions for many PID
families (34) and the general importance of these interactions
in directing emergent phenomena such as ultrasensitivity and
interaction gating (35, 36).

The Src Homology 2 (SH2) domain phosphotyrosine inter-
actome is a system of prominent physiological importance
that has been the subject of multiple preceding interaction
mapping and platform development efforts (17, 19, 31, 32, 37,
38). Tyrosine phosphorylation and its recognition by SH2
domains is a uniquely metazoan adaptation (39), prominently
involved in the transduction of growth signals (1, 2, 40). SH2
domain specificity has been leveraged in multiple contexts to
rewire signaling pathways (15), and specificity dysregulation is
associated with multiple diseases, including cancer (40–42).
Despite the importance of directing specific signals, many
SH2 domains share sequence preferences, resulting in sub-
stantial binding crossover over a broad dynamic range of
affinities (27). Yet, the extent of this crossover and the peptide
motif characteristics responsible for its direction are poorly
resolved. In light of these biological attributes and the avail-
ability of preceding information to guide platform develop-
ment and assess its performance, we chose a significantly
novel set of 124 physiological phosphopeptides and four SH2
domains as a pilot interactome for our arrays.

Here we develop a cellulose peptide conjugate microarray
(CPCMA) based approach that is the first broadly applicable
protein interaction mapping approach capable of explicitly
capturing binding and nonbinding information, resolving the
contextual interplay between amino acids that contribute to
binding, and providing a quantitative measure of interaction
affinity. We optimize multiple production and incubation pa-
rameters for the arrays and develop an experimental and
computational pipeline to control for systematic artifacts and
robustly estimate affinities, ultimately producing a physiolog-
ical interactome of 368 measurements between 92 peptides
and four domains. In contrast to preceding platforms, we find
our approach is highly sensitive, extremely precise, and con-
sistent with multiple forms of orthogonal biophysical and in
vivo validation. Leveraging unique modes of analysis enabled
by the CPCMAs, we demonstrate that SH2 domains vary
considerably in promiscuity and binding dynamic range in a
manner aligned with biological function. Consistent with re-
cent evidence that pathway crosstalk is subjected to negative
selection (10–12, 43) we demonstrate for the first time that the
degree distribution of the interactome is a function of affinity,
and therefore little binding overlap is found among the highest
affinity interactions, suggesting that such sites may be impor-
tant points of in vivo coregulation. We highlight a few such
interactions and corroborate others using available domain-
site specific in vivo interaction information. Next, in order to
provide insight into the specificity determinants responsible
for this segregation we produce for the first time predictive
domain specific binding motif affinity matrices. Lastly, we
demonstrate the unique ability of the CPCMAs to resolve con-
textual contributions to binding, and highlight examples where
contextual information contributes to binding specificity.

Quantitative analysis of systems-level PID properties is a
necessary prerequisite for improved mathematical modeling
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of signal transduction systems, specificity focused drug de-
sign, and engineering advanced synthetic biology circuits.
Thus, our quantitative CPCMA based approach should have
broad application in future network biology and PID specificity
efforts.

EXPERIMENTAL PROCEDURES

SH2 Domain Production and Purification—SH2 domain sequences
were cloned into pGEX vectors as GST fusions as described (27) and
expressed in E. coli BL21 cells using autoinduction recipes and pro-
tocols according to Studier et al. (44). Following overnight culturing,
cells were pelleted and resuspended in 50 mM HEPES, 150 mM NaCl,
1 mM EDTA, 1 mM dithiotreitol, and 0.1% Triton X-100 pH 7.5 �
protease inhibitor mixture (EMD). Unless stated otherwise, all purifi-
cation steps were carried out at 4 °C. The suspension was sonicated,
pelleted, and the supernatant was mixed with polyethyleneimine (PEI)
to .1% (v/v) forming a white precipitate. This precipitate was pelleted
in an ultracentrifuge, and the GST-SH2 domain containing superna-
tant was subjected to batch affinity chromatography using glutathi-
one (GSH) functionalized resin (Fisher) for 2 h at RT or overnight. The
proteins were eluted from the beads with 10 mM GSH in .1 M HEPES
pH 8.0. Eluted protein was buffer exchanged using Nap10 (GE) col-
umns for cation exchange chromatography. Proteins were further
purified with an AKTA purifier system (GE) using a cation exchange
resin SP (GE), CM (GE), or heparin (GE) to remove nucleic acid
contamination. In isolated cases, proteins were subjected to gel
filtration (GE) for additional cleanup. Following centrifugal concentra-
tion (Thermo), proteins were buffer exchanged into 50 mM HEPES,
100 mM NaCl, 1 mM EDTA, 1 mM DTT, 20% v/v glycerol pH 7.5 using
Nap10 or PD MiniTrap (GE) columns, flash frozen, and stored at
�80 °C until needed. Aliquots were subjected to SDS-PAGE with
Coomassie Blue stain to verify purity. Concentration measurements
were performed via BCA assay (Thermo) according to the manufac-
turer’s instructions.

Soluble Peptide Production and Fluorescence Polarization—Pep-
tides were synthesized using 9-Fluorenylmethoxycarbonyl (FMOC)-
chemistry onto preloaded tenta-gel resins. Peptides were labeled
N-terminally with Rhodamine B (Abbey Color, Fremont, CA) or 5–6
carboyfluorescein (Anaspec) and cleaved using trifluoroacetic acid.
Peptides were purified and mass quantified using a LC/MS or MALDI
mass analyzer (Agilent 2100). Peptides were lyophilized and stored
under nitrogen at �20 °C until use. A subset of fluorescein labeled
peptides was also purchased (Genscript, Piscataway, NJ). FP exper-
iments were conducted using the Beacon 2000 (Invitrogen, Carlsbad,
CA).

SPOT Synthesis—Membranes were synthesized using the MultiPep
high throughput peptide synthesizer (Intavis, Cologne, Germany). All
Fmoc-Amino Acids were purchased from Bachem, except Fmoc-pTyr
(Anaspec). All solvents were purchased from Fisher unless otherwise
indicated. Cellulose membranes were purchased from Intavis. The
SPOT synthesis method was carried out on cellulose membranes
using Fmoc chemistry as described in detail elsewhere (45). Each
11-mer peptide chain was synthesized with pTyr or Tyr in the 5th
position relative to the N terminus. To prevent oxidation mediated
artifacts, all cysteine residues were replaced with serine and all me-
thionine residues were replaced with norleucine. All peptides were
acetylated at the N terminus.

SC2 Synthesis—Following synthesis, each of the 384 peptide spots
were manually removed from the membrane using a hole-puncher
and placed into individual wells of a 96 well plate (Matrix Technolo-
gies, Toledo, OH). Each well was treated with 150 �l of a deprotection
mixture consisting of 95% trifluoroacetic acid, 3% triisopropylsilane
(TIPS), and 2% H2O for 1.5 h. Deprotection mixture is then aspirated

from each well and replaced with 250 �l of trifluoroacetic acid
(93.5%), Trifluoromethanesulfonic acid (TFMSA) (2.5%), H2O (2.5%),
TIPS (1.5%), or one of the alternative dissolution cocktails (see Table
I) for 17 h at RT with minor agitation. Subsequently each CPC is
precipitated and washed three times with cold MTBE using the Pre-
cision 2000 pipetting robot (BioTek, Winooski, VT). The final wash
supernatant is removed and each CPC is dissolved in 100 �l dry
dimethyl sulfoxide with agitation. The dissolved conjugates are trans-
ferred in 20 �l aliquots to five 384 well plates (Genetix) by robotic or
manual pipetting. The plates are then centrifuged and covered with
metallic sealer to prevent evaporation (Dot Scientific). The plates are
flush or flash frozen and stored at �20 in a desiccator until used for
printing.

Microarray Fabrication—Plates are thawed to RT in a desiccator
before removing the seal. Five microliter aliquots were used for print-
ing each batch of arrays. Each print batch was fabricated using the
Omnigrid 100 (Digilab, Marlborough, MA) contact arrayer using a
single SMP3 split pin (Arrayit, Sunnyvale, CA). Arrays were printed on
amine, aldehyde, acrylic, epoxy, or nontreated slides. All slides were
purchased from Genetix with the exception of the nontreated slides
that were purchased from Fisher. Each unique CPC or CPC dilution
combination was spotted four times per microarray for control exper-
iments, 12 times per microarray for quantitative arrays and substrate
comparisons (one/well), and 24 times per microarray for dissolution
condition comparisons (two/well). After printing slides were stored in
a desiccator at 4 °C until ready for use.

CPCMA Incubations and Analysis—All array incubations were per-
formed using a custom designed ArraySlide and ArrayMix (Gel Com-
pany, San Francisco, CA) orbital shaker at 300 rpm according to the
protocol outlined here. All steps were performed at RT unless other-
wise indicated. All blocking and incubation steps were performed
covered with seal plates to prevent evaporation. All wash steps were
performed with 250 �l of solution unless otherwise indicated. Mi-
croarrays were swollen with two 10 min washes of 500 �l H2O
followed by two 5 min washes with PBS, and two 5 min washes with
PBS-T (.1% v/v). The arrays were then blocked for 1.5 h with 250 �l
PBS-T/dry milk (2% w/v) and 1 mM dithiotreitol. The arrays were then
washed three times with 250 �l PBS-T for 5 min. The following
protocol was used for all CPCMAs. Primary analyte incubations were
performed for 20 h at 4 °C with 100 �l PBS-T/dry milk (2% w/v), with
(SH2 domains) or without (Anti-pY/CBD) 1 mM DTT. Anti-pY antibod-
ies were arrayed at 2.5 nM and CBD-Protein L fusion (Fluka) at 45 nM.
The arrays were then washed three times with PBS-T for 5 min.
Secondary incubations were performed for 5 h with 100 �l PBS-T/dry
milk (2% w/v). Anti-GST (Genscript monoclonal A00865) for SH2
domains and control experiments was arrayed at 7 nM, human IgG for
CBD-L experiments was arrayed at 70 nM. After another round of
PBS-T washes, tertiary incubations were performed for 2.5 h with 100
�l PBS-T/dry milk (2% w/v). AF633 conjugated anti-mouse and anti-
human secondary detection antibodies (Invitrogen) were arrayed at 7
nM. The arrays were then washed thrice with PBS-T, twice with PBS,
and twice with H2O. After the final wash with H2O slides were re-
moved from the gaskets and washed in a bath of H2O covered in a
glass tray (Ted Pella, Inc., Redding, CA) with slight agitation for 10
min. Slides were removed from their gaskets and dried with a stream
of extra-dry Ar. Slides were placed covered in a desiccator at 4 °C
until scanned. Slides were usually scanned within 1 week of arraying.

Array Scanning—All images were acquired on a Genepix 4000B
scanner. Genepix Pro 6.1 software was used for feature identification
and image processing. All images were acquired with maximal laser
power at 5 �m resolution. Nonquantitative arrays were scanned at a
single photomultiplier voltage such that saturated pixels were mini-
mized. Spots with artifacts such as saturated pixels or bleed in from
adjacent spots were omitted from further analysis. Average intensities
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were calculated for each feature on the microarray. For quantitative
experiments, voltage levels were chosen such that the lowest setting
captured no saturated pixels. Each array was scanned at a minimum
of three different voltages, in steps of 100 V.

Data Analysis—Most data analysis steps were performed using the
R statistical computing environment (http://www.R-project.org/).
Some analysis was also performed using Originlab8.1 and Excel.

For CPCMAs used for substrate comparisons unique CPC/dilution
factor replicates (n � 4) for each bioassay were averaged for each
slide. For CPCMAs used for dissolution condition comparisons
unique CPC/dissolution condition replicates (n � 24/slide) were av-
eraged. For substrate and dissolution condition comparisons, each
unique CPC condition was pooled into a single bioassay specific
group for statistical comparisons. Group distributions were tested for
normality. Normally distributed groups were compared by two sample
t-tests and non-normally distributed groups were compared by Wil-
coxon rank-sum test. Unless otherwise indicated, hypothesis testing
was performed using a two-tailed t test. PCC comparisons were
performed using Fisher’s r-to-z transformations and a two tailed test
of significance. Venn diagrams were produced using the R package
“VennDiagram.” The network graphic was produced using cytoscape
(46).

Receiver Operating Characteristic (ROC) Analysis—The array pro-
duces numerical estimates of affinity and not binary affinity class
assignments. We tested the performance of our array derived affinity
estimates as a ranking classifier, using our paired FP affinity estimates
as the reference set. The KD cutoff corresponds to the reference set
of FP values and is used to define the actual class set. For example,
in the case of the 10 �M cutoff, if an interaction has an affinity greater
than 10 �M as measured by FP it is assigned a 1, and if not a 0. To
produce the ROC curve, the interactions with class affiliation are
ordered by apparent KD, and the apparent KD (ranking classifier)
values are then thresholded, or stepped sequentially throughout the
data range, producing different true positive (tpr) and false positive

rates (fpr) at each step. Where tpr �
tp

tp � fn
and fpr �

fp
fp � tn

such

that tp and tn indicate those interactions correctly classified as
above or below the threshold and fp and fn indicate those interac-
tions incorrectly classified as above or below the threshold. ROC
curves from single concentration data and SMM derived predic-
tions were generated in an analogous fashion. For the 10 �M cutoff,
the apparent KD value that produced the maximum accuracy (where

accuracy �
tp � tn

tp � tn � fp � fn
) was also calculated. ROC analyses and

the associated plots were produced with the R package “ROCR.”
Literature Curation, SMALI, and Scansite Implementation—The lit-

erature was manually mined along with the databases Phosphosite
(47), MINT (48), HPRD (49), DOMINO (50), and Pepcyber (51) for
protein-protein, domain-protein, and domain-phosphopeptide in vivo
interaction information (supplemental Table S2). SMALI (22) and
Scansite (21) (low stringency) assigned a binding score to our 124
peptides in accordance with database instructions.

SMM and Logo Generation—The availability of high-quality binding
affinity measurements for the SH2 domains offered us an opportunity
to build accurate in silico models of the energy contributions from
amino acid residues at different positions. We used the stabilized
matrix method (SMM) algorithm to build such models (52). Briefly,
SMM is a linear regression based method that generates a Position
Specific Scoring Matrix (PSSM) given a set of peptides and their
measured affinities. The algorithm optimizes a PSSM during “training”
such that predicted affinities using the matrix are as close as possible
to the measured ones as determined by a sum of squared errors. To
predict a binding affinity of a peptide to an SH2 domain, correspond-
ing entries in the domain’s PSSM (i.e. residues/positions) are read off
and summed. SMM is distinguished from simple applications of a

linear regression technique by the following features: (1) trained mod-
els are adapted to noise in the affinity measurements, and (2) the
algorithm can deal with bounded measurements. The SMM was
applied to each domain as outlined previously (52) using the “reac-
tive-quantitative” subset of peptides. Signals were converted into pKD

scale, with higher numbers representing stronger affinities. Nonbind-
ing interactions were assigned a value of 5, whereas binding interac-
tions were assigned a value of 6. For each SH2 domain ten fivefold
cross validations were performed. The scoring matrices shown in this
study were averages of the 50 matrices. Matrices were converted to
logos using the “Seq2logo” web tool (53).

RESULTS

CPCMA Production and Optimization—Frank and col-
leagues recently introduced the spotting compound conju-
gates (SC2) technique (54) to manufacture multiple peptide
microarrays from a single SPOT synthesis cellulose mem-
brane (16) (Fig. 1A). To optimize the CPCMA platform, we
varied substrate type and cellulose polymer length and ana-
lyzed their effect on assay sensitivity and precision using a
series of bioassays. A cellulose-binding domain (CBD) was
used to report the density of the printed cellulose matrix, and
both a phosphotyrosine-specific antibody (Anti-pY) and a rep-
resentative SH2 domain from the protein VAV1 were used to
report accessible phosphopeptides (Fig. 1B). Noting superior
performance in preliminary tests, we examined assay sensi-
tivity, precision, and throughput capacity (spot size) of amine
and aldehyde coated surfaces. Using a panel of physico-
chemically diverse CPCs (supplemental Table S1), a maxi-
mum of 1024 measurements was made per bioassay. Amine
functionalized slides displayed a clear advantage in sensitiv-
ity, precision, spot size, and spot uniformity compared with
aldehyde slides (Fig. 2), and were therefore used for subse-
quent analyses.

In SC2, the cellulose support is cleaved via acid mediated
hydrolysis of glycosidic bonds, and the final cellulose polymer
length depends on acid concentration (55). A longer cellulose
chain may attach more robustly to the slide, thereby increas-
ing CPC density and assay sensitivity, consistent with previ-
ous reports of increased sensitivity for protein and peptide
microarrays employing three-dimensional polymer scaffolds
for surface attachment (56, 57). However, this advantage
must be balanced against the general insolubility of cellulose,
which may lead to precipitation and printing anomalies. To
further optimize the CPCMAs we performed a separate syn-
thesis of supplemental Table S1 peptides, subjecting them to
five different dissolution cocktails (Table I). Although we could
not recover peptide from the highest and lowest acidity con-
ditions, we identified a “medium” acidity condition with the
highest CPCMA sensitivity (supplemental Fig. S1, Table I),
which we used in subsequent assays.

CPCMA Affinity Estimation Pipeline—The experimental
pipeline includes a series of control arrays followed by SH2
domain titration arrays (Fig. 3A) and a CBD bioassay-medi-
ated print control assay (supplemental Fig. S2B). We mea-
sured affinities for 124 physiological phosphopeptides against
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four SH2 domains (supplemental Table S2). We independently
processed eighteen of these peptides and nonadjacently ar-
rayed them twice to assess the precision of replicate mea-
surements (supplemental Fig. S2A). In total, we spotted 1728
features per array with 144 per subarray. A subset of the
peptides are known to bind to specific SH2 domains with high
affinity, and almost all phosphopeptides arrayed are phos-
phorylated in vivo (47). We comprehensively covered selected
well characterized receptor tyrosine kinases (RTKs) such as
the ERBB family, as well as some under characterized RTKs
such as DDR1 and DDR2 that are known to be highly phos-
phorylated in cancer contexts (58). Well over one third (53 of
124) of our phosphopeptide set has never been investigated
in high throughput before (supplemental Table S2). This de-
sign enabled comparisons with preceding platforms and
orthogonal biophysical data while producing an interactome
with considerable novelty. We selected SH2 domains from
GRB2, NCK1, ABL1, and SHP2 (N-terminal domain) pro-
teins. Each of these domains derive from proteins with
different functions and have distinct selectivity preferences
(supplemental Table S3), so overlap is thought to be rela-
tively rare and for physiological peptides, potentially conse-
quential in vivo. We produced each domain as GST fusions
and applied each to three replicate arrays from 0.5 nM to 5
�M (Fig. 3A).

We encountered and addressed three sources of system-
atic error in the CPCMAs: image capture gain and image
saturation, printing efficiency between arrays, and printing
efficiency across blocks within a single array. Because we use
a wide SH2 concentration range, we cannot capture all fea-
tures from all arrays without saturation with a single photo-
multiplier voltage setting. We therefore scanned each array
multiple times, varying the voltage and ensuring that at least
one scan had no saturated pixels. Bias-free measurements of
the same array at different voltages would yield intensity
values that differ only through instrument gain. Therefore, M-A
scatterplots of one voltage versus a second voltage should
produce uniform horizontal lines with homogeneous scatter.
However, a clear curvilinear bias exists at low intensities,
whereas at high intensities saturated pixels underestimate the
signal (Fig. 3B, top). To correct for this bias and control for
saturated pixels, we applied an affine model of scanner char-
acteristics (see supplemental Experimental Procedures in
supplemental material) (59). This model allows us to use the
signals from each voltage as replicate measures of probe
content, after bias subtraction and scale normalization (Fig.
3B, bottom panels). The median of these replicates yields a
robust estimate of fluorophore quantity on a common linear
scale.

FIG. 1. Overview of CPCMA fabrication, layout, and bioassay interactions. A, 11-mer phosphopeptides are SPOT synthesized on a
cellulose membrane via Fmoc SPPS. The CPC spots are manually removed and placed into microplates where they are simultaneously
deprotected and acid solubilized. Following precipitation, washing and resolubilization (arrow), they are pin arrayed onto glass substrates with
twelve addressable subarrays. Each subarray serves as an independent reaction vessel for each bioassay. B, Example subarray layout and
interaction profile. Each subarray contains control spots consisting of cellulose alone (green square) and experimental CPC spots (purple
square). The control spots can only be recognized by the CBD bioassay (red spots). All of the properly synthesized and displayed CPCs can
be recognized by the CBD and Anti-pY antibody (yellow spots) whereas a subset of these can be recognized by the CBD, Anti-pY antibody,
and SH2 domain (blue spots).
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Array production often suffers from a systematic, gradual
loss of printed mass during a production run (60, 61). Our
system revealed significant loss across three replicate arrays

(Fig. 3C). Using the CBD to monitor printed mass, we observe
a similar loss across print blocks within a single array (sup-
plemental Fig. S2C). We therefore applied a correction using

FIG. 2. Amine functionalized substrates demonstrate superior characteristics. Two slides of each type were subjected to the three
bioassays (red � CBD; blue � SH2 domain; green � Anti-pY antibody). A, Analysis of inter-array sensitivity indicates that amine coated slides
are superior for all three bioassays. (CBD n � 109, SH2 n � 47, Anti-pY n � 49) B, Inter-array precision as measured by the coefficient of
variation (C.V.) of signals across two arrays. CBD and the SH2 domain show superior precision for the amine coated slides, whereas Anti-pY
shows comparable precision between the two substrates. (CBD n � 109, SH2 n � 47, Anti-pY n � 49) C, The average inter-array feature
diameter is much smaller for amine slides, indicating that the amine substrate is capable of increased throughput. (CBD n � 95, SH2 n � 47,
Anti-pY n � 51) D, The average intra-spot precision was measured by calculating the feature specific pixel C.V. The amine coated substrates
produce more regular spots. (CBD n � 95, SH2 n � 47, and Anti-pY n � 52) *p � 0.05, **p � 0.01, and ***p � 0.001.

TABLE I
Assay sensitivity as a function of dissolving cocktail acidity

Dissolving cocktail CBD sensitivity Anti-pY sensitivity

TFA (92.5%), TFMSA (4%), H2O (1%), TIPS (2.5%)a N.A. N.A.
TFA (88.5%), TFMSA (4%), H2O (5%), TIPS (2.5%) - “High” �� ���
TFA (93.5%), TFMSA (2.5%), H2O (2.5%), TIPS (1.5%) - “Medium” ��� ���
TFA (93.5%), TFMSA (1%), H2O (3%), TIPS (2.5%) - “Low” � �
TFA (82%), H2O (5%), TIPS (3%), DCM (10%)b N.A. N.A.

(���) superior, (��) good, (�) poor, “N.A.” not applicable.
a Precipitate not recoverable following acid mediated dissolution.
b Ineffective acid mediated dissolution.
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model-derived estimates for printing effects to achieve con-
sistent signal distributions (see supplemental Experimental
Procedures in supplemental material).

We assigned SH2-CPC interactions and subsequently the
CPCs themselves into categories (supplemental Fig. S3A and
S3B). Using this empirical approach to classification, a hier-
archy emerged reflecting the information provided from each
peptide. Approximately 74% of our peptide set bound to at
least one domain. The great majority of these reactive pep-
tides scored at least one quantitative reaction, yielding a rich
interaction data set of 324 quantitative measurements and 44
binary measurements.

Validation of CPCMA Quantitative Performance—For quan-
titative binder interactions, we estimated the affinity using a
simplified mass action model (see supplemental Experimental
Procedures in supplemental material). The majority of binding
isotherms saturated between 0.1–1 �M (supplemental Fig.
S4A), yielding 211 pairwise interactions with reliable KD esti-
mates. Included in this set are 34 replicate interactions drawn
from 18 replicated and randomly positioned peptides on the
arrays. The reproducibility of affinity estimates between the
replicates was excellent, with a Pearson’s correlation coeffi-
cient (PCC) approaching unity (PCC � 0.96, Fig. 4A). More-
over, the reproducibility of the KD estimates was superior to

FIG. 3. Quantitative CPCMA workflow with corrections for experimental bias. A, Experimental design. Two negative (red) and positive
(green) interaction controls were performed on a pilot panel of CPCs. The intersection (yellow) of those CPCs that scored negative for detection
antibody and GST tag binding (red) and positive for anti-pY and CBD (green) binding were printed for experimental assessment. One set of CBD
print control arrays (not shown) and four sets of experimental SH2 domain titration arrays were performed as outlined. Each array in a set is
scanned at multiple different photomultiplier voltages (PMT-V) such that the lowest applied voltage does not include any saturated features.
B, Scanner bias correction and SI calibration. Colored M-A plots (where M � ln [SIPMT�Vhigh/SIPMT�Vlow] and A � 1

2
ln [SIPMT�Vhigh *SIPMT�Vlow])

of all PMT-V feature pairs for a single experimental array are shown before (top) and after correction for voltage specific offset (bottom left) and
gain (bottom right). The bias corrected SI measurements are used to estimate a single SI value for each feature on the array, simultaneously
correcting for nonlinearity and saturated pixels. C, Inter-array correction. Representative box plots of the SI distributions between replicate
arrays before and after inter-array normalization are shown. In this instance, replicate “1” and “2” were printed in succession, whereas “3” was
printed six slides after replicate “2.”
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single concentration measurements, the usual measurement
mode for high throughput assays (PCC � 0.87, p � 0.016,
supplemental Fig. S4B).

To further validate the affinity measurements, we compared
a subset of identical peptide-SH2 interactions using fluores-

cence polarization (FP). The FP assay does not suffer from
interfacial assay artifacts and is often used as an orthogonal
measurement technique (11, 27, 33). We examined 10 pep-
tides and each SH2 domain across an affinity range spanning
four orders of magnitude. These peptides were printed twice

FIG. 4. CPCMA affinity measurements are reproducible, can be validated, and are useful for categorizing interactions. A, Scatterplot
of affinity estimates derived from replicated nonadjacent peptide spots on the array (n � 34 pairs). Each replicate corresponds to a separate
synthesis disc on the parent cellulose membrane and was subjected to a separate workup procedure. Dashed red-line represents the best fit
unconstrained linear regression line. PCC value inset. B, Scatterplot of 44 SH2-peptide interaction affinities estimated by array, and in solution
by fluorescence polarization (FP). Dashed red line represents the best-fit unconstrained linear regression line. Error bars represent S.E. and
PCC values inset. C, ROC curves for array estimated KD values (solid lines) and 5 �M SI measurements (dashed lines) at 1 and 10 �M cutoffs.
Area under the curve (AUC) values are provided in the inset legend. D, Dataset overlap with peptide library derived predictive algorithms.
Four-way Venn diagram depicting overlap of array based measurements and interactions predicted from the Scansite (low stringency) and
SMALI algorithms. Binders are the set of interactions measured above noise via array. The subset of high-affinity interactions are those with
array logKD values � 1.47 nM.
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from separate syntheses, at nonadjacent positions on the
array (supplemental Tables S2 and S4). Note that the array
overestimates the absolute affinities because of an avidity
effect imparted by the constitutively dimerized GST expres-
sion tag (62). Although the affinity measurements must be
interpreted in a relative sense, the correlation of the CPCMA
and FP estimates for this diverse panel of interactions is good
(PCC � 0.65), as shown in Fig. 4B. Once again, single con-
centration measurements performed poorly (PCC � �0.28,
supplemental Fig. S4C).

Because the CPCMAs outperformed single concentration
estimates of binding, we assessed the classification perfor-
mance of each type using receiver operating characteristic
(ROC) analysis (63) (Fig. 4C). ROC curves were generated with
the set of peptides having both array and FP derived affinity
estimates (Fig. 4B) using the FP values as the reference set for
classification. We chose cutoff values—that is KD values from
the FP data set to define the classification boundary—in the
low micromolar range because this is near our median affinity
and because low and submicromolar interactions are com-
mon for well-characterized SH2 domains. At cutoff levels of
10 and 1 �M, apparent KD values classify more efficiently than
single SI measurements (Fig. 4C). Apparent KD estimates at
the 10 �M cutoff performed extremely well (AUC � 0.97), with
maximal threshold accuracy achieved with Array log KD �

1.74 nM. We chose this value to serve as a boundary between
two affinity classes, “high” and “low” (corresponding to �10
�M and �10 �M, respectively). We further identified a third
class of CPC-SH2 interactions, the “nonbinders.”

To further assess the appropriateness of the 10 �M bound-
ary, and to enrich our data set with measured affinities and in
vivo interaction information, we manually mined the literature
and multiple databases (supplemental Table S2). All of the 34
biophysically quantified in vitro interactions and almost all of
the in vivo domain-site specific interactions in our data set
(41/43) we classified as binders. Moreover, 91% (31/34) of the
in vitro interactions mapped to the correct affinity category,
and 85% (35/41) of the in vivo interactions we identified as
high-affinity, as expected for relevant interactions among nu-
merous competitors.

Next we compared our interactions to those predicted by
two algorithms trained on in vitro peptide libraries, Scansite
(21) and SMALI (22) (Fig. 4D). Interactions that produce a
probability value or score above a threshold are predicted to
be high-affinity binders. Consistent with this, our interaction
set almost completely encompasses the predictions from
these two algorithms, the bulk of which mapping to the high-
affinity class (�70%, Fig. 4D).

To assess the performance of CPCMAs relative to the pre-
ceding quantitative PMA and HTFP platforms, we compared
an overlapping set of 64 and 84 interactions, respectively (31,
32, 64). Our comparisons show that the CPCMAs are �five-
fold more sensitive, have improved reproducibility, and more
consistently align with SMALI and Scansite algorithmic pre-

dictions, known binding motif preferences, affinity measure-
ments, and in vivo interactions (see Supplemental Results in
supplemental material, supplemental Fig. S4D and S4E, sup-
plemental Table S5).

Systems Level Analyses of the Quantitative SH2 Domain-
phosphotyrosine Interactome—The CPCMA platform yielded
a high quality quantitative interactome of 280 interactions
between 92 peptides (89/92 of these peptides are physiolog-
ical, 69/89 currently annotated as phosphorylated in vivo, with
the remainder potentially phosphorylated) and four SH2 do-
mains. A network graphic depicting interactions between SH2
domains and physiological peptides, along with interaction
strength, phosphorylation data, and in vivo interaction meta-
data parsed into protein-protein, domain-protein, and do-
main-site categories is supplied as supplemental Fig. S5.
Given that over one-third of our peptides have never been
queried in high throughput before and preceding approaches
suffered from low sensitivity and/or lack of quantification
(see Supplemental Results), this interactome is considerably
novel. Unlike preceding interactomes, here interactions can
be prioritized based on affinity and (for quantitative peptides)
nonbinding events, or negative information can also be incor-
porated into analyses of signaling systems. The phosphory-
lation data and in vivo interaction data can also be used to
prioritize interactions for further investigations. For instance,
an interaction between a domain and a site, which is validated
in vivo, lends greater confidence that a high affinity interaction
identified for another domain without in vivo information may
be physiologically relevant, simply because this phosphory-
lation site has already mediated a functional SH2 domain
interaction.

Peptides that bind to multiple domains are potential sites of
coregulation, possibly serving as critical points for pathway
cross-talk. The four SH2 domains examined here are from
different functional subfamilies where binding motifs differ
with little overlap (17, 19, 33, 37) and therefore high affinity
binding overlap may be functionally relevant in vivo. Previous
work in bacteria and yeast have shown that pathway cross-
talk mediated by interactions between domains or kinases
and short specificity determining peptide motifs may be sub-
jected to negative evolutionary pressure (10, 43), resulting in
highly specific domain-peptide interactions with little binding
overlap between domain family members. In higher eu-
karyotes, such as humans, this may not be the case at the
interaction site level given the role of tissue specific expres-
sion in mediating signaling specificity. In addition, because of
the expansion in the size of protein domain families in higher
eukaryotes, secondary contacts (interactions outside of the
primary domain-ligand binding interface), and coincident de-
tection (multiple domain-ligand interactions are needed for a
functional binding interaction) may play a more prominent role
in insulating signaling pathways compared with the primary
interaction interfaces.
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The degree of interaction overlap between SH2 domains
has heretofore not been examined with this level of quantita-
tive resolution. Therefore, it is not known if the degree distri-
bution of the interaction network is a function of interaction
affinity. If pathway cross-talk is subjected to negative selec-
tion in the SH2 domain phosphopeptide interactome at the
level of the primary interaction interface, the relative number
of promiscuous peptides should decrease as the affinity of the
interactions (and presumably the physiological relevancy) ex-
amined increases. Consistent with this hypothesis, promiscu-
ous peptides within our high affinity subset are rare (Fig. 5A).
Considering only high-affinity interactions, 63 peptides bind
to at least one SH2 domain, whereas only six peptides bind to
three SH2 domains and no peptides bind to all four domains.
Indeed, a comparison of the degree distributions between the
entire quantitative data-set (n � 81 peptides and 267 interac-
tions) and another for the high affinity subset (n � 63 peptides
and 102 interactions) reveals that node degree is a function of
interaction affinity (supplemental Fig. S6A and S6B, Fisher’s
Exact Test p � 1.0 � 10�7). This finding is consistent with the
hypothesis that physiological domain-motif interactions
evolved with signaling specificity as a constraint. To our
knowledge, this is the first quantitative examination of this
property for any domain-motif interactome in higher eu-
karyotes, and therefore may be representative of other fami-
lies, such as the SH3, PDZ, Chromo, and Bromo domain
families.

The binding mode of individual domains is best assessed
quantitatively so that the distribution of binding affinities can
be judged. The high sensitivity and quantitative accuracy
provided by the CPCMAs enabled, for the first time a quan-
titative assessment of protein domain binding distributions
(Fig 5B). Here, we tested the hypotheses that each domain
has a similar central tendency and distribution shape. This
novel data analysis mode revealed that SH2 domains do not
differ greatly in their average affinity for physiological phos-
phopeptides (ANOVA p � 0.182, Kruskal-Wallis p � 0.362,
supplemental Fig. S6C). However, there were differences in
promiscuity (number of interactions/domain) and selectivity
(dynamic range of interactions) between the domains. Q-Q
plots of the binding distributions for the four domains reveal
similar centers for all the distributions but a large difference in
slope for the ABL1 SH2 domain compared with the others,
indicating less spread (selectivity) for its interactions (supple-
mental Fig. S6C). Two-way Anderson-Darling tests with mul-
tiple testing correction also supports a difference between the
distributions uniquely for ABL1 at the p � 0.05 significance
level.

These systems level quantitative properties are likely to
have important consequences in vivo. For ABL1, the high
interaction promiscuity (large number of binders) and moder-
ate selectivity (tight affinity distribution) is consistent with the
role of the SH2 domain within the full length tyrosine kinase.
There it enables the hyper-phosphorylation of diverse target

proteins by tethering peptide ligands after initial phosphory-
lation, allowing processive phosphorylation of adjacent target
sequences in cis (65). The binding profiles of the adapter
proteins GRB2 and NCK1 are also consistent with their bio-
logical function, as they discriminate between potential li-
gands and also achieve high-affinity anchoring interactions to
ensure effective signal transduction. Similarly, a highly-selec-
tive binding profile with high-affinity binding is consistent with
the role of the N-terminal SH2 of the SHP2 tyrosine phospha-
tase. Here, SH2 ligands of SHP2 simultaneously release intra-
molecular inhibition and anchor the phosphatase to sites of
intended action (66).

Quantitative Affinity Matrix Construction and Interaction
Prediction—Previous PSSMs provide insight into the se-
quence motifs critical for high-affinity binding (supplemental
Table S3). However, because these matrices were trained by
sequence frequency and not interaction affinities, they may be
sensitive to the binding/nonbinding threshold while ignoring
information from low affinity interactions. The combined high
sensitivity and quantitative capacity of our approach enables
for the first time the application of a quantitative binding motif
summarization methodology to a HTP domain-peptide data
set. Here, we have applied the stabilized matrix method
(SMM) (52), which scores each amino acid at every position
according to its approximated contribution to the binding
energy to produce an affinity matrix.

All of the matrices produced here are consistent with pre-
viously reported motifs (Fig. 5C) while yielding further infor-
mation. For instance, the core pY-X-N-X and pY-[D/E]-X-[V/P]
motifs for GRB2 and NCK1, respectively, are apparent,
whereas a preference for C-terminal acidic residues is seen
here for NCK1. Likewise, SHP2 has an extended motif for
hydrophobic residues at the �2 and the �1 through �4
positions. We verified the predictive capacity of our matrices
using cross-validation. This analysis revealed excellent clas-
sification accuracy for the GRB2 and NCK1 motifs, good
accuracy for SHP2, and poor accuracy for ABL1, likely be-
cause of the high promiscuity and narrow interaction affinity
distribution for this particular domain (supplemental Fig. S7A–
S7D). For all SH2 domains except ABL1, the predictive accu-
racy is improved when the classifier boundary is restricted to
high-affinity interactions, which are likely most important for
biological function (supplemental Fig. S7A–S7D). Overall, the
performance of these motifs demonstrates the value of quan-
titative affinity estimates for ligand discrimination, and they
serve as a useful guide for identifying residues impacting
binding specificity (see below).

Motif Targeted Investigation of Contextual Affinity Modula-
tion—Selectivity summarization matrices are a fundamentally
useful tool for visualizing general sequence preferences and in
this case predicting binding interactions. However, because
of the independence assumption they cannot incorporate
contextual interplay between AAs into predictions. Although
the entire sequence always affects binding, context is most
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important for high-affinity interactions anchored by hot-spot
residues, such as �2 Asn for GRB2. Neighboring residues
modulate affinities, contributing to promiscuity and the as-
signment of binding priority across multiple domains (25, 27).
We (27) and others (67) have shown that the GRB2 SH2
domain is sensitive to particular nonpermissive residues
within the pY-X-N-X motif. To investigate if contextual inter-
play can be resolved by the CPCMAs, we parsed our 19
pY-X-N-X peptides into two groups depending on whether
nonpermissive residues are in the motif. Indeed, we found a
highly significant (p � 0.001) reduction in binding affinity for
peptides containing nonpermissive residues (supplemental
Fig. S7E).

Given that the CPCMA platform was able to resolve sub-
motif differences in affinity, we investigated interaction over-
lap within a core-motif defined context, focusing on GRB2
and NCK1. The matrices for these domains display excellent
predictive accuracies (AUC � 0.9), agree with the literature,
and contain known hot-spot residues. We show peptide af-
finities for pairs of SH2 domains in Fig. 5D. Consistent with the
affinity defining nature of the core motifs, all known domain
and site-specific in vivo interactions (red dots) and points of
coregulation (multiple interacting domains, red lines) are
within the high-affinity subset. Generally, high-affinity overlap
is common with ABL1 because of its promiscuous nature, yet
much less common for the other three domains.

Contextual information modulates interaction crossover for
many peptides. For example, GRB2 and SHP2 both interact
with IRS1 Y895 (68) in vivo, and are predicted here to interact
with the Y39 peptide RVQIYHNPTAN within vasodilator-stim-
ulated phosphoprotein (VASP). ABL1 also binds with high-
affinity to both peptides, and is known to phosphorylate VASP
Y39 in vivo (69). Although IRS1 Y895 contains no hot-spot
residues for NCK1, VASP Y39 contains a �3P. However, this
peptide lacks other permissive residues beyond the �3 posi-
tion for NCK1, preventing crossover with this domain (Fig.
5C). Perhaps not surprisingly given the impact of contextual
information, core-motif overlap does not guarantee binding
overlap, nor does the absence of motif overlap prevent bind-
ing overlap. For example, of the two peptides that conform to
both the GRB2 and NCK1 core-motifs, only one peptide binds
with high affinity to both domains. The transmembrane adap-
tor protein non-T cell activation linker (NTAL) Y136 peptide
DANSYENVLIS only binds strongly to GRB2. This selection

may be accomplished by a combination of a �1 Ser and �4
Leu, which are detrimental for NCK1 (Fig. 5C). Similarly, ABL1
prefers a �2 Asn and �3 Pro, yet the HER4 site Y1162
PKQEYLNPVEE is this domain’s lowest affinity pY-X-N-X
peptide, perhaps because of a �1 Leu (Fig. 5C). Conversely,
this peptide binds to NCK1 because of its acidic C terminus,
despite not conforming to the NCK1 core-motif (Fig. 5C). This
motif-focused analysis highlights the exquisite specificity in
PID-peptide interactions, which can only be revealed through
quantitative affinity measurements.

DISCUSSION

We find that the CPCMA based approach has greatly im-
proved sensitivity, reproducibility, and quantitative resolution
compared with earlier methods, allowing us to examine PID
domain specificity space with confidence. The performance
of the CPCMA platform was achieved through the careful
application of a combination of critical experimental and com-
putational processing decisions. New tools, such as the
ArrayMix™ and ArraySlide™ enabled prolonged, reproduci-
ble, kinetically controlled incubations while novel applications
of existing tools, such as the CBD for quality control enabled
the application of systematic error corrections. Here we pro-
vide an approach that addresses issues related to the ade-
quate display of peptide, optimal incubation conditions, im-
age capture, correction of systematic error, estimation of
affinity, and categorization of interactions. The procedure de-
veloped herein is therefore the most comprehensive approach
for mapping PID specificity to date. At the most direct level,
our approach enables a confident assessment of binding
priority between competing PIDs for binding sites. This ability
is critically important for the development of testable hypoth-
eses examining time-dependent signal propagation and infor-
mation integration at hub proteins (70), which are often aber-
rant processes in cancers (42, 71) and require the processing
of high and low affinity interactions (34, 72–74). In addition,
the CPCMA platform is capable of explicit measurement of
nonbinding events, can resolve interplay between neighboring
amino acids within a ligand, does not require the purification
of both interacting components, and is economical to employ.
Taken together, the CPCMA platform provides an appealing
choice relative to existing alternatives for all manner of PID
specificity investigations (supplemental Table S6). In support

FIG. 5. Multi-scale analyses of the binding profiles and overlap between the ABL1, GRB2, NCK1, and SHP2N SH2 domains. A,
Four-way Venn diagram depicting “high affinity” SH2 domain-CPC binding overlap. B, Binding affinity distributions for each SH2 domain within
the quantitative peptide class (n � 81). Interactions assigned an apparent KD are represented as closed circles, “binders” are represented as
open circles and assigned a value of 5 for visualization purposes. C, SMM-derived interaction motifs for each SH2 domain. The size of each
AA is proportional to its predicted global contribution to binding energy. The fifth position corresponds to the pY residue, which is constant
in all experiments. D, GRB2 (top) and NCK1 (bottom) core-motif constrained dot-plots depicting the binding distributions and interaction
crossover between domains. Dots represent core-motif conforming peptides. “Binders” are represented as in A, and “nonbinders” are
represented as gray open circles and assigned a value above the ordinate for clarity. Black dots represent peptides without domain-site
specific corroboration and red dots are in vivo corroborated domain-site specific interactions. Lines connect the same peptides between
distributions. A dotted line indicates one interaction scored as a nonbinder. A solid red line denotes a known point of coregulation.
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of this view, a number of new analysis modes for investigating
PID specificity space were enabled by our approach.

Here we provided, to our knowledge for the first time, a
quantitative investigation of domain specific binding distribu-
tions. These PID affinity signatures likely play an important
role in shaping the systems level function for a given domain.
For instance, a “promiscuous,” or highly connected domain
may bind to many peptides but do so at low affinity, thereby
producing interactions unlikely (in the absence of other in vivo
mechanisms such as spatial clustering or interactions poten-
tiated by other domains) to be competitive with other domains
in vivo. However, this may not be the case if multiple interac-
tion sites are available on the same protein (in cis), where
avidity may enable successful competition with domains that
have higher interaction affinities. We found the promiscuity
and selectivity signatures of SH2 domain family members
aligned with systems level protein function. For instance, the
ABL1 SH2 domain demonstrated a promiscuous but nonse-
lective distribution signature. A common moderate affinity for
its many ligands ensures that ABL1 SH2 interactions are
readily outcompeted by other phosphopeptide binding do-
mains and may be an important component of the ABL kinase
processive hyper-phosphorylation ability (65, 75). Together
these properties may help confer ABL family kinases with the
dynamism required to rapidly transition within and between its
diverse sites of regulation (76). SH2 domain dependent pro-
cessive multisite phosphorylation of diverse substrate pro-
teins is also a hallmark of SRC family kinases (77), and it
remains to be seen if this signature is common between these
two families. More generally, how PID affinity signatures clus-
ter within families, have changed during evolution, and can
inform drug and biological circuit design are important future
directions for exploration.

We demonstrated the ability of the CPCMA platform to
resolve contextual contributions to binding affinity and pro-
duce predictive PID specific affinity matrices from a single
quantitative data set. To our knowledge, this is the first dem-
onstration of these abilities by a quantitative high-throughput
platform and the first demonstration of the ability to resolve
nonpermissive contributions to binding affinity in high-
throughput. Previous work has incorporated quantitative
high-throughput interaction information from multiple PIDs
into unified interaction prediction algorithms (11, 28, 78). Al-
though useful for predicting interactions for uncharacterized
or under-characterized PID family members, such ap-
proaches are sensitive to the sequence similarity of test do-
mains to the domains used in the training set (28). Going
forward, we suggest that models trained incorporating the
idiosyncratic contextual binding preferences of single do-
mains are more likely to fully represent ligand binding prefer-
ences than those trained from entire PID families. Considering
the significant impact of contextual binding information on
PID specificity space (15), the combination of larger CPCMA
derived interaction data sets with algorithms capable of in-

corporating residue correlations is therefore an important fu-
ture application. For instance, when such models are com-
bined with in vivo information more accurate network
(re)constructions are possible (14, 17).

Using quantitative CPCMAs we recapture general themes
derived from preceding PID specificity studies and demon-
strate the ability to extend these concepts in new ways.
PID-ligand interactions serve to transmit specific cell signals
in a dynamic fashion and are therefore thought to possess
modest interaction affinities (1). Consistent with previous re-
ports to this effect (33, 34, 79) and recent findings that very
high affinity PID-peptide interactions can impair cell signaling
and viability (80, 81), we found our SH2 domain interactions
span a moderate affinity range. Within a PID family, domain
selectivity profiles cluster into separate binding motif classes
(23, 33, 37, 82) that are aligned with sequence similarity and
protein function (40, 83). Yet, likely as a consequence of
selection against the emergence of signaling systems with
excessive cross-reactivity (10, 43), PID family members have
selectivity preferences that are evenly distributed across a
continuum (11). This results in PID family specific interaction
networks with perhaps surprisingly low levels of binding-site
competition (12). Given the relatively evenly distributed selec-
tivity profiles across family members and the moderate bind-
ing affinity norm, overlapping high-affinity interactions are
thought to be uncommon, but potentially important sites of
signaling cross-talk.

Here, we also observe low levels of high affinity interaction
overlap across four SH2 domains with unique selectivity pro-
files. We demonstrate, for the first time that the degree dis-
tribution of a PID derived interactome is a function of affinity,
with node degree decreasing with increasing affinity thresh-
old. Moreover, consistent with the notion that CPCMA iden-
tified sites of high-affinity interaction overlap may represent
rare sites of signaling coregulation, the vast majority of the
known domain-site specific in vivo interactions map to our
high-affinity subset, including some overlapping pairs known
to perform a coregulatory function. For instance, we identified
a high affinity overlap site between GRB2 and SHP2 at IRS1
Y895 that is known to function as a phenotypic switch regu-
lating differentiation and proliferation in vascular smooth mus-
cle cells. Here, SHP2 dephosphorylates this site upon stimu-
lation with insulin-like growth factor-I, which serves as a
switch to block GRB2/SOS mediated migration and prolifer-
ation while maintaining the PI3K/AKT signaling pathway, and
thereby the differentiated cell state (68). SHP2 mediated de-
phosphorylation does not occur in dedifferentiated cells, re-
sulting in cell proliferation and migration (68).

The ligand sequence determinants responsible for directing
this high-affinity PID overlap have important implications
within a systemic context, especially for ligands like phospho-
peptides, which can serve as binding sites for kinases, phos-
phatases, and multiple PIDs. As demonstrated here using
affinity matrices as a guide, core-motif defining hotspot resi-
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dues are necessary prerequisites for high affinity interactions.
However, consistent with our previous analysis of SH2 do-
main binding specificity (27), we find that high-affinity inter-
action overlap is not solely directed by core motif overlap, and
subtle combinations of permissive and nonpermissive resi-
dues play important roles in defining specificity space. This
concept seems to be a general one for PIDs (15), and high-
lights that selectivity space—as defined by preferred binding
motifs where residues are assumed to contribute independ-
ently to binding affinity—does not predetermine specificity
space, and many physiologically important interactions may
be dictated by submotif contextual factors. Because of the
low sensitivity, quantitative resolution, or inherent limitations
of previous high throughput techniques, such important mod-
ulations have remained elusive. The quantitative CPCMA
based approach developed here is well poised to help ad-
dress the functional role each individual residue within a li-
gand plays in directing cellular signals.

Further application or in vivo investigation of findings de-
rived from in vitro PID-peptide interaction mapping should be
applied in a context specific fashion. Fundamentally, interact-
ing proteins must be coexpressed and colocalized for an
interaction to occur. Given this, although it is generally true
that interactions between a given PID and its ligand are nec-
essary for an interaction to occur in vivo, they are not always
sufficient. There are multiple instances where secondary con-
tacts (interactions outside the ligand motif and binding inter-
face of the PID) are also necessary for a biological outcome (5,
15, 84). These “secondary” interactions can be mediated by
alternative regions of the domain containing protein or of the
domain itself. In addition, the functional significance of any
given biophysical interaction identified in vitro may be contin-
gent upon combinatorial interactions between a given PID
and multiple ligands (35) or between multiple domain-ligand
pairs (85). Because these and other mechanisms exist in vivo
to potentiate the functional consequences of low-affinity in-
teractions, it is unwise to ignore such interactions in follow-up
investigations. However, given the concordance of in vivo
corroborated interactions and decrease in ligand promiscuity
within the “high affinity” subset of our results, it is likely that
functional interactions within this subset rely less on these
mechanisms than those within the “low affinity” subset, and
therefore are the priority subset for downstream investigation.

Regardless of the affinity, many of these interactions take
place only when a cell responds to an external stimulus.
Therefore, time resolved quantitative in vivo analysis ap-
proaches that can resolve the state of protein complexes such
as those based on affinity purification mass spectrometry
(86–88) hold promise in the effort to tease apart the functional
significance of putative PID-ligand interactions. In this way, in
vitro interaction mapping and in vivo protein complex analysis
provide highly complementary systems level approaches for
understanding and manipulating cell signaling circuits.

The CPCMA based approach developed here can be read-
ily applied to other PID ligand interaction systems. In addition
to other natural systems, our approach is compatible with
those incorporating unnatural amino acids, peptoids, and
small molecules. Unlike other techniques, our approach does
not require the maintenance of protein structure at an inter-
face, the purification of each interacting component, sophis-
ticated microfluidics, or imaging apparatus, is capable of
multiplexing, and can use existing commercially-available
equipment and open-source software suites. Taken together,
the CPCMA platform should have broad applicability within
the protein interaction network field to discover new interac-
tions, new interaction features, and more effectively investi-
gate emergent systems level properties of interactomes.
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