Glycolate Excretion and the Oxygen to Carbon Dioxide Net Exchange Ratio during Photosynthesis in *Chlamydomonas reinhardtii*¹

Received for publication April 3, 1980 and in revised form July 25, 1980

AARON KAPLAN² AND JOSEPH A. BERRY

Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305

ABSTRACT

Chlamydomonas reinhardtii cells were grown in high (5% v/v) or low (0.03% v/v) CO₂ concentration in air. O₂ evolution, HCO₃⁻ assimilation, and glycolate excretion were measured in response to O₂ and CO₂ concentration. Both low- and high-CO₂-grown cells excrete glycolate. In low-CO₂-grown cells, however, glycolate excretion is observed only at much lower CO₂ concentrations in the medium, as compared with high-CO₂-adapted cells. It is postulated that the activity of the CO₂-concentrating mechanism in low-CO₂-grown cells is responsible for the different dependence of glycolate excretion on external CO₂ concentration in low- *versus* high-CO₂-adapted cells.

The O_2/CO_2 net exchange ratio is dependent on the CO_2 concentration in the medium and is linearly dependent on the fraction of glycolate excreted per CO_2 taken up. Glycolate excretion, however, is too low to account for the deviation of the O_2/CO_2 net exchange ratio from unity.

The rate of glycolate excretion by green and blue-green algae is strongly affected by the CO₂ concentration experienced by the cells during growth. Grown at high (0.2 to 5% v/v) and transferred to low (0.03% v/v) concentrations of CO₂, algal cells excrete large quantities of glycolate (12, 17, 18, 22, 29). The rate of glycolate excretion under these conditions decays to zero within several h. This cessation of glycolate excretion during the course of adaptation of algae from high- to low-CO₂ conditions was attributed to the induced activity of glycolate dehydrogenase (glycolate dichloroindophenol oxidoreductase) which enables low-CO₂adapted cells to metabolize glycolate (8, 11, 27).

There are different reports on the effect of CO_2 concentration on the rate of glycolate excretion and the fraction of fixed carbon which is excreted as glycolate (3 to 90% in different reports (*e.g.* refs. 7, 16, 17, and 28). If glycolate is mainly produced by the RuBP³ oxygenase reaction (20, 21), it is expected that changing the turnover rate of the Calvin cycle without affecting the ratio of oxygenase to carboxylase activities will result in a constant ratio of glycolate excreted to CO_2 taken up. This expectation has been confirmed when glycolate excretion and photosynthesis were measured as a function of light intensity in *Chlamydomonas* (7). Changing the relative activities of RuBP oxygenase and RuBP carboxylase, however, by raising or lowering O_2 or CO_2 concentration should affect the relative amount of glycolate excreted to CO_2 fixed. O_2 and CO_2 concentrations affect both the turnover rate of the Calvin cycle and the relative activity of RuBP carboxylase/oxygenase. CO_2 and O_2 concentrations must, therefore, be kept constant during the experiment, which is fairly difficult to achieve, especially at subsaturating concentration of CO_2 .

Inasmuch as glycolate is a relatively oxidized end product of photosynthesis, its excretion in large quantities should result in an O_2/CO_2 net exchange ratio lower than unity. The O_2/CO_2 net exchange ratio in *Chlorella* was affected by O_2 concentration (15), probably due to the effect of O_2 concentration on glycolate production and excretion (16). CO_2 concentration, however, had a very small effect on the O_2/CO_2 net exchange ratio in *Chlorella* (15). Inasmuch as the deviation of the O_2/CO_2 exchange ratio from unity must be explained by the accumulation of a relatively oxidized end product of photosynthesis (6, 19), it is difficult to interpret data showing no effect of CO_2 concentration on this ratio, although glycolate excretion (which was not measured) should have been affected. It is also not known to what extent glycolate excretion can explain the deviation of the observed O_2/CO_2 ratio from unity.

Here, glycolate excretion and the O_2/CO_2 net exchange ratio of high- and low-CO₂-adapted *Chlamydomonas reinhardtii*, as affected by CO_2 concentration, is reported.

MATERIALS AND METHODS

C. reinhardtii cells (haploid strain 137C, stock GB-126) were grown phototropically in 300-ml shake cultures of HS culture media (25) aerated with air (low-CO₂-grown) or 5% (v/v) CO₂ in air (high-CO₂-grown), as described by Berry *et al.* (4).

O₂ evolution was measured in a closed electrode chamber (Rank Brothers, Bottisham, Cambridge, England), modified for increased sensitivity as described by Berry and Bowes (3). After depletion of endogenous CO_2 (in the media or as a pool within the cells), O_2 evolution was completely dependent upon the addition of NaHCO₃. NaHCO₃ was injected at a constant rate (using a syringe pump) which permitted the maintenance of a constant rate of O_2 evolution. The latter was completely dependent on the rate of HCO₃⁻ injection. Raising the rate of injection resulted in a faster rate of O₂ evolution. The steady-state HCO₃⁻ concentration within the O₂ electrode chamber could not be determined directly. It was estimated, however, by comparing the rate of O₂ evolution during the continuous injection of HCO₃⁻ with that observed following the addition of known amounts of HCO_3^- to cells which had previously depleted the inorganic carbon in the medium (as indicated by O₂ compensation point). The above procedure allowed construction of a "calibration curve" relating the rate of O2 evolution to the HCO₃⁻ concentration in the same type of cells under the same experimental conditions. The concentration of inorganic carbon in the medium was also deduced from the

¹ This is Carnegie Institution of Washington Publication No. 711.

² Present address: Department of Botany, Hebrew University of Jerusalem, Jerusalem, Israel.

³ Abbreviation: RuBP, ribulose 1,5-bisphosphate.

amount of acid labile ¹⁴C detected following the injection of NaH¹⁴CO₃, using the same concentration and the same experimental conditions as in the unlabeled experiments. There was good agreement between the radioactive method and the one described above.

Cells were washed with the growth media (excluding the microelements which were found to interfere with the glycolate determination) transferred to 50 mM Hepes buffer (pH 7.0), counted, and then placed in the O₂ electrode chamber (4 ml cell suspension, 5×10^6 cells/ml, 20 C, 35 nE cm⁻² s⁻¹, 400-700 nm) and allowed to use up the CO₂ in the media. Injection of NaHCO₃ started when O₂ compensation point was reached. To measure the amount of glycolate present in the solution, a 0.5-ml cell suspension sample was taken at the same time. Injection of HCO₃⁻ and O₂ evolution were allowed to proceed for at least 20 min inasmuch as it was found that the rate of glycolate excretion remains constant during that period (not shown; see ref. 17). Cells were separated from the solution by filtration, and the glycolate concentration in the medium was measured by the method of Calkins (9).

The rate of O_2 evolution was calculated from the signal of the O_2 electrode. The rate of HCO_3^- uptake was calculated from the concentration of HCO_3^- injected and the rate of injection. It should be emphasized that the rate of HCO_3^- assimilation may be overestimated, especially at the higher range of HCO_3^- concentration, as HCO_3^- could accumulate in the O_2 electrode chamber (see below).

RESULTS AND DISCUSSION

In both high- and low-CO₂-grown Chlamydomonas, the rates of glycolate excretion decrease and O2 evolution increases with elevated concentration of HCO₃⁻ in the medium (Fig. 1). Maximum rate of glycolate excretion is obtained at the lowest HCO₃⁻ concentration. Ingle and Colman (18) found a similar effect of CO_2 concentration on the rate of glycolate excretion in Coccochloris peniocystis. Hess et al. (17) reported a larger rate of glycolate excretion in Scenedesmus and Chlorella exposed to 10 mm HCO₃, as compared with no addition of HCO₃⁻. Their experiments however, were conducted in an O₂ atmosphere. In the experiments reported here, O_2 and CO_2 concentrations were kept constant (within $\pm 10\%$) even at subsaturating concentrations of CO₂, which is of paramount importance in this type of experiment. It is possible that, under different conditions, such as higher O₂ concentrations, glycolate excretion rate will initially increase with elevated CO_2 concentration (7).

FIG. 1. Response of glycolate excretion and O₂ evolution to HCO₃⁻ concentration in the medium in high- (A) and low- (B) CO₂-grown C. reinhardtii. Chl content was 5.3 and 6.6 μ g/10⁷ cells of air-grown and 5% CO₂-grown, respectively. Four ml cell suspension, 5 × 10⁶ cells/ml, 20 C, 50 mM Hepes buffer (pH 7.0), 35 nE cm⁻² s⁻¹ (400-700 nm), 20 to 22% O₂. Note: 10-fold difference in scale of HCO₃⁻ concentration.

It has been reported that low-CO₂-grown algae do not excrete glycolate. This has been attributed to the induction of glycolate dehydrogenase activity by low CO₂ conditions (22). Data presented here (Fig. 1) clearly demonstrate that glycolate excretion by low-CO₂ cells can only be detected at very low CO₂ concentration. The activity of glycolate dehydrogenase may explain the lower rate of glycolate excretion in low-CO₂ cells as compared with high-CO₂-grown cells (Fig. 1). Glycolate dehydrogenase activity, however, cannot explain the very different dependence of the rates of O₂ evolution and glycolate excretion upon HCO₃⁻ concentration in high- versus low-CO2-grown cells. Further, experiments in which the incorporation of [14C]glycolate and the activity of glycolate dehydrogenase were measured showed that the difference in glycolate excretion between high- and low-CO₂grown algae cannot be attributed to glycolate being metabolized (12, 26).

The different apparent photosynthetic affinity to CO₂ in highas compared with low-CO₂-grown Chlamydomonas (ref. 4 and Fig. 1) is attributed to the activity of the CO₂-concentrating mechanism. Low-CO2-grown Chlamydomonas are capable of concentrating CO₂ inside the cells up to 40 times its concentration in the medium, whereas high-CO₂-grown cells exhibit very limited capability of concentrating CO_2 (1, 2). It has been suggested that CO₂ and O₂ compete for the RuBP carboxylase/oxygenase reaction which lead to the formation of glycolate (20, 21). Hence, the elevated internal CO₂ concentration in low-CO₂-grown cells may inhibit the rate of RuBP oxygenase, resulting in a lower rate of glycolate formation. The kinetics of inhibition of glycolate excretion by CO_2 is presented as a Dixon plot (24) in Figure 2. CO_2 is for this purpose treated as the inhibitor (since it competitively inhibits the RuBP oxygenase). O_2 is regarded as the substrate and V is the rate of glycolate excretion. In both high- and low- CO_2 grown cells, we could not detect glycolate excretion at O2 concentration of 3%, regardless of the CO₂ concentration in the medium (not shown). The lack of glycolate excretion at low O₂ concentration is presumably due to the effect of O₂ concentration on the rate of glycolate formation by the RuBP oxygenase. In the case of high-CO₂-grown cells, linear correlation between $1/\nu$ and the concentration of CO_2 in the medium is obtained in both 20 to 22% O_2 (Fig. 2, line A) and 40 to 44% O_2 (Fig. 2, line B). The expected rate of glycolate excretion at zero CO_2 (the intersection with the

FIG. 2. The $1/\nu$ (ν = rate of glycolate excretion) as a function of CO₂ concentration in *C. reinhardtii*. A, high-CO₂-grown cells, 20 to 22% O₂; B, high-CO₂-grown cells, 40 to 44% O₂; C, low-CO₂-grown cells, 20% O₂, $1/\nu$ plotted against external CO₂ concentration; D, data of line C plotted against the internal CO₂ concentration [calculated from Badger *et al* (1, 2)]; other conditions were as for Figure 1. Note: the lowest concentration of CO₂ in line C is $0.2 \,\mu$ M. Data presented in line C are those for which we have the dependence of the internal CO₂ concentration on the external one.

y axis) is 0.77 and 1.25 nmol min⁻¹ 10^{-7} cells for the 20 and 40% O₂ concentrations, respectively. The two lines (Fig. 2, A and B) intersect at $K_i = 8 \ \mu M \ CO_2$. In low-CO₂-grown cells, on the other hand, a curved line is obtained when 1/v is plotted against the external CO₂ concentration (Fig. 2, line C). However, if 1/v is plotted against the internal CO₂ concentration (calculated from the dependence of the internal CO₂ concentration on the external one; e.g. ref. 2), a linear correlation is observed (Fig. 2, line D). Line D (in Fig. 2) intersects with the y axis at V = 0.67 nmol min⁻¹ 10⁻⁷ cells. In the case of low-CO₂-grown cells, K_i cannot be calculated since the dependence of the internal CO₂ concentration on the external one was not determined at O2 concentration other than 20%. Considering the similar K_m (CO₂) of RuBP carboxylase and the similar activity of RuBP oxygenase in high- and low-CO2grown Chlamydomonas (4) and the nature of the data presented in Figure 2, it is very likely that K_i in low-CO₂-grown cells is very similar to that obtained in high-CO₂ cells. The lower V indicated by the intersection of line D (Fig. 2) with the y axis (*i.e.* at zero CO_2) in low- CO_2 cells (0.67 nmol min⁻¹ 10^{-7} cell as compared with 0.77 in high-CO₂-grown cells) may be due to glycolate dehydrogenase activity in low-CO₂ cells.

The data presented in Figure 2 (lines A and B) clearly indicate that the mode of inhibition of glycolate excretion by CO_2 is competitive (24). The fact that, in the long run, CO_2 is also the substrate for the formation of RuBP which is the precursor for glycolate does not seem to affect the competitive inhibition kinetics observed, at least not within the experimental period investigated here. The data in Figure 2 also suggest that lower rate of glycolate formation and not faster rate of glycolate metabolism is responsible for the decay of glycolate excretion during adaptation of *Chlamydomonas* from high to low CO_2 concentration.

The effect of HCO_2^- concentration on the O_2/CO_2 net exchange ratio and the glycolate excreted/HCO₃⁻ assimilated is shown in Figure 3, A and B, for high- and low-CO₂ cells, respectively. O₂/ HCO3⁻ net exchange ratio in both types of cells increased with elevated HCO₃⁻ concentration and would probably have reached a value very close to 1, as glycolate excretion decreased (Fig. 1). However, as a result of the technique used, when photosynthetic rate deviated from being linearly dependent on HCO₃⁻ concentration, HCO₃⁻ could accumulate in the reaction chamber. This resulted in a decrease (not shown) in O₂/HCO₃⁻ net exchange ratio after reaching the plateau shown in Figure 3. The deviation of the O₂/HCO₃⁻ exchange ratio from unity at the lower range of HCO3⁻ concentration cannot be attributed to accumulation of HCO₃⁻, as such accumulation should have affected the rate of O₂ evolution. The latter however, remained constant during the experiment even at subsaturating concentration of HCO₃⁻.

As expected, the glycolate/ HCO_3^- ratio (presented on a molar basis) decreased in both types of cell with elevated concentrations of HCO_3^- . This reflects the decreased rate of glycolate excretion and the increased rate of HCO_3^- uptake with elevated concentrations of HCO_3^- . The ratio of glycolate excreted/ HCO_3^- assimilated represents the drain on the carbon pool imposed by glycolate excretion. At low CO_2 concentrations, the amount of carbon excreted as glycolate may even exceed the amount of carbon fixed, presumably on the expense of reserve carbohydrates used as substrates for glycolate formation (see Fig. 3 and refs 16 and 17). It is difficult to estimate the drain of carbon imposed by glycolate excretion, as the amount of carbon cycled in dark respiration processes was not measured (5, 10, 16), It is clear, however, that this drain of carbon due to glycolate excretion is very dependent on the CO_2 and O_2 concentration.

 O_2/HCO_3^- net exchange ratio in *Chlamydomonas* also depends on CO_2 and O_2 concentration. A ratio of 1.0 is obtained at low (~ 3%) O_2 concentration (data now shown). The O_2/CO_2 net exchange ratio observed here indicates that a product which is relatively oxidized should have accumulated during the course of

FIG. 3. Glycolate/HCO₃⁻ and O₂/HCO₃⁻ net exchange ratios in response to HCO_3^- concentration in the medium of high- (A) and low- (B) CO₂-grown *C. reinhardtii.* Experimental conditions were as for Figure 1.

FIG. 4. O_2/HCO_3^- as a function of glycolate/HCO₃⁻ in high-CO₂grown *C. reinhardtii*. The upper line presents the expected results if all HCO₃⁻ taken up would have been recovered in the excreted glycolate ($O_2/$ HCO₃⁻ = 0.75, glycolate/HCO₃⁻ = 0.5). Data are replotted from Figure 3.

our experiment (6, 19). If glycolate is the only relatively oxidized product which accumulates, its production should quantitatively explain the observed O_2/HCO_3^- ratio. The expected line shown in Figure 4 was, therefore, calculated on the basis that, if all the CO₂ taken up in photosynthesis is recovered in glycolate, glycolate/HCO₃⁻ (molar basis) would equal 0.5 and $O_2/HCO_3 = 0.75$. O₂/HCO₃⁻ is linearly dependent upon glycolate/HCO₃⁻ (correlation coefficient = 0.88). The experimental data, however, deviates from the expected line. It is concluded that the excretion of glycolate is not large enough to account for the deviation of the O_2/CO_2 ratio from unity. The O_2/CO_2 ratio may be the result of an increasing pool of glycolate which was not excreted (13) and which was dependent upon the rate of glycolate formation. CO₂ evolution in the light in high-CO₂-adapted cells (14) could also contribute to the observed deviation. The exact contribution, however, is not known, as CO₂ evolution was not measured.

 O_2 evolution is often used as a criterion for CO_2 fixation by algae. Because of the dependence of O_2/CO_2 net exchange ratio on CO_2 and O_2 concentration reported here, it is suggested that O_2 evolution should not be used to assess the kinetics of CO_2 assimilation without monitoring the O_2/CO_2 net exchange ratio (23).

LITERATURE CITED

 BADGER MR, A KAPLAN, JA BERRY 1977 The internal CO₂ pool of Chlamydomonas reinhardtii: response to external CO₂. Carnegie Inst Year Book 76: 362366

- BADGER MR, A KAPLAN, JA BERRY 1978 A mechanism for concentrating CO₂ in *Chlamydomonas reinhardtii* and *Anabaena variabilis* and its role in photosynthetic CO₂ fixation. Carnegie Inst Year Book 77: 251-261
- 3. BERRY JA, G BOWES 1973 Oxygen uptake in vitro by RuDP carboxylase of Chlamydomonas reinhardtii. Carnegie Inst Year Book 72: 405-407
- BERRY JÁ, J BOYNTON, A KAPLAN, MŘ BADGER 1976 Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO₂ concentration. Carnegie Inst Year Book 75: 423-432
- BIDWELL RGS 1977 Photosynthesis and light and dark respiration in freshwater algae. Can J Bot 55: 809-818
- BJÖRKMAN O 1973 Comparative studies on photosynthesis in higher plants. In AC Giese, ed, Photophysiology, Vol VIII. Academic Press, New York pp 1-63
- BOWES G, JA BERRY 1972 The effect of oxygen on photosynthesis and glycolate excretion in *Chlamydomonas reinhardtii*. Carnegie Inst Year Book 71: 148-158
 BRUIN WJ, EB NELSON, NE TOLBERT 1970 Glycolate pathway in green algae.
- Plant Physiol 46: 386–391 9. CALKINS VP 1943 Microdetermination of glycolic and oxalic acid. Ind Eng Chem
- Anal Ed 15: 762-763
- CHENG KH, B COLMAN 1974 Measurement of photorespiration in some microscopic algae. Planta 115: 207-212
- 11. CODD GA, JM LORD, MJ MERRETT 1969 The glycolate oxidizing enzyme of algae. FEBS Lett 5: 341-342
- COLMAN B, AG MILLER, B GRODZINSKI 1974 A study of the control of glycolate excretion in *Chlorella*. Plant Physiol 53: 395–397
- COOMBS, J, PC WHITTINGHAM 1966 The effect of high partial pressure of oxygen on photosynthesis in *Chlorella*. I. The effect on end products of photosynthesis. Phytochemistry 5: 643–651
- FINDENEGG GR. K FISCHER 1978 Apparent photorespiration of Scenedesmus obliquus: decrease during adaptation to low CO₂ level. Z Pflanzenphysiol 89: 363-371
- FOCK H, DT CANVIN, BR GRANT 1971 Effect of oxygen and carbon dioxide on photosynthetic O₂ evolution and CO₂ uptake in Sunflower and Chlorella.

Photosynthetica 5: 389-394

- FOCK H, GC BATE, K EGLE 1974 On the formation of glycolate in photosynthesizing Chlorella using a new gas liquid chromatography method. Planta 121: 9-16
- 17. HESS JL, NE TOLBERT, L PIKE 1967 Glycolate biosynthesis by Scenedesmus and Chlorella in the presence or absence of NaHCO₃. Planta 74: 278-285
- INGLE RK, B COLMAN 1976 The relationship between carbonic anhydrase activity and glycolate excretion in the blue-green alga Coccochloris peniocystis. Planta 128: 217-223
- KAPLAN A, O BJÖRKMAN 1980 Ratio of CO₂ uptake evolution during photosynthesis in higher plants. Z Pflanzenphysiol 96: 185–188
 KRAUSE GH, SW THORNE, GH LORIMER 1977 Glycolate synthesis by intact
- KRAUSE GH, SW THORNE, GH LORIMER 1977 Glycolate synthesis by intact chloroplasts, studies with inhibitors of photophosphorylation. Arch Biochem Biophys 183: 471-479
- LORIMER GH, GH KRAUSE, JA BERRY 1977 The incorporation of ¹⁶O oxygen into glycolate by intact isolated chloroplasts. FEBS Lett 78: 199-202
- 22. NELSON EB. NE TOLBERT 1969 The regulation of glycolate metabolism in Chlamydomonas reinhardtii. Biochim Biophys Acta 184: 263-270
- RADMER R. B KOK. O OLLINGER 1978 Kinetics and apparent K_n of oxygen cycle under conditions of limiting carbon dioxide fixation. Plant Physiol 61: 915–917
- 24. SEGEL IH 1975 Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems. John Wiley & Sons, New York
- SHEOKA N 1960 Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci USA 46: 83-91
- SPENCER KG, RK TOGASAKI 1977 Growth on glycolate and the glycolate: DCPIP oxidoreductase in Chlamydomonas reinhardtii. Plant Physiol 59: S-66
- TOLBERT NE, EB NELSON, WJ BRUIN 1971 Glycolate pathway in algae. In MD Hatch, CB Osmond, BO Slatyer, eds, Photosynthesis and Photorespiration. John Wiley & Sons, New York, pp 506-513
- WARBURG O, G KRIPPAHL 1960 Glykolsaurebildung in Chlorella. Z. Naturforsch 156: 197–199
- WATT WD, GE FOGG 1966 The kinetics of extracellular glycolate production by Chlorella pyrenoidosa. J Exp Bot 17: 117-134